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State Feedback

In the last lecture we introduced state feedback as a technique

for eigenvalue placement. Briefly, given the open-loop state

equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

we apply the control law u(t) = Nr(t) − Kx(t) and obtain the

closed-loop state equation

ẋ(t) = (A − BK)x(t) + BNr(t)

y(t) = Cx(t),

If the system is controllable, by appropriately designing K, we

are able to place the eigenvalues of (A − BK) at any desired

locations.
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Regulation and Tracking

The associated block diagram is the following
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Two typical control problems of interest:

The regulator problem, in which

	 � �
and we aim to keep

lim 
 � � � � � � � �

(i.e., a pure stabilisation problem)

The tracking problem, in which
� � � �

is specified to track 	 � � � �� �

.

When 	 � � � � � �� �

, constant, the regulator and tracking problems are

essentially the same. Tracking a nonconstant reference

	 � � �

is a more

difficult problem, called the servomechanism problem.
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Regulation and Tracking

We review the state feedback design procedure with an

example.

Example (Speed control of a DC motor). We consider a DC

motor described by the state equations

�
� �

2

4

� � � �

� � � �

3

5

�

2

4

�
� � �

�
�

�
� �

�
�

3

5

2

4

� � � �

� � � �

3

5

�

2

4

�
�

3

5

� � � �

� �

h

� �

i

2

4

� � � �

� � � �

3

5

ω
i

+ −V

The input to the DC motor is the voltage V(t), and the states are

the current i(t) and rotor velocity ω(t). We assume that we can

measure both, and take ω(t) as the output of interest.
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Regulation and Tracking

Example (continuation). ➀ The open-loop characteristic

polynomial is

∆(s) = det(sI − A) = det
[

s+10 −1

0.02 s+2

]

= s2 + 12s + 20.02

which has two stable roots at s = −9.9975 and s = −2.0025. The

motor open-loop step response is
Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12 The system takes about 3s to

reach steady-state. The final

speed is about

� � � �

the ampli-

tude of the voltage step.

We would like to design a state

feedback control to make the

motor response faster and ob-

tain tracking of

� � � �

to constant

reference inputs 	.
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Regulation and Tracking

Example (continuation). To design the state feedback gain, we

next ➁ compute the controllability matrix

C =
[

B AB

]

=





0 2

2 −4





which is full rank ⇒ the system is controllable.

Also, from the open-loop characteristic polynomial we form

controllability matrix in x̄ coordinates is

C̄ =





1 α1

0 1





−1

=





1 12

0 1





−1

=





1 −12

0 1




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Regulation and Tracking

Example (continuation). We now ➂ propose a desired

characteristic polynomial. Suppose that we we would like the

closed-loop eigenvalues to be at s = −5 ± j, which yield a step

response with 0.1% overshoot and about 1s settling time.

The desired (closed-loop) characteristic polynomial is then

∆K(s) = (s + 5 − j)(s + 5 + j) = s2 + 10s + 26

With ∆K(s) and ∆(s) we determine the state feedback gain in x̄

coordinates

K̄ =
[

(ᾱ1 − α1) (ᾱ2 − α2)

]

=
[

(10 − 12) (26 − 20.02)

]

=
[

−2 5.98

]
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Regulation and Tracking

Example (continuation). Finally, ➃ we obtain the state feedback

gain K in the original coordinates using Bass-Gura formula,

K = K̄C̄C
−1 = [ −2 5.98 ]

[

1 −12

0 1

] [

0 2

2 −4

]−1

=
[

12.99 −1

]

As can be verified, the eigenvalues of (A − BK) are as desired.
Step Response

Time (sec)

A
m

pl
itu

de
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0
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0.02

0.03
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0.05
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0.07

0.08

The closed-loop step response,

as desired, settles in

�

s, with no

significant overshoot.

Note, however, that we still

have steady-state error (

� � � � �

�
�

� � � �

). To fix it, we use the feed-

forward gain

�

.
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Regulation and Tracking

Example (continuation). The system transfer function does not

have a zero at s = 0, which would prevent tracking of constant

references (as we can see in the step response, which otherwise,

would asymptotically go to 0).

Step Response

Time (sec)

A
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0
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1

1.2 Thus, ➄ we determine

�

with the

formula

� � �

�
��� � � �

�

�
�

� � � � 
 � �� � 
 � � �

and achieve zero steady-state

error in the closed-loop step re-

sponse.
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Regulation and Tracking

Example (continuation). We have designed a state feedback

controller for the speed of the DC motor. However, the tracking

achieved by feedforward precompensation would not tolerate

(it is not robust to) to uncertainties in the plant model.

To see this, suppose the real ma-

trix

�

in the system is slightly dif-

ferent from the one we used to

compute

�

,

˜
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A
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The closed-loop step response given by the designed gains N, K

(based on a different A-matrix) doesn’t yield tracking.
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Robust Tracking: Integral Action

We now introduce a robust approach to achieve constant

reference tracking by state feedback. This approach consists in

the addition of integral action to the state feedback, so that

the error ε(t) = r − y(t) will approach 0 as t → ∞, and this

property will be preserved

under moderate uncertainties in the plant model

under constant input or output disturbance signals.
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Robust Tracking: Integral Action

The State Feedback with Integral Action scheme:
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Robust Tracking: Integral Action

The State Feedback with Integral Action scheme:
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Robust Tracking: Integral Action

The State Feedback with Integral Action scheme:
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Robust Tracking: Integral Action

The State Feedback with Integral Action scheme:
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Robust Tracking: Integral Action

The State Feedback with Integral Action scheme:

f

b

f bf

b

fb f

6
-- ? - -

�

�
6
- - -?

6
-- - -

�
�

�

� �
� � �

� � � �

	

�
 � � �

˙

� � � � � � � �

��
�






� � � ��



�

� � � ��
� � �

The main idea in the addition of integral action is to augment the plant

with an extra state: the integral of the tracking error � � � �

,

˙

� � � � � 	 � � � � � � 	 �

� � � � �

(IA1)

The control law for the augmented plant is then

� � � � � �

h

� �
�

i

2

4

� � � �
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3

5 (IA2)
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Robust Tracking: Integral Action

The closed-loop state equation with the state feedback control

u(t) given by (IA1) and (IA2) is





ẋ(t)

ż(t)



 =





A 0

−C 0





︸ ︷︷ ︸
Aa





x(t)

z(t)



 −





B

0





︸︷︷︸
Ba

[

K kz

]

︸ ︷︷ ︸
Ka





x(t)

z(t)



 +





0

1



 r
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Robust Tracking: Integral Action

The closed-loop state equation with the state feedback control

u(t) given by (IA1) and (IA2) is





ẋ(t)

ż(t)



 =





A 0

−C 0





︸ ︷︷ ︸
Aa





x(t)

z(t)



 −





B

0





︸︷︷︸
Ba

[

K kz

]

︸ ︷︷ ︸
Ka





x(t)

z(t)



 +





0

1



 r

= (Aa − BaKa)
[

x(t)

z(t)

]

+
[

0

1

]

r
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Robust Tracking: Integral Action

The closed-loop state equation with the state feedback control

u(t) given by (IA1) and (IA2) is
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The state feedback design with integral action can be done as a

normal state feedback design for the augmented plant
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Robust Tracking: Integral Action

The closed-loop state equation with the state feedback control

u(t) given by (IA1) and (IA2) is


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 r

= (Aa − BaKa)
[

x(t)

z(t)

]

+
[

0

1

]

r

The state feedback design with integral action can be done as a

normal state feedback design for the augmented plant

If Ka is designed such that the closed-loop augmented matrix

(Aa − BaKa) is rendered Hurwitz, then necessarily in steady-state

lim
t

� � ż(t) = 0 ⇒ lim
t

� � y(t) = r, achieving tracking.
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Integral Action — How does it work?
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Integral Action — How does it work?
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Integral Action — How does it work?
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Integral Action — How does it work?

The block diagram of the closed-loop system controlled by state

feedback with integral action thus collapses to

�



�
 � � �

�
� � �


 �
�

�

� � � �

� �
� � �

� � � � �
where GK(s) is a BIBO stable transfer function, by design, and

also the overall closed-loop is BIBO stable.
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Integral Action — How does it work?

The block diagram of the closed-loop system controlled by state

feedback with integral action thus collapses to

�



�
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�
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 �
�
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� � � �

� �
� � �
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where GK(s) is a BIBO stable transfer function, by design, and

also the overall closed-loop is BIBO stable. Let’s express GK(s) in

terms of its numerator and denominator polynomials,

GK(s) =
N(s)

D(s)

Then, from the block diagram above,

Y(s) =

(−kz)N(s)

sD(s)

1 +
(−kz)N(s)

sD(s)

R(s)+

N(s)

D(s)

1 +
(−kz)N(s)

sD(s)

Di(s)+
1

1 +
(−kz)N(s)

sD(s)

Do(s)
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Integral Action — How does it work?

In other words,

� �� � �

�
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Integral Action — How does it work?

In other words,
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If the reference and the disturbances are constants, say 	,

�
 and

�
�

then, because the closed-loop is BIBO stable, the steady state value of
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is determined by the 3 transfer functions above evaluated at
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Integral Action — How does it work?

In other words,
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That is: the output will asymptotically track constant references and

reject constant disturbances irrespective of the values 	,

�
 and

�
� .
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Robust Tracking Example

Example (Robust speed tracking in a DC motor). Let’s go back

to the DC motor example and design a state feedback with

integral action to achieve robust speed tracking.

We have to redesign the state feedback gain K — it must be

computed together with kz for the augmented plant given by

Aa =
[

A 0

−C 0

]

=

[

−10 1 0

−0.02 −2 0

−1 0 0

]

, Ba =
[

B

0

]

=

[

0

2

0

]

If we compute the characteristic polynomial of the augmented

matrix Aa we find

∆a(s) = s3 + 12s2 + 20.02s = s∆(s).

Unsurprisingly, it just adds a root at s = 0 to the original.
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Robust Tracking Example

Example (continuation). We now move on to compute Ca and

C̄a — for the augmented pair (Aa, Ba),

Ca =

[

0 2 −24

2 −4 7.96

0 0 −2

]

, C̄a =

[

1 12 20.02

0 1 12

0 0 1

]−1

=

[

1 −12 123.98

0 1 −12

0 0 1

]

Note that the augmented pair (Aa, Ba) will always be control-

lable as long as the original pair (A, B) is controllable and the

system has no zeros at s = 0.

We select as desired augmented characteristic polynomial

∆Ka(s) = (s + 6)∆K(s) = s3 + 16s2 + 86s + 156

(We keep the original desired characteristic polynomial and let

the extra pole be faster, to keep the same specifications in the

response of y(t).)
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Robust Tracking Example

Example (continuation). As before, from ∆a(s) and ∆aK(s) we

compute K̄a and now obtain

K̄a =
[

(16 − 12) (86 − 20.02) (156 − 0)

]

=
[

4 65.98 156

]

and finally,

Ka = K̄aC̄aC
−1 =

[

[

12.99 2
]

︸ ︷︷ ︸
K

[

−78
]

︸ ︷︷ ︸
kz

]

Note that the first two elements of the augmented Ka

correspond to the new state feedback gain K for the motor state
[

ω(t)

i(t)

]

, while the last element is the state feedback gain kz for

the augmented state z(t).
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Robust Tracking Example

Example (continuation). A block diagram for implementation:
� � � ��




� �
�

� �

� � � �

�

�
� � �

�


 � � 




� � � �

� � � �

And a SIMULINK diagram (including disturbances):

r

d_od_i

Scope

C* u

Matrix
Gain2

B* u

Matrix
Gain1

A* u

Matrix
Gain

1
s

Integrator1

1
s

Integrator

−78

Gain2

2

Gain1

12.99

Gain
Demux
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Robust Tracking Example

Example (continuation). We simulate the closed loop system to

a unit step input applied at t = 0, an input disturbance d = 0.5

applied at t = 8s, and an output disturbance do = 0.3 applied at

t = 4s.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

y(
t)

We can see the asymptotic tracking of the reference despite the

disturbances.
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Outline

Regulation and Tracking

Robust Tracking: Integral Action

State Estimation
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State Estimation

State feedback requires measuring the states but, normally, we

do not have direct access to all the states. Then, how do we

implement state feedback?

If the system is observable the states can be estimated by an

observer.

�

�

�
�˙ � �

�


�

�

	

�

Observer

��
Plant

State feedback from estimated states

An observer is a dynamic system that estimates the states of the

plant based on the measurement of its inputs and outputs.
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State Estimation: A “Naive” Observer

How would we build an observer? One intuitive way would be to

reproduce a model of the plant and run it simultaneously to

obtain a state estimate x̂(t).

�


 ˙

�� �
�

�


 ˙ � � �

�

�

Plant copy

��

A “naive” design of an observer.

The problem with this “naive” design is that if the plant and its

“copy” in the observer have different initial conditions, the

estimates will generally not converge to the true values.
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State Estimation: A “Feedback” Observer

A better observer structure includes error feedback correction.




� �� �˙ �

�

��


 ˙

��

�
�

�

�

�
���

�

error

A “self-corrected” (feedback) design of an observer.

By appropriately designing the matrix gain L, we could adjust

the observer to give a state estimate that will asymptotically

converge to the true state.
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State Estimation: Final Observer Structure

By rearranging the previous block diagram, we get to the final

structure of the observer

If the system is observable, we

can then choose the gain L to

ascribe the eigenvalues of (A −

LC) arbitrarily.

We certainly want the observer

to be stable!

From the block diagram, the ob-

server equations are

� � � �


 � �

�˙ �

�

�

�

�




�� ˙

��

��

Observer

Observer structure

˙̂x(t) = Ax̂(t) + Bu(t) + L [y(t) − Cx̂(t)]

= (A − LC)x̂(t) + Bu(t) + Ly(t) (O)
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State Estimation

From the observer state equation (O), and the plant state

equation

ẋ = Ax + Bu

y = Cx

We can obtain a state equation for the estimation error ε = x − x̂

ε̇ = ẋ − ˙̂x

= Ax + Bu − Ax̂ − Bu − LC(x − x̂)

= A(x − x̂) − LC(x − x̂)

= (A − LC)ε ⇒ ε(t) = e(A−LC)tε(0) .

Thus, we see that for the error to asymptotically converge to zero

ε(t) → 0, (and so x̂(t) → x(t)) we need (A − LC) to be Hurwitz.
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Observer Design

In summary, to build an observer, we use the matrices A, B and

C from the plant and form the state equation

= (A − LC)x̂(t) + Bu(t) + Ly(t)

where L is such that the eigenvalues of (A − LC) have negative

real part.

How to choose L? We can use, by duality, the same procedure

that we already know for the design of a state feedback gain K

to render A − BK Hurwitz. Notice that the matrix transpose

(A − LC)T = AT − CT LT

= Adual − BdualKdual

We choose Kdual to make Adual − BdualKdual Hurwitz, and finally

L = KT

dual
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State Estimation Example

Example (Current estimation in a DC motor). We revisit the DC

motor example seen earlier. Before we used state feedback to

achieve robust reference tracking and disturbance rejection.

This required measurement of both states: current i(t) and

velocity ω(t).

Suppose now that we don’t measure current, but only the motor

speed. We will construct an observer to estimate i(t).

Recall the plant equations

d

dt





ω(t)

i(t)



 =





−10 1

−0.02 −2









ω(t)

i(t)



 +





0

2



 V(t)

y =
[

1 0

]





ω(t)

i(t)




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State Estimation Example

Example (continuation). We first check for observability

(otherwise, we won’t be able to build the observer)

O =





C

CA



 =





1 0

−10 1





which is full rank, and hence the system is observable.

By duality, in the procedure to compute Kdual, the role of C is

played by Cdual = OT , and C̄dual is the same

C̄dual = C̄ =





1 α1

0 1





−1

=





1 −12

0 1





since C̄ only depends on the characteristic polynomial of A,

which is the same as that of AT .
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State Estimation Example

Example (continuation). Say that the desired eigenvalues for the

observer are s = −6 ± j2, (slightly faster than those set for the

closed-loop plant, which is standard) which yields

∆Kdual
= s2 + 12s + 40

Thus, from the coefficients of ∆Kdual
and those of ∆(s) we have

K̄dual =
[

(12 − 12) (40 − 20.02)

]

=
[

0 19.98

]

We now return to the original coordinates and get Kdual,

Kdual = K̄dualC̄C
−1

dual, =
[

0 19.98

]

, by chance, the same as K̄dual

Finally, L = KT

dual =
[

0

19.98

]

. It can be checked with MATLAB that

L effectively place the eigenvalues of (A − LC) at the desired

locations.
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State Estimation Example

Example (continuation). We simulated the observer with

SIMULINK, setting some initial conditions to the plant (and none to

the observer)

r

States

L* u

B* u

A−L*C* u

C* u

Matrix
Gain2

B* u

Matrix
Gain1

A* u

Matrix
Gain

1
s

1
s

Integrator

Estimated
states

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

estimation error in speed
estimation error in current

We can see how the estimation errors effectively converge to

zero in about 1s.
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State Estimation Example

Example (Feedback from Estimated States). The observer can

be combined with the previous state feedback design; we just

need to replace the state measurements by the estimated states.

r

d_od_i

Scope

L* u

B* u

A−L*C* u

C* uB* u

A* u

1
s

1
s 1

s

−78

Gain2

2

Gain1

12.99

Gain

Demux

Note that for the integral action part we still need to measure the

real output (its estimate won’t work).
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State Estimation Example

Example (continuation). The figure below shows the results of

simulating the complete closed-loop system, with feedback from

estimated states and integral action for robust reference

tracking and disturbance rejection.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(
t)

time [s]
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One Tip for Lab 2

Although we will further discuss state feedback and observers,

we have now all the ingredients necessary for Laboratory 2 and

Assignment 3.

One trick that may come handy in the state design for Lab 2 is

plant augmentation. It consists of prefiltering the plant before

carrying out the state feedback design.

The system for Lab 2 has a transfer function of the form

G(s) =
k

s(s + a)(s2 + 2ζωs + ω2)

When the damping ζ is small, the plant has a resonance at ω, as

is the case in the system of Lab 2.
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One Tip for Lab 2

Control design for a system with resonances is tricky. One way to

deal with them is prefilter the plant with a notch filter of the form

F(s) =
s2 + 2ζωs + ω2

s2 + 2ζ̄ωs + ω2

with better damping ζ̄ = 0.7 (say) and the same natural

frequency. The notch filter cancels the resonant poles and

replaces them by a pair of more damped poles. Of course, this

can only be done for stable poles.

The augmented plant then becomes

Ga(s) = G(s)F(s) =
k

s(s + a)(s2 + 2ζ̄ωs + ω2)

We then do state feedback design for this augmented plant.
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Summary

For a plant with a controllable state-space description, it is

possible to design a state feedback controller u(t) = −Kx(t)

that will place the closed-loop poles in any desired location.
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Summary

For a plant with a controllable state-space description, it is

possible to design a state feedback controller u(t) = −Kx(t)

that will place the closed-loop poles in any desired location.

State feedback control can incorporate integral action,

which yields robust reference tracking and disturbance

rejection for constant references and disturbances.
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Summary

For a plant with a controllable state-space description, it is

possible to design a state feedback controller u(t) = −Kx(t)

that will place the closed-loop poles in any desired location.

State feedback control can incorporate integral action,

which yields robust reference tracking and disturbance

rejection for constant references and disturbances.

If the states are not all measurable, but the state-space

description of the plant is also observable, then it is possible

to estimate the states with an observer.
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Summary

For a plant with a controllable state-space description, it is

possible to design a state feedback controller u(t) = −Kx(t)

that will place the closed-loop poles in any desired location.

State feedback control can incorporate integral action,

which yields robust reference tracking and disturbance

rejection for constant references and disturbances.

If the states are not all measurable, but the state-space

description of the plant is also observable, then it is possible

to estimate the states with an observer.

The observer can be used in conjunction with the state

feedback by feeding back estimated estates.
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