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A Note About Scaling

State space is the preferred model for LTI systems, especially

with higher order models. However, even with state-space

models, accurate results are not guaranteed, because of

the finite-word-length arithmetic of the computer.
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A Note About Scaling

State space is the preferred model for LTI systems, especially

with higher order models. However, even with state-space

models, accurate results are not guaranteed, because of

the finite-word-length arithmetic of the computer.

When calculations are performed in a computer, each

arithmetic operation is affected by roundoff error, since

machine hardware can only represent a subset of the real

numbers.
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A Note about Scaling

Normalisation:

A well-conditioned problem is usually a prerequisite for obtain-

ing accurate results. One should generally normalize or scale the

matrices (A, B, C, D) of a system to improve their numerical con-

ditioning.
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A Note about Scaling

Normalisation:

A well-conditioned problem is usually a prerequisite for obtain-

ing accurate results. One should generally normalize or scale the

matrices (A, B, C, D) of a system to improve their numerical con-

ditioning.

Normalization also allows meaningful statements to be made

about the degree of controllability and observability of the

various inputs and outputs.
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A Note about Scaling

A set of matrices (A, B, C, D) can be normalized using diagonal

scaling matrices Nu, Nx and Ny to scale u, x, and y,

u = Nu un, x = Nx x, y = Ny yn

so that the normalised system is

ẋn = Anxn + Bnun

yn = Cnxn + Dnun

where
An = N−1

x ANx, Bn = N−1
x BNu

Cn = N−1
y CNx, Dn = N−1

y DNu

One criterion for the normalisation is to use the maximum

expected range of each of the input, state, and output

variables, e.g., say ±10 Volts.

If possible, choose scaling based upon physical insight to the

problem at hand.
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A Note about Scaling

MATLAB provides the function ssbal to obtain automatic scaling

of the state space vector. Specifically,

G=ss(A,B,C,D);

Gn=ssbal(G);

uses balance to compute a diagonal similarity transformation Nx

such that




N−1
x ANx N−1

x B

CNx 0





has equal row and column norms.

Such diagonal scaling is an economical way to compress the

numerical range and improve the conditioning of subsequent

state-space computations.
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A Note about Scaling

Example (Hard Disk Drive Problem).

Consider the model of HDD system:

G(s) =
K0ω2

r

(s2 + 2ξωrs + ω2
r)s2

which is realised in the CCF as

ẋ(t) =















−2ξωr −ω2
r 0 0

1 0 0 0

0 1 0 0

0 0 1 0















x(t) +















1

0

0

0















u(t)

y(t) =
[

0 0 0 K0ω2
r

]

x(t).
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A Note about Scaling

Data from a real HDD give the parameters

K0 = 1.507 × 104, ξ = 0.1, ωr = 2π × 3400.

With these parameters the matrices in CCF are numerically

ill-conditioned, and MATLAB yields for the controllability matrix

>> rank(ctrb(A,B))

ans = 2

although the realisation is controllable by definition.

Scaling with MATLAB function ssbal gives the correct answer:

>> G=ss(A,B,C,D);

>> Gn=ssbal(G);

>> rank(ctrb(Gn.a,Gn.b))

ans = 4
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A Note about Scaling

Also the closed-loop simulation results improve by scaling with

ssbal
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MIMO State Feedback Design

We now return to discuss MIMO LTI systems, this time, in the state

space framework.

Recall from Lecture 10 that MIMO systems presented additional

difficulties in the transfer function “language”. The concepts of

poles and zeros were more complicated, and control design,

such as IMC design, turned out to be quite more messier than for

SISO systems, particularly for nonsquare, possibly unstable plants.

The state space representation is particularly suited to MIMO

systems. As we will see, there is no essential difference with the

SISO procedures for state space control and observer design,

even when the plant is nonsquare.
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MIMO State Feedback Design

Before entering into the design methods, let’s note that the

results regarding controllability and eigenvalue assignability

extend to the MIMO case.
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MIMO State Feedback Design

Before entering into the design methods, let’s note that the

results regarding controllability and eigenvalue assignability

extend to the MIMO case.

Theorem (Controllability and Feedback — MIMO). The pair (A −

BK, B), for any p × n real matrix K is controllable if and only if the

pair (A, B) is controllable.
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MIMO State Feedback Design

Before entering into the design methods, let’s note that the

results regarding controllability and eigenvalue assignability

extend to the MIMO case.

Theorem (Controllability and Feedback — MIMO). The pair (A −

BK, B), for any p × n real matrix K is controllable if and only if the

pair (A, B) is controllable.

Theorem (Eigenvalue assignment — MIMO). All eigenvalues of

(A−BK) can be assigned arbitrarily (provided complex eigenval-

ues are assigned in conjugated pairs) by selecting a real constant

K if and only if (A, B) is controllable.
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MIMO State Feedback Design

A MIMO system in state space is described with the same

formalism we have been using for SISO systems, i.e.,

ẋ(t) = Ax(t) + Bu(t) x ∈ R
n, u ∈ R

p

y(t) = Cx(t) y ∈ R
q

When the system has p inputs, the state feedback gain K in a

feedback law

u = −Kx = −





k11 k12 ··· k1n

k21 k22 ··· k2n

...
... ···

...
kp1 kp2 ··· kpn









x1
x2

...
xn





will have p × n parameters. That is, K ∈ R
p×n.
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MIMO State Feedback Design

A MIMO system in state space is described with the same

formalism we have been using for SISO systems, i.e.,

ẋ(t) = Ax(t) + Bu(t) x ∈ R
n, u ∈ R

p

y(t) = Cx(t) y ∈ R
q

When the system has p inputs, the state feedback gain K in a

feedback law

u = −Kx = −p

{ 



k11 k12 ··· k1n

k21 k22 ··· k2n

...
... ···

...
kp1 kp2 ··· kpn









x1
x2

...
xn





}

n

will have p × n parameters. That is, K ∈ R
p×n.
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MIMO State Feedback Design

A MIMO system in state space is described with the same

formalism we have been using for SISO systems, i.e.,

ẋ(t) = Ax(t) + Bu(t) x ∈ R
n, u ∈ R

p

y(t) = Cx(t) y ∈ R
q

When the system has p inputs, the state feedback gain K in a

feedback law

u = −Kx = −p

{ 



k11 k12 ··· k1n

k21 k22 ··· k2n

...
... ···

...
kp1 kp2 ··· kpn









x1
x2

...
xn





}

n

will have p × n parameters. That is, K ∈ R
p×n.

Because the system evolution matrix A still has n eigenvalues, we

have p times more degrees of freedom than necessary!
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MIMO State Feedback Design

Example (Nonuniqueness of K in MIMO state feedback). As a

simple MIMO system consider the second order system with two

inputs

ẋ(t) =





0 0

1 0



 x(t) +





1 0

0 1



 u(t)

The system has two eigenvalues at s = 0, and it is controllable,

since B = I, so C = [ B AB ] is full rank.

Let’s consider the state feedback

u(t) = −Kx(t) =
[

k11 k12

k21 k22

]

x(t)

Then the closed loop evolution matrix is

A − BK =
[

−k11 −k12

1−k21 −k22

]
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MIMO State Feedback Design

Example (Continuation). Suppose that we would like to place

both closed-loop eigenvalues at s = −1, i.e., the roots of the

characteristic polynomial s2 + 2s + 1. Then, one possibility would

be to select

{
k11= 2
k12= 1
k21= 0
k22= 0

⇒ A − BK =





−2 −1

1 0



 ⇒ eigenvalues at s = −1
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MIMO State Feedback Design

Example (Continuation). Suppose that we would like to place

both closed-loop eigenvalues at s = −1, i.e., the roots of the

characteristic polynomial s2 + 2s + 1. Then, one possibility would

be to select

{
k11= 2
k12= 1
k21= 0
k22= 0

⇒ A − BK =





−2 −1

1 0



 ⇒ eigenvalues at s = −1

But the alternative selection

{
k11= 1
k12= free
k21= 1
k22= −1

⇒ A − BK =





−1 k12

0 −1



 ⇒ also eigenvalues at s = −1
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MIMO State Feedback Design

Example (Continuation). Suppose that we would like to place

both closed-loop eigenvalues at s = −1, i.e., the roots of the

characteristic polynomial s2 + 2s + 1. Then, one possibility would

be to select

{
k11= 2
k12= 1
k21= 0
k22= 0

⇒ A − BK =





−2 −1

1 0



 ⇒ eigenvalues at s = −1

But the alternative selection

{
k11= 1
k12= free
k21= 1
k22= −1

⇒ A − BK =





−1 k12

0 −1



 ⇒ also eigenvalues at s = −1

As we see, there are infinitely many possible selections of K that

will give the same eigenvalues of (A − BK)!
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MIMO State Feedback Design

The “excess of freedom” in MIMO state feedback design could

be a problem if we don’t know how to best use it. . .

There are several ways to tackle the problem of selecting K from

an infinite number of possibilities, among them

Cyclic Design. Reduces the problem to one of a single input,

so we can apply the known rules.
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MIMO State Feedback Design

The “excess of freedom” in MIMO state feedback design could

be a problem if we don’t know how to best use it. . .

There are several ways to tackle the problem of selecting K from

an infinite number of possibilities, among them

Cyclic Design. Reduces the problem to one of a single input,

so we can apply the known rules.

Controller Canonical Form Design. Extends the Bass-Gura

formula to MIMO.
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MIMO State Feedback Design

The “excess of freedom” in MIMO state feedback design could

be a problem if we don’t know how to best use it. . .

There are several ways to tackle the problem of selecting K from

an infinite number of possibilities, among them

Cyclic Design. Reduces the problem to one of a single input,

so we can apply the known rules.

Controller Canonical Form Design. Extends the Bass-Gura

formula to MIMO.

Optimal Design. Computes the best K by optimising a

suitable cost function.
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MIMO State Feedback Design

The “excess of freedom” in MIMO state feedback design could

be a problem if we don’t know how to best use it. . .

There are several ways to tackle the problem of selecting K from

an infinite number of possibilities, among them

Cyclic Design. Reduces the problem to one of a single input,

so we can apply the known rules.

Controller Canonical Form Design. Extends the Bass-Gura

formula to MIMO.

Optimal Design. Computes the best K by optimising a

suitable cost function.

We will discuss the Cyclic and Optimal designs.
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MIMO Cyclic State Feedback Design

MIMO Cyclic Design. In this design we change the multi-input

problem into a single-input problem by creating a new input that

is a linear combination of the inputs to the plant. This technique

relies on the fact that

If a state equation can be controlled by many inputs, then it can

be controlled by one input.

+B1 B2 B3

∫

A

C1

C3

C2

Lecture 20: MIMO State Feedback Design – p. 18



The University of Newcastle

MIMO Cyclic State Feedback Design

MIMO Cyclic Design. In this design we change the multi-input

problem into a single-input problem by creating a new input that

is a linear combination of the inputs to the plant. This technique

relies on the fact that

If a state equation can be controlled by many inputs, then it can

be controlled by one input.

+

v1

v2

v3

B1 B2 B3

∫

A

C1

C3

C2
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MIMO Cyclic State Feedback Design

MIMO Cyclic Design. In this design we change the multi-input

problem into a single-input problem by creating a new input that

is a linear combination of the inputs to the plant. This technique

relies on the fact that

If a state equation can be controlled by many inputs, then it can

be controlled by one input.

+

v1

v2

v3

B1 B2 B3

∫

A

C1

C3

C2

We need to define the minimal polynomial of a matrix, and

what a cyclic matrix is, before proceeding with this technique.

Lecture 20: MIMO State Feedback Design – p. 18



The University of Newcastle

MIMO Cyclic State Feedback Design

Recall that by the Cayley Hamilton Theorem, every matrix

satisfies its characteristic polynomial, i.e.,

if ∆(s) = det(sI − A) = sn + α1sn−1 + · · · + α0,

then An + α1An−1 + · · · + α0I = 0.
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MIMO Cyclic State Feedback Design

Recall that by the Cayley Hamilton Theorem, every matrix

satisfies its characteristic polynomial, i.e.,

if ∆(s) = det(sI − A) = sn + α1sn−1 + · · · + α0,

then An + α1An−1 + · · · + α0I = 0.

But the characteristic polynomial is not necessarily the smallest

degree monic polynomial a matrix may satisfy. That polynomial

is called the minimal polynomial of a matrix.
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MIMO Cyclic State Feedback Design

Example (Minimal Polynomial of a Matrix). The characteristic

polynomial of the matrix

A =
[

−1 0 0
0 −1 0
0 0 2

]

is ∆(s) = (s + 1)2(s + 2) = s3 + 4s2 + 5s + 2

Thus

A3 + 4A2 + 5A + 2I = 0.

But it could be verified that A also satisfies

∆m(s) = (s + 1)(s + 2) = s2 + 3s + 2,

which is the smallest degree monic polynomial A satisfies. That is

the minimal polynomial of A.
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MIMO Cyclic State Feedback Design

A matrix A is cyclic if its characteristic polynomial equals its mini-

mal polynomial.

Lecture 20: MIMO State Feedback Design – p. 21



The University of Newcastle

MIMO Cyclic State Feedback Design

A matrix A is cyclic if its characteristic polynomial equals its mini-

mal polynomial.

Fact: The characteristic polynomial of a matrix equals its

minimal polynomial if and only if in its Jordan form each

eigenvalue is associated to one and only one Jordan block.
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MIMO Cyclic State Feedback Design

A matrix A is cyclic if its characteristic polynomial equals its mini-

mal polynomial.

Fact: The characteristic polynomial of a matrix equals its

minimal polynomial if and only if in its Jordan form each

eigenvalue is associated to one and only one Jordan block.

Example.

A1 =

2

6

6

6

6

6

4

λ1 0 0 0

0 λ2 1 0

0 0 λ2 1

0 0 0 λ2

3

7

7

7

7

7

5

A2 =

2

6

6

6

6

6

4

λ1 0 0 0

0 λ2 1 0

0 0 λ2 0

0 0 0 λ2

3

7

7

7

7

7

5

A1 is cyclic: λ1 and λ2 associated to only one Jordan block each.

A2 is not cyclic: λ1 associated to one Jordan block but λ2

associated to two (one of order 1 and one of order 2).
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MIMO Cyclic State Feedback Design

Notice that if a matrix has no repeated eigenvalues, then it is

cyclic, since all the eigenvalues will be distinct and necessarily

each associated to just one Jordan block (of order 1).
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MIMO Cyclic State Feedback Design

Notice that if a matrix has no repeated eigenvalues, then it is

cyclic, since all the eigenvalues will be distinct and necessarily

each associated to just one Jordan block (of order 1).

Theorem (Controllability with p inputs and controllability with 1 in-

put). If the n-dimensional p-input pair (A, B) is controllable and

if A is cyclic, then for almost any p × 1 vector V, the single-input

pair (A, BV) is controllable.
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MIMO Cyclic State Feedback Design

Notice that if a matrix has no repeated eigenvalues, then it is

cyclic, since all the eigenvalues will be distinct and necessarily

each associated to just one Jordan block (of order 1).

Theorem (Controllability with p inputs and controllability with 1 in-

put). If the n-dimensional p-input pair (A, B) is controllable and

if A is cyclic, then for almost any p × 1 vector V, the single-input

pair (A, BV) is controllable.

When we say almost any V, we mean that if we select a V

matrix randomly, there is virtually probability 0 that we will end

up with one that won’t work.

We show intuitively why this is so on an example.

Lecture 20: MIMO State Feedback Design – p. 22



The University of Newcastle

MIMO Cyclic State Feedback Design

Consider the pair (A, B), with 5 states and 2 inputs, defined by

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

2 1 0

0 2 1

0 0 2

0 0

0 0

0 0

0 0 0

0 0 0

1 1

0 1

3

7

7

7

7

7

7

7

7

7

7

7

5

B =

2

6

6

6

6

6

6

6

6

4

0 1

0 0

1 2

4 3

1 0

3

7

7

7

7

7

7

7

7

5

, and let BV = B

2

4

v1

v2

3

5 =

2

6

6

6

6

6

6

6

6

4

∗

∗

α

∗

β

3

7

7

7

7

7

7

7

7

5

.

Notice that A is cyclic, since each of the two distinct

eigenvalues 2 and 1, are associated to one and only one Jordan

block (respectively of orders 3 and 2).

If we pretend to control A with the single input built by the

product BV, then in order to retain controllability we will need

α 6= 0 and β 6= 0.
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MIMO Cyclic State Feedback Design

In other words, because

2

6

6

6

6

6

6

6

6

4

∗

∗

α

∗

β

3

7

7

7

7

7

7

7

7

5

= BV =

2

6

6

6

6

6

6

6

6

4

0 1

0 0

1 2

4 3

1 0

3

7

7

7

7

7

7

7

7

5

2

4

v1

v2

3

5 =

2

6

6

6

6

6

6

6

6

4

∗

∗

v1 + 2v2

∗

v1

3

7

7

7

7

7

7

7

7

5

,

controllability with a single input requires 6

-

HHHHHHHH

v2

v11 2

1

2

v1 = −2v2

v1 = 0

v1 + 2v2 6= 0 , and v1 6= 0.

which means that in the (v1, v2) plane we

have to choose a pair (v1, v2)

off the red lines shown in the picture. Almost any

random pair (v1, v2) will satisfy this condition.
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MIMO Cyclic State Feedback Design

The condition that A has to be cyclic is necessary. For example,

for the pair

A =
[

2 1 0
0 2 0
0 0 2

]

B =
[

2 1
0 2
1 0

]

which is controllable, there is no V ∈ R
2×1 that will make (A, BV)

controllable — there are two Jordan blocks associated to the

same eigenvalue (A is not cyclic).
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MIMO Cyclic State Feedback Design

The condition that A has to be cyclic is necessary. For example,

for the pair

A =
[

2 1 0
0 2 0
0 0 2

]

B =
[

2 1
0 2
1 0

]

which is controllable, there is no V ∈ R
2×1 that will make (A, BV)

controllable — there are two Jordan blocks associated to the

same eigenvalue (A is not cyclic).

Can we apply cyclic design to a multi-input controllable pair

(A, B) when A is not cyclic?

Lecture 20: MIMO State Feedback Design – p. 25



The University of Newcastle

MIMO Cyclic State Feedback Design

The condition that A has to be cyclic is necessary. For example,

for the pair

A =
[

2 1 0
0 2 0
0 0 2

]

B =
[

2 1
0 2
1 0

]

which is controllable, there is no V ∈ R
2×1 that will make (A, BV)

controllable — there are two Jordan blocks associated to the

same eigenvalue (A is not cyclic).

Can we apply cyclic design to a multi-input controllable pair

(A, B) when A is not cyclic?

Yes! We just need to shift the eigenvalues of A. If we apply a

state feedback u = −K1x, say, to make the eigenvalues of

(A − BK1) all different, we render (A − BK1) cyclic.
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MIMO Cyclic State Feedback Design

Any randomly chosen K1 will generically produce closed-loop

eigenvalues that are all different. We can then apply cyclic

design to the modified pair (A − BK1, BV).

The Cyclic design procedure may be summarised as

Procedure for eigenvalue assignment in multi-input state equa-

tions by cyclic state feedback design.

1. Check controllability of the n-state, p-input pair (A, B).

2. Compute a random state feedback gain K1 ∈ Rp × n. The

matrix (A − BK1) should be cyclic.

3. Compute a random precompensating matrix V ∈ R
p×1. The

single input pair (A − BK1, BV) should be controllable.

4. Find a state feedback gain K2 to place the eigenvalues of

(A − BK1 − BVK2) at the desired locations.
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MIMO Cyclic State Feedback Design

In MATLAB, we can use the function rand to generate normally

distributed random gains

[n,p]=size(B);

K1=rand(p,n);

V=rand(p,1);

Once we computed

g bb g g - - -

¾
6

¾

6

¾

- - -
6

--
−−

B
∫

A

K1

C

VK2

ẋ x yur
K1, V and K2, the

total state feedback law is

u = −Kx, with K = K1 + VK2.
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MIMO Regulation and Tracking

The Regulation and Tracking technique by state feedback is easily

extended from SISO to MIMO systems. We just need to be careful with

the dimensions of the matrices involved.
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MIMO Regulation and Tracking

The Regulation and Tracking technique by state feedback is easily

extended from SISO to MIMO systems. We just need to be careful with

the dimensions of the matrices involved.

Let’s look at the compensation

f fb b- - -

¾

¾
6

-- -
6

-

K

A

∫ẋ x
C

yu

−

r
BNof steady-state tracking

error by a feedforward matrix

gain N, after a suitable state

feedback has been applied to

the system. For example, if the

plant is square (equal number of inputs and outputs), for steady-state

tracking we need to satisfy

GK(0)N= C(−A + BK)
−1

BN = Iq×q

⇔ N =
h

C(−A + BK)
−1

B
i−1

= GK(0)
−1

We need GK(0) to be invertible ⇔ the plant has no MIMO zeros at s = 0.
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MIMO Regulation and Tracking

If the plant is not square, we distinguish two cases

Right invertible plants with less independent outputs than

inputs, q < p

Non-right invertible plants with more independent outputs

than inputs, q > p
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MIMO Regulation and Tracking

If the plant is not square, we distinguish two cases

Right invertible plants with less independent outputs than

inputs, q < p

Non-right invertible plants with more independent outputs

than inputs, q > p

Steady-state tracking can be achieved for all the outputs only if

q < p. If q > p, we can only achieve steady-state tracking of p

independent outputs (i.e., as many as available control inputs).
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MIMO Regulation and Tracking

If the plant is not square, we distinguish two cases

Right invertible plants with less independent outputs than

inputs, q < p

Non-right invertible plants with more independent outputs

than inputs, q > p

Steady-state tracking can be achieved for all the outputs only if

q < p. If q > p, we can only achieve steady-state tracking of p

independent outputs (i.e., as many as available control inputs).

Example (Tracking in Right Invertible Plants). Suppose that, after

state-feedback in a 2 × 3 plant, we have achieved

GK(s) =





3
s+1

10s+1
s2+2s+1

0

0 s+5
s2+2s+1

0




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MIMO Regulation and Tracking

Example (Continuation). We wish to obtain a feedforward gain N

such that

GK(0)N = I2×2

Because GK(s) is “short and wide”, and has full row rank at s = 0,

GK(0) =

2

4

3 1 0

0 5 0

3

5 ,

we can select N as

GK(0)N = GK(0) GK(0)
T

h

GK(0)GK(0)
T

i−1

︸ ︷︷ ︸
N

= I2×2

The solution is then

N =

2

6

6

4

1/3 −1/15

0 1/5

0 0

3

7

7

5
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MIMO Regulation and Tracking

Example (Tracking in Non-Right Invertible Plants). Suppose now

that, after state-feedback in a 3 × 2 plant, we have achieved

GK(s) =









3
s+1

0

10s+1
s2+2s+1

s+5
s2+2s+1

0 0









At s = 0 we have GK(0) =
[

3 0
10 5
0 0

]

which is not full row rank (there

are 3 independent rows, but the rank of the matrix is only 2.

Hence, it is impossible to find N ∈ R
2×3 such that

GK(0)N =
[

1 0 0
0 1 0
0 0 1

]
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MIMO Regulation and Tracking

Tracking with Integral Action is subject to the same restrictions:

we can only achieve asymptotic tracking of a maximum of as

many outputs as control inputs are available.
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MIMO Regulation and Tracking

Tracking with Integral Action is subject to the same restrictions:

we can only achieve asymptotic tracking of a maximum of as

many outputs as control inputs are available.

The scheme and computation procedure is the same as in SISO

f

b

f f

b

fb bf ? - -

¾

¾
6
- ?- - - - - -

66
- -

K

A

C

do(t)

y(t)
B

di(t)

ẋ(t) x(t)∫

−

u(t)r

−

∫ε(t)
kz

z(t) −
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MIMO Regulation and Tracking

Tracking with Integral Action is subject to the same restrictions:

we can only achieve asymptotic tracking of a maximum of as

many outputs as control inputs are available.

The scheme and computation procedure is the same as in SISO

f

b

f f

b

fb bf ? - -

¾

¾
6
- ?- - - - - -

66
- -

K

A

C

do(t)

y(t)
B

di(t)

ẋ(t) x(t)∫

−

u(t)r

−

∫ε(t)
kz

z(t) −

Note that now the integral action is applied to each of the q

reference input channels.

−

−

−

∫

∫

∫∫
+ ≡

r2

r3

y1 y2 y3

r1 ε1

ε2

ε3

Lecture 20: MIMO State Feedback Design – p. 33



The University of Newcastle

MIMO Regulation and Tracking

The procedure to compute K and kz for the state feedback

control with integral action is exactly as in the SISO case,

ż(t) = r − y(t) = r − Cx(t)

u(t) =
[

K kz

]





x(t)

z(t)





where Ka = [ K kz ] is computed to place the eigenvalues of the

augmented plant (Aa, Ba) at desired locations, where

Aa =





A 0n×q

−C 0q×q



 , Ba =





B

0q×p




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MIMO Observers

A − LC

B

A

∫ x(t)
CN

−

u(t)

∫
L

B

K
x̂(t)

y(t)r ẋ(t)

Observer

PlantDesign of MIMO obervers

extends directly from the

SISO case. To compute

the observer gain

L we can use “duality”

and the procedures

seen to compute

state feedback gains,

as the cyclic design.
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MIMO Observers

A − LC

B

A

∫ x(t)
CN

−

u(t)

∫
L

B

K
x̂(t)

y(t)r ẋ(t)

Observer

PlantDesign of MIMO obervers

extends directly from the

SISO case. To compute

the observer gain

L we can use “duality”

and the procedures

seen to compute

state feedback gains,

as the cyclic design.

Alternatively, we can also use linear quadratic optimal design, to

obtain an optimal observer gain L. The observer obtained in this

way is usually called the Kalman filter.
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Reduced Order Observers

A technique that could be particularly useful in the MIMO

case is that of reduced order observer design.
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Reduced Order Observers

A technique that could be particularly useful in the MIMO

case is that of reduced order observer design.

One argument against state-feedback+observer controllers

is that they generally have high order:

since the observer includes a model of the plant, we would nor-

mally obtain a controller of at least of the same order of the open-

loop system.
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Reduced Order Observers

However, it is possible to reduce this order to some extent by

designing a reduced order observer.

The key observation is that

if the state equations are selected in such a way that the q system

outputs constitute the first q states, then in fact we only need to

estimate the remaining n − q states to apply state feedback.

K
Reduced Order

Observer

x
y

xr
u

y
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Reduced Order Observers

Let the system equations be





ẏ

ẋr



 =





A11 A12

A21 A22









y

xr



 +





B1

B2



 u

where the first q states are the outputs of the system. Because

we measure the outputs, we could try and build an observer

only to estimate the remaining states xr.

ẋr = A22xr + A21y + B2u

yr , A12xr
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Reduced Order Observers

Let the system equations be





ẏ

ẋr



 =





A11 A12

A21 A22









y

xr



 +





B1

B2



 u

where the first q states are the outputs of the system. Because

we measure the outputs, we could try and build an observer

only to estimate the remaining states xr.

ẋr = A22xr + A21y + B2u

yr , A12xr = ẏ − A11y − B1u︸ ︷︷ ︸
measurable “output”

We can think of yr as a “virtual” output of a reduced order state

equation with state xr. We can compute everything in yr from

measurements; the only problem is that it appears we need ẏ.
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Reduced Order Observers

Then the observer required to estimate the states xr can be

constructed as

˙̂xr = A22x̂r + A21y + B2u + Lr (yr − A12x̂r)
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Reduced Order Observers

Then the observer required to estimate the states xr can be

constructed as

˙̂xr = A22x̂r + A21y + B2u + Lr (yr − A12x̂r)

= (A22 − LrA12)x̂r + A21y + B2u + Lryr

By designing the observer gain Lr to make (A22 − LrA12)

Hurwitz, we guarantee asymptotic convergence of the estimates

x̂r to xr.
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Reduced Order Observers

Then the observer required to estimate the states xr can be

constructed as

˙̂xr = A22x̂r + A21y + B2u + Lr (yr − A12x̂r)

= (A22 − LrA12)x̂r + A21y + B2u + Lryr

By designing the observer gain Lr to make (A22 − LrA12)

Hurwitz, we guarantee asymptotic convergence of the estimates

x̂r to xr.

The reduced order observer is a system of order r = n − q, in

contrast with a full observer, which is of order n.
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Reduced Order Observers

Then the observer required to estimate the states xr can be

constructed as

˙̂xr = A22x̂r + A21y + B2u + Lr (yr − A12x̂r)

= (A22 − LrA12)x̂r + A21y + B2u + Lryr

By designing the observer gain Lr to make (A22 − LrA12)

Hurwitz, we guarantee asymptotic convergence of the estimates

x̂r to xr.

The reduced order observer is a system of order r = n − q, in

contrast with a full observer, which is of order n.

The only “problem” with the reduced observer is that it appears

that we need to differentiate the output to compute yr!

yr = ẏ − A11y − B1u
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Reduced Order Observers

We eliminate the need to differentiate the output by clever

implementation. We show how by block diagram algebra.
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Reduced Order Observers

We eliminate the need to differentiate the output by clever

implementation. We show how by block diagram algebra.

B

A

∫ x(t)
C

u(t) y(t)

∫
Lr

B2

x̂r(t)

A22 − LrA12

B1 A11

yr(t)

d
dt

Reduced Order Observer

−

−
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Reduced Order Observers

We eliminate the need to differentiate the output by clever

implementation. We show how by block diagram algebra.

B

A

∫ x(t)
C

u(t) y(t)

∫
Lr

B2

x̂r(t)

A22 − LrA12

B1 A11
d
dt

yr(t)

Reduced Order Observer

−

−
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Reduced Order Observers

We eliminate the need to differentiate the output by clever

implementation. We show how by block diagram algebra.

B

A

∫ x(t)
C

u(t) y(t)

∫
B2

x̂r(t)

A22 − LrA12

B1 A11
d
dt

Lr

Lr

Reduced Order Observer

− −
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Reduced Order Observers

We eliminate the need to differentiate the output by clever

implementation. We show how by block diagram algebra.

B

A

∫ x(t)
C

u(t) y(t)

∫
B2

A22 − LrA12

B1 A11

Lr

Lr

x̂r(t)

Reduced Order Observer

− −
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Summary

Scaling: The important points to remember:
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Summary

Scaling: The important points to remember:

State-space models are, in general, the most reliable

models for subsequent computations.
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Summary

Scaling: The important points to remember:

State-space models are, in general, the most reliable

models for subsequent computations.

Scaling model data can improve the accuracy of your

results.
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Summary

Scaling: The important points to remember:

State-space models are, in general, the most reliable

models for subsequent computations.

Scaling model data can improve the accuracy of your

results.

Numerical computing is a tricky business, and virtually all

computer tools can fail under certain conditions.
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Summary

Scaling: The important points to remember:

State-space models are, in general, the most reliable

models for subsequent computations.

Scaling model data can improve the accuracy of your

results.

Numerical computing is a tricky business, and virtually all

computer tools can fail under certain conditions.

MIMO state feedback and observer design extends directly

from SISO to MIMO systems. One significant difference in

state feedback for MIMO systems:
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Summary

Scaling: The important points to remember:

State-space models are, in general, the most reliable

models for subsequent computations.

Scaling model data can improve the accuracy of your

results.

Numerical computing is a tricky business, and virtually all

computer tools can fail under certain conditions.

MIMO state feedback and observer design extends directly

from SISO to MIMO systems. One significant difference in

state feedback for MIMO systems:

the state feedback gain K that place the closed-loop

eigenvalues of a MIMO system at desired locations is not

unique
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Summary

The “excess” of degrees of freedom in MIMO state feedback

design can be handled by
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Summary

The “excess” of degrees of freedom in MIMO state feedback

design can be handled by

Cyclic design, which reduces the problem to one of SIMO

— it requires the A matrix to be cyclic, or otherwise, an

extra state feedback to render it cyclic.
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Summary

The “excess” of degrees of freedom in MIMO state feedback

design can be handled by

Cyclic design, which reduces the problem to one of SIMO

— it requires the A matrix to be cyclic, or otherwise, an

extra state feedback to render it cyclic.

Optimal design, for example LQR, as we will see in coming

lectures.

Lecture 20: MIMO State Feedback Design – p. 43



The University of Newcastle

Summary

The “excess” of degrees of freedom in MIMO state feedback

design can be handled by

Cyclic design, which reduces the problem to one of SIMO

— it requires the A matrix to be cyclic, or otherwise, an

extra state feedback to render it cyclic.

Optimal design, for example LQR, as we will see in coming

lectures.

MIMO regulation and tracking can be handled by the same

procedures used for SISO systems. Yet, one must be careful

that the tracking objectives be consistent with the feasible

tracking directions that the plant can reach.
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Summary

MIMO observers are designed in the same way as SISO

observers, and the state feedback design techniques can

be used via duality.
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Summary

MIMO observers are designed in the same way as SISO

observers, and the state feedback design techniques can

be used via duality.

Particularly interesting in the MIMO case is the possibility of

designing reduced order observers, which can significantly

reduce the order of the overall state feedback + observer

controller.
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