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Introduction

The state feedback and observer design approach is a fundamental

tool in the control of state equation systems. However, it is not always

the most useful method. Three obvious difficulties are:

The translation from design specifications (maximum desired over

and undershoot, settling time, etc.) to desired poles is not always

direct, particularly for complex systems; what is the best pole

configuration for the given specifications?
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Introduction

The state feedback and observer design approach is a fundamental

tool in the control of state equation systems. However, it is not always

the most useful method. Three obvious difficulties are:

The translation from design specifications (maximum desired over

and undershoot, settling time, etc.) to desired poles is not always

direct, particularly for complex systems; what is the best pole

configuration for the given specifications?

In MIMO systems the state feedback gains that achieve a given

pole configuration is not unique. What is the best K for a given pole

configuration?

The eigenvalues of the observer should be chosen faster than those

of the closed-loop system. Is there any other criterion available to

help decide one configuration over another?

The methods that we will now introduce give answers to these

questions. We will see how the state feedback and observer gains can

be found in an optimal way.
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The Basic Optimal Control Problem

What does optimal mean? Optimal means doing a job in the

best possible way. However, before starting a search for an

optimal solution,

the job must be defined
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The Basic Optimal Control Problem

What does optimal mean? Optimal means doing a job in the

best possible way. However, before starting a search for an

optimal solution,

the job must be defined

a mathematical scale must be established to quantify what

we mean by best

the possible alternatives must be spelled out.

Unless these qualifiers are clear and consistent, a claim that a

system is optimal is really meaningless.

A crude, inaccurate system might be considered optimal because it is

inexpensive, is easy to fabricate, and gives adequate performance.

Conversely, a very precise and elegant system could be rejected as non-

optimal because it is too expensive or it is too heavy or would take too

long to develop.
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The Basic Optimal Control Problem

The mathematical statement of the optimal control problem

consists of

1. a description of the system to be controlled

2. a description of the system constraints and possible

alternatives

3. a description of the task to be accomplished

4. a statement of the criterion for judging optimal performance
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The Basic Optimal Control Problem

The dynamic system to be controlled is described in state

variable form, i.e., in continuous-time by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)

or in discrete-time by

x[k + 1] = Ax[k] + Bu[k], x[0] = x0

y[k] = Cx[k]

In the following, we assume that all the states are available as

measurements, or otherwise, that the system is observable, so

that an observer can be constructed to estimate the state.
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The Basic Optimal Control Problem

System constraints will sometimes exist on allowable values of the

state variables, or control inputs.

For example, the set of admissible controls could be the set of

piecewise continuous vectors u(t) ∈ U such that

U = {u(t) : ‖u(t)‖ < M for all t.}
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The Basic Optimal Control Problem

System constraints will sometimes exist on allowable values of the

state variables, or control inputs.

For example, the set of admissible controls could be the set of

piecewise continuous vectors u(t) ∈ U such that

U = {u(t) : ‖u(t)‖ < M for all t.}

This constraint is very common in practice, and can represent

saturation in actuators.

u1(t)

u2(t)

u3(t)

∥

∥

∥

∥

u1(t)

u2(t)

u3(t)

∥

∥

∥

∥

2

= |u1(t)|2 + |u2(t)|2 + |u3(t)|2

< M2, ∀t
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The Basic Optimal Control Problem

The task to be performed usually takes the form of additional

boundary conditions on the system state equations.
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The Basic Optimal Control Problem

The task to be performed usually takes the form of additional

boundary conditions on the system state equations.

For example, we could desire to transfer the state x(t) from a

known initial state x(0) = x0 to a specified final state xf(tf) = xd

at a specified time tf, or at the minimum possible tf.

x0
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The Basic Optimal Control Problem

The task to be performed usually takes the form of additional

boundary conditions on the system state equations.

For example, we could desire to transfer the state x(t) from a

known initial state x(0) = x0 to a specified final state xf(tf) = xd

at a specified time tf, or at the minimum possible tf.

x0

xd

x(t)

Often, the task to be performed is implicitly accounted for by the

performance criterion.

Lecture 22: Introduction to Optimal Control and Estimation – p. 9



The University of Newcastle

The Basic Optimal Control Problem

The performance criterion, denoted J, is a measure of the quality

of the system behaviour. Usually, we try to minimise or maximise

the performance criterion by selection of the control input.
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The Basic Optimal Control Problem

The performance criterion, denoted J, is a measure of the quality

of the system behaviour. Usually, we try to minimise or maximise

the performance criterion by selection of the control input.

For every u(t) that is feasible (i.e., one that performs the desired

task while satisfying the system constraints), a system trajectory

x(t) will be associated.

t t

x0

T0 0 T

u(t)

x(t)

The input u(t) generates the trajectory x(t).
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For every u(t) that is feasible (i.e., one that performs the desired

task while satisfying the system constraints), a system trajectory

x(t) will be associated.

t t

x0

T0 0 T

x(t) + δx(t)

v(t)

u(t)

x(t)
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The Basic Optimal Control Problem

The performance criterion, denoted J, is a measure of the quality

of the system behaviour. Usually, we try to minimise or maximise

the performance criterion by selection of the control input.

For every u(t) that is feasible (i.e., one that performs the desired

task while satisfying the system constraints), a system trajectory

x(t) will be associated.

t t

x0

T0 0 T

x(t) + δx(t)

v(t)

u(t)

w(t)

x(t) + δ1x(t)x(t)

The input u(t) generates the trajectory x(t). A variation v(t) in u(t)

generates a different trajectory x(t) + δx(t).
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The Basic Optimal Control Problem

A common performance criterion is that of minimum time, in

which we search for the control u(t) which produces the fastest

trajectory to get to the final desired state.

t

x0

0 T

xd

T
T

In this case the performance criterion to minimise can be simply

expressed mathematically as

J = T
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The Basic Optimal Control Problem

Another performance criterion could be the final error in

achieving the desired final state in a prespecified time T , e.g.,

J = ‖x(T)‖2

t

x0

0 T

xd

x(T)
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The Basic Optimal Control Problem

Another performance criterion could be to minimise the area

under ‖x(t)‖2, as a way to select those controls that produce

overall small transients in the generated trajectory between x0

and the final state.

t

0 T

‖x(t)‖2

J =
∫T

0
‖x(t)‖2 dt
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The Basic Optimal Control Problem

Another performance criterion could be to minimise the area

under ‖x(t)‖2, as a way to select those controls that produce

overall small transients in the generated trajectory between x0

and the final state.

t

T0

‖u(t)‖2

J =
∫T

0
‖u(t)‖2 dt

t

0 T

‖x(t)‖2

J =
∫T

0
‖x(t)‖2 dt

Yet another possible performance criterion could be to minimise

the area under ‖u(t)‖2, as a way to select those controls that

use the least control effort.
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Optimal Quadratic Control

A very important performance criterion which combines

previous examples is the quadratic performance criterion. This

criterion can be expressed in a general form as

J = xT (T)Sx(T) +

∫T

0

[

xT (t)Qx(t) + uT (t)Rx(t)
]

dt
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Optimal Quadratic Control

A very important performance criterion which combines

previous examples is the quadratic performance criterion. This

criterion can be expressed in a general form as

J = xT (T)Sx(T) +

∫T

0

[

xT (t)Qx(t) + uT (t)Rx(t)
]

dt

The weighting matrices S, Q and R allow a weighed tradeoff

between the previous criteria. In particular, for example,

S = I, Q = 0, R → 0 ⇒ J = ‖x(T)‖2

S = 0, Q = 0, R = I ⇒ J =

∫T

0

‖u(t)‖2 dt

The matrices S and Q are symmetric and non negative definite,

while R is symmetric and positive definite.
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Interlude: Positive Definite Matrices

Recall an n × n symmetric matrix M is positive definite if

xT Mx > 0 for all x 6= 0, x ∈ R
n

and non negative definite if

xT Mx ≥ 0 for all x 6= 0, x ∈ R
n

A symmetric matrix is positive definite (non negative definite) if

and only if all its eigenvalues are positive (non negative).
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Interlude: Positive Definite Matrices

Recall an n × n symmetric matrix M is positive definite if

xT Mx > 0 for all x 6= 0, x ∈ R
n

and non negative definite if

xT Mx ≥ 0 for all x 6= 0, x ∈ R
n

A symmetric matrix is positive definite (non negative definite) if

and only if all its eigenvalues are positive (non negative).

Example.

M1 =
[

3 0
0 1

]

is positive definite, [ x1 x2 ] M1 [ x1

x2
] = 3x2

1 + x2
2

M2 =
[

3 0
0 0

]

is non negative definite, [ x1 x2 ] M2 [ x1

x2
] = 3x2

1

M3 =
[

3 0
0 −1

]

is not sign definite, [ x1 x2 ] M3 [ x1

x2
] = 3x2

1 − x2
2
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Optimal Quadratic Control

The quadratic performance criterion for discrete-time systems is

J0,N = xT
NSxN +

N−1∑

k=0

xT
kQxk + uT

kRxk

where for notational simplicity we wrote xk to represent x[k].
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Optimal Quadratic Control

The quadratic performance criterion for discrete-time systems is

J0,N = xT
NSxN +

N−1∑

k=0

xT
kQxk + uT

kRxk

where for notational simplicity we wrote xk to represent x[k].

When the final time N (the optimisation horizon) is set to N = ∞,

we obtain an infinite horizon optimal control problem. In this

case, for stability, we will require that limN→∞ XN = 0,

J0,∞ =

∞∑

k=0

xT
kQxk + uT

kRxk

The continuous-time version of the infinite horizon criterion is

J∞ =

∫∞

0

[

xT (t)Qx(t) + uT (t)Ru(t)
]

dt
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Optimal LQ State Feedback (LQR)

Theorem (LQR). Consider the state space system

ẋ = Ax + Bu, x ∈ R
n
, u ∈ R

p

y = Cx, y ∈ R
q

and the performance criterion

J =

∫∞

0

h

x
T
(t)Qx(t) + u

T
(t)Ru(t)

i

dt, (J)

where Q is non negative definite and R is positive definite. Then the

optimal control minimising (J) is given by the linear state feedback law

u(t) = −Kx(t) with K = R
−1

B
T
P

and where P is the unique positive definite solution to the matrix Alge-

braic Riccati Equation (ARE)

A
T
P + PA − PBR

−1
B

T
P + Q = 0
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Optimal LQ State Feedback (LQR)

Thus, to design an optimal state feedback law u = −Kx

minimising the cost

J =

∫∞

0

[

xT (τ)Qx(τ) + uT (τ)Ru(τ)
]

dτ

we have to

1. Find the symmetric and positive definite solution of the

algebraic Riccati equation

AT P + PA − PBR−1BT P + Q = 0

2. Set K = R−1BT P .

In MATLAB K and P can be computed using

[K,P] = lqr(A,B,Q,R);
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Optimal LQ State Feedback (LQR)

The matrices Q ∈ R
n×n (non-negative definite) and R ∈ R

p×p

(positive definite), are the tuning parameters of the problem.

For example, the choice Q = CT C and R = λI, with λ > 0

corresponds to making a tradeoff between plant output and

input “energies”, with the cost

J =

∫∞

0

[‖y(τ)‖2 + λ‖u(τ)‖2] dτ

λ small ⇒ faster convergence of y(t) → 0 but large

control commands u(t) (high gain control)

λ large ⇒ more sluggish response y(t), but smaller control

commands u(t) (low gain control)
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For example, the choice Q = CT C and R = λI, with λ > 0

corresponds to making a tradeoff between plant output and

input “energies”, with the cost

J =

∫∞

0

[‖y(τ)‖2 + λ‖u(τ)‖2] dτ

λ small ⇒ faster convergence of y(t) → 0 but large

control commands u(t) (high gain control)

λ large ⇒ more sluggish response y(t), but smaller control

commands u(t) (low gain control)

Alternatively, with actuator restrictions, we make λ larger to

reduce the control effort at the expense of state

performance.
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Optimal LQ State Feedback (LQR)

It turns out that under some reasonable assumptions, the matrix

P that solves the algebraic Riccati Equation

AT P + PA − PBR−1BT P + Q = 0

exists. Furthermore, the corresponding closed-loop system is

stable (i.e. A − BK has all its eigenvalues in the left half plane).

Lecture 22: Introduction to Optimal Control and Estimation – p. 21



The University of Newcastle

Optimal LQ State Feedback (LQR)

Example (LQR design). This example is from “Linear Optimal Control”

by B.D.O. Anderson and J.B. Moore (Prentice-Hall, 1971). Suppose we

have a transfer function

G(s) =
1

s(s + 1)

Writing x2 = 1
s+1

u, x1 = 1
s
x2 and y = x1 we obtain the state space

representation

ẋ =
h

0 1

0 −1

i

x +
h

0

1

i

u

y = [ 1 0 ] x

Suppose the state feedback cost function is

J =

∫∞

0

h

u
2

+ x
2
1 + x

2
2

i

dt

This gives weighting matrices Q = I and R = 1.
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Optimal LQ State Feedback (LQR)

Example (Continuation). The algebraic Riccati equation requires P to

satisfy

2

4

0 0

1 −1

3

5 P + P

2

4

0 1

0 −1

3

5 − P

2

4

0

1

3

5

h

0 1

i

P +

2

4

1 0

0 1

3

5 = 0

Since we require P to be positive definite and symmetric, set

P =

2

4

p11 p12

p12 p22

3

5

This yields the simultaneous equations

p
2
12 − 1 = 0

2(p12 − p22) − p
2
22 + 1 = 0

p11 = p12 + p12p22
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Optimal LQ State Feedback (LQR)

Example (Continuation). There are three possible solutions to the

previous simultaneous equations, namely,

P =

2

4

0 −1

−1 −1

3

5 , P =

2

4

−2 1

1 −3

3

5 or P =

2

4

2 1

1 1

3

5

Only the last of these is positive definite, so it is the solution we require.

This gives

K = R
−1

B
T
P =

h

0 1

i

2

4

2 1

1 1

3

5 =
h

1 1

i

with closed-loop poles at the eigenvalues of

(A − BK) =
ˆ

0 1
0 −1

˜

− [ 0
1 ] [ 1 1 ]

=
ˆ

0 1
0 −1

˜

− [ 0 0
1 1 ] =

ˆ

0 1
−1 −2

˜

So the poles are the roots of the characteristic equation s2 + 2s + 1 = 0

giving two poles each at −1.
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Derivation of the Optimal LQR

We show the derivation of the LQR control result. We want to find

a control law u to minimise the infinite horizon performance

criterion

J =

∫∞

0

[

xT (t)Qx(t) + uT (t)Ru(t)
]

dt
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We show the derivation of the LQR control result. We want to find

a control law u to minimise the infinite horizon performance

criterion

J =

∫∞

0

[

xT (t)Qx(t) + uT (t)Ru(t)
]

dt

Suppose that P is the symmetric and positive definite solution of

the Algebraic Riccati Equation

AT P + PA − PBR−1BT P + Q = 0.
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Derivation of the Optimal LQR

We show the derivation of the LQR control result. We want to find

a control law u to minimise the infinite horizon performance

criterion

J =

∫∞

0

[

xT (t)Qx(t) + uT (t)Ru(t)
]

dt

Suppose that P is the symmetric and positive definite solution of

the Algebraic Riccati Equation

AT P + PA − PBR−1BT P + Q = 0.

Define the quadratic form (function of t) V(t) = xT (t)Px(t). We

note that

V̇ = ẋT Px + xT Px

= (Ax + Bu)T Px + xT P(Ax + Bu)

= xT (AT P + PA)x + uT BT Px + xT PBu
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Derivation of the Optimal LQR

From the Algebraic Riccati Equation, we have that

AT P + PA = −Q + PBR−1BT P

so

V̇ = −xT Qx + xT (PBR−1BT P)x + uT BT Px + xT PBu
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Derivation of the Optimal LQR

From the Algebraic Riccati Equation, we have that

AT P + PA = −Q + PBR−1BT P

so

V̇ = −xT Qx + xT (PBR−1BT P)x + uT BT Px + xT PBu + uT Ru − uT Ru

= −
[

xT Qx + uT Ru
]

+ (BT Px + Ru)T R−1(BT Px + Ru)
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Derivation of the Optimal LQR

From the Algebraic Riccati Equation, we have that

AT P + PA = −Q + PBR−1BT P

so

V̇ = −xT Qx + xT (PBR−1BT P)x + uT BT Px + xT PBu + uT Ru − uT Ru

= −
[

xT Qx + uT Ru
]

+ (BT Px + Ru)T R−1(BT Px + Ru)

Thus
∫∞

0

V̇(t)dt = −J +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt
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0

V̇(t)dt = −J +

∫∞

0
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⇔ V(∞)
︸ ︷︷ ︸

=0

−V(0) = −J +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt
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0

V̇(t)dt = −J +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt

⇔ V(∞)
︸ ︷︷ ︸

=0

−V(0) = −J +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt

⇔ J = xT (0)Px(0) +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt
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Derivation of the Optimal LQR

We have arrived at

J = xT (0)Px(0) +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt
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Derivation of the Optimal LQR

We have arrived at

J = xT (0)Px(0) +

∫∞

0

(BT Px + Ru)T R−1(BT Px + Ru) dt

Because the second term on the RHS is nonnegative, the

minimum of J is clearly achieved when

u = −R−1BT Px = −Kx

and the minimum value of the cost is therefore

min
u

J = xT (0)Px(0).
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LQR Matlab Example

Example (Furnace Control).

x1 x2 x3 T0

Thermocouplesu

HeaterConsider the model of the Furnace

seen in tutorial 10. The objective

was to design a controller to achieve

robust reference tracking in the

thermocouple output x2.

Let’s design the feedback gains using the function lqr. We

choose (for the augmented system (Aa, Ba) for integral action)

Q =

[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]

, and R = λ−k, with k = 0, 1, 2, 3

This choice of weights will represent the minimisation of the cost

J =

∫∞

0

[

σ2(τ) + λu2(τ)
]

dτ, where σ is the integral of the tracking error.
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LQR Matlab Example

Example (Continuation. . . ). We designed the gains using the

function

Ka = lqr(Aa,Ba,Q,R);

for the various values of λ, and obtained a set of four gains.

0 5 10 15
0

50

100

150

200

250

x 2(t
)

0 5 10 15
−500

0

500

1000

1500

time [s]

u(
t)

λ=100

λ=10−1

λ=10−2

λ=10−3

We simulated

the response of the

closed-loop system

for each of them.

We can see that the

smaller λ, the better

the performance

of x2(t), but the

higher the control

effort required.
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LQR Matlab Example

Example (Continuation. . . ). It is interesting to look at the

closed-loop pole pattern achieved by the high-performance

optimal controller (λ = 10−3).

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0.220.420.60.740.840.91

0.96

0.99

0.220.420.60.740.840.91

0.96

0.99

0.511.522.533.54

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Note that one pole

is placed on top

of the slow stable

open loop zero of

the system (which

prevents excessive

overshoot)

and the other

3 are distributed in

a Butterworth-like

configuration.
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Discrete Optimal LQ State Feedback

The quadratic performance criterion for discrete-time systems is

J0,N = xT
NSxN +

N−1∑

k=0

xT
kQxk + uT

kRxk

where for notational simplicity we wrote xk to represent x[k].
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Discrete Optimal LQ State Feedback

The quadratic performance criterion for discrete-time systems is

J0,N = xT
NSxN +

N−1∑

k=0

xT
kQxk + uT

kRxk

where for notational simplicity we wrote xk to represent x[k].

When the final time N (the optimisation horizon) is set to N = ∞,

we obtain an infinite horizon optimal control problem. In this

case, for stability, we will require that limN→∞ XN = 0,

J0,∞ =

∞∑

k=0

xT
kQxk + uT

kRxk

For discrete-time systems there is a parallel result to the

continuous time LQR. The optimal control is also found via state

feedback, but we unfortunately we need to solve a different

Riccati equation. Lecture 22: Introduction to Optimal Control and Estimation – p. 31
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Discrete Optimal LQ State Feedback

Theorem (Discrete-time LQR). Let

J =

∞∑

k=0

[

xT
kQxk + uT

kRuk

]

Then the optimal control is given by the state feedback law

uk = −Kxk

with

K = (R + BT PB)−1BT PA

and where P is the solution to the discrete algebraic Riccati

equation (DARE)

AT PA − P − AT PB(R + BT PB)−1BT PA + Q = 0
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Discrete Optimal LQ State Feedback

Just as for the continuous case, under some reasonable

assumptions there is a unique positive definite solution P.

Furthermore the corresponding closed-loop system is stable (i.e.

A − BK has all its eigenvalues in the unit circle).

In MATLAB K and P can be computed using

[K,P] = dlqr(A,B,Q,R);

Choosing

Q = CT C and R = λI

gives

J =

∞∑

t=0

[

‖yk‖2 + λ‖uk‖2
]

As before, λ can then be used as a simple tuning parameter to

trade off output performance against control action.
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Outline

Introduction

The basic optimal control problem

Optimal linear quadratic state feedback

Optimal linear quadratic state estimation
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Optimal State Estimation (LQE)

We now turn to optimal linear quadratic observers. The optimal LQ

observer problem is dual to the LQ state feedback problem. However,

optimal LQ observers have a stochastic interpretation, in that they are

optimal in estimating the state in the presence of Gaussian noises

corrupting the output measurements and the state.

Suppose we introduce state and

A − LC

B

A

∫ x(t)
C

u(t)

∫
L

B

x̂(t)

y(t)

w(t)

v(t)

Observer

output noise processes w and v so that

ẋ = Ax + Bu + w

y = Cx + v

The signals w and v are zero-mean

stochastic Gaussian processes

uncorrelated in time and with each other.

They have the following covariances:

E
“

ww
T

”

= W and E
“

vv
T

”

= V
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Optimal State Estimation (LQE)

We can design an optimal LQ observer

˙̂x = Ax̂ + Bu + L(y − Cx̂)

with L given by

L = PCT V−1

where P is the solution to the algebraic Riccati equation

AP + PAT − PCT V−1CP + W = 0

It is usual to treat W and V as design parameters. For example it

is common to assign W = BBT (so that effectively w is an input

noise signal) and V = µI.
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Optimal State Estimation (LQE)

High relative values of W will lead to large L, so more weight is

given to the output signal y, whereas high relative values of V will

lead to small L, so more weight is given to the input signal u. We

may think of this as saying high values of V put more confidence

in the model, giving slower observer feedback dynamics.

Such an optimal LQ state estimator is known as the (steady

state) Kalman filter. In MATLAB, L and P can be computed as

[L,P] = lqr(A’,C’,W,V)’;
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Summary

We have introduced the basic optimal control problem, which

requires the mathematical specification of

the system to be controlled

the system constraints

the task to be accomplished

a criterion to judge best performance
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Summary

We have introduced the basic optimal control problem, which

requires the mathematical specification of

the system to be controlled

the system constraints

the task to be accomplished

a criterion to judge best performance

We have presented the quadratic performance criterion

J = x
T
(T)Sx(T) +

∫T

0

h

x
T
(t)Qx(t) + u

T
(t)Rx(t)

i

dt

which is convenient to trade off different performance objectives of

interest (such as minimum terminal state, minimum transients in the

state, minimum control “effort”, etc.)
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Summary

We have introduced the basic optimal control problem, which

requires the mathematical specification of

the system to be controlled

the system constraints

the task to be accomplished

a criterion to judge best performance

We have presented the quadratic performance criterion

J = x
T
(T)Sx(T) +

∫T

0

h

x
T
(t)Qx(t) + u

T
(t)Rx(t)

i

dt

which is convenient to trade off different performance objectives of

interest (such as minimum terminal state, minimum transients in the

state, minimum control “effort”, etc.)

The solution to the optimal LQ state feedback problem (LQ

Regulator, LQR) turns out to be linear, u = −Kx, where K is

computed by solving a Matrix Riccati Equation.
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Summary
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Regulator, LQR) turns out to be linear, u = −Kx, where K is

computed by solving a Matrix Riccati Equation.
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Summary

The design parameters in an LQR design are the matrices Q and R,

which weight state performance and control effort.
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Summary

The design parameters in an LQR design are the matrices Q and R,

which weight state performance and control effort.

The LQR problem has a discrete-time correlate, which involves

solving a discrete-time Matrix Riccati Equation.
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Summary

The design parameters in an LQR design are the matrices Q and R,

which weight state performance and control effort.

The LQR problem has a discrete-time correlate, which involves

solving a discrete-time Matrix Riccati Equation.

The dual problem to the LQR is the Linear Quadratic Estimator (LQE):

an observer in which the observer gain L is computed as optimal

LQ. The optimal LQE is also called the Kalman filter.
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Summary

The design parameters in an LQR design are the matrices Q and R,

which weight state performance and control effort.

The LQR problem has a discrete-time correlate, which involves

solving a discrete-time Matrix Riccati Equation.

The dual problem to the LQR is the Linear Quadratic Estimator (LQE):

an observer in which the observer gain L is computed as optimal

LQ. The optimal LQE is also called the Kalman filter.

The Kalman filter provides the best state estimates when the system

is linear and corrupted with Gaussian noises with covariances W

and V. Then these matrices are used as the “weightings” in the

performance criterion.

Lecture 22: Introduction to Optimal Control and Estimation – p. 39



The University of Newcastle

Summary

The design parameters in an LQR design are the matrices Q and R,

which weight state performance and control effort.

The LQR problem has a discrete-time correlate, which involves

solving a discrete-time Matrix Riccati Equation.

The dual problem to the LQR is the Linear Quadratic Estimator (LQE):

an observer in which the observer gain L is computed as optimal

LQ. The optimal LQE is also called the Kalman filter.

The Kalman filter provides the best state estimates when the system

is linear and corrupted with Gaussian noises with covariances W

and V. Then these matrices are used as the “weightings” in the

performance criterion.

The combination of an optimal LQR and LQE yield a Linear

Quadratic Gaussian (LQE) controller.
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