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mucho más si es compartida.

Para Martha y Rafael, que fueron una conexión constante con la matria rosa-
rina. Un afecto que no se puede medir en las toneladas de diarios, revistas y
compacts, que se la pasaron en gruesos sobres marrones haciendo el transpolar
para aterrizar en Newcastle.
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Abstract

This thesis is aimed at analysis of sampled-data feedback systems. Our approach
is in the frequency-domain, and stresses the study of sensitivity and complemen-
tary sensitivity operators. Frequency-domain methods have proven very success-
ful in the analysis and design of linear time-invariant control systems, for which
the importance and utility of sensitivity operators is well-recognized. The exten-
sion of these methods to sampled-data systems, however, is not straightforward,
since they are inherently time-varying due to the intrinsic sample and hold oper-
ations.

In this thesis we present a systematic frequency-domain framework to de-
scribe sampled-data systems considering full-time information. Using this frame-
work, we develop a theory of design limitations for sampled-data systems. This
theory allows us to quantify the essential constraints in design imposed by in-
herent open-loop characteristics of the analog plant. Our results show that: (i)
sampled-data systems inherit the difficulty imposed upon analog feedback de-
sign by the plant’s non-minimum phase zeros, unstable poles, and time-delays,
independently of the type of hold used; (ii) sampled-data systems are subject to
additional design limitations imposed by potential non-minimum phase zeros of
the hold device; and (iii) sampled-data systems, unlike analog systems, are sub-
ject to limits upon the ability of high compensator gain to achieve disturbance
rejection. As an application, we quantitatively analyze the sensitivity and robust-
ness characteristics of digital control schemes that rely on the use of generalized
sampled-data hold functions, whose frequency-response properties we describe
in detail.

In addition, we derive closed-form expressions to compute the L2-induced
norms of the sampled-data sensitivity and complementary sensitivity operators.
These expressions are important both in analysis and design, particularly when
uncertainty in the model of the plant is considered. Our methods provide some
interesting interpretations in terms of signal spaces, and admit straightforward
implementation in a numerically reliable fashion.





1
Introduction

This thesis deals with frequency-domain properties and essential design limita-
tions in linear sampled-data feedback control systems.

A sampled-data system combines both continuous and discrete-time dynamic
subsystems. Because of this inherent mixture of time domains, we shall also refer
to a sampled-data system as a hybrid system, understanding both terms as syn-
onyms. A typical hybrid feedback control configuration is shown in Figure 1.1.
Although the plant is usually a continuous-time, or analog, system, the controller
is a discrete-time device in most practical applications. This is mainly due to the
numerous advantages that digital equipments offer over their analog counter-
parts. With the great advances in computer technology, today digital controllers
are more compact, reliable, flexible and often less expensive than analog ones.

There is a fundamental operational difference between digital and analog con-
trollers: the digital system acts on samples of the measured plant output rather
than on the continuous-time signal. A practical implication of this difference is
that a digital controller requires special interfaces that link it to the analog world.
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Figure 1.1: Typical sampled-data feedback configuration.

A digital controller can be idealized as consisting of three main elements: the
analog-to-digital (A-D) interface, the digital computer, and the digital-to-analog
(D-A) interface. The A-D interface, or sampler, acts on a physical variable, nor-
mally an electric voltage, and converts it into a sequence of binary numbers,
which represent the values of the variable at the sampling instants. These num-
bers are then processed by the digital computer, which generates a new sequence
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of binary numbers that correspond to the discrete control signal. This control sig-
nal is finally converted into an analog voltage by the D-A interface, also called
the hold device.

The digital computer implements the control algorithm as a set of difference
equations, which represent a dynamic system in the discrete-time domain. We
shall refer to this system as the discrete controller. In general, the discrete controller
will include nonlinearities and varying parameters in it; our discussion here is
restricted to linear time-invariant controllers, which nevertheless constitute an
useful and important case in analysis and design.

Essentially, two classic approaches are taken in engineering practice for the
design of a discrete controller. The first technique, referred to as emulation [Franklin
et al., 1990], is the most widely applied in industry. Emulation consists in first
designing an analog controller such that the closed-loop system has satisfactory
properties, and then translating the analog design into a discrete one using a
suitable discretization method (see Keller and Anderson [1992] for a recent ap-
proach). This technique has the advantage that the synthesis is done in continuous-
time, where the design goals are typically specified, and where most of the de-
signer’s experience and intuition resides. Also, the system’s analog performance
will in general be recovered for fast sampling. Yet, the hybrid performance cannot
be expected to be better than the analog, and there may be a serious degradation
if the sampling is not sufficiently fast. This is an important drawback, since the
sampling rate is a critical constraint in many applications.

The second traditional technique consists in discretizing the plant and per-
forming a discrete design. The main benefit of this approach is that the synthesis
procedure is again simplified, since the discretized plant is linear time-invariant
(LTI) in the discrete-time domain. However, a serious limitation of discrete de-
sign is that it is generally difficult to translate the analog specifications into dis-
crete. Furthermore, the simple models obtained by discretization fail to represent
the full response of the system, since intersample behavior is inherently lost or hid-
den1.

In particular, neither of these approaches offers an adequate framework for
analysis of the continuous-time time-varying hybrid system. Emulation is purely
a method of synthesis, whereas discrete design gives a partial answer, since only
the sampled behavior can be studied in the discretized model. On the other hand,
the analysis of the hybrid system requires the consideration of both sampled and
intersample behavior. This is crucial especially when considering robustness and
sensitivity properties of the system, since analog uncertainties, disturbances and
noise are frequently the issues of practical significance.

1.1 Recent Developments in Sampled-data Systems

Naturally, in view of the technological appeal of digital implementations, sampled-
data systems have been the subject of many research works in recent years. Two

1Some intersample information can still be handled in a discrete model by using the modified Z-
transform introduced by Jury [1958]. However, this line of work seems to have been largely aban-
doned.
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research directions in particular have generated much activity. First, various op-
timal control problems have been stated and solved for hybrid systems using
frameworks that incorporate intersample behavior [e.g., Chen and Francis, 1991,
Bamieh and Pearson, 1992, Dullerud and Francis, 1992, Tadmor, 1992, Kabamba
and Hara, 1993, Bamieh et al., 1993]. Second, several researchers have explored
the potential ability of nonstandard hold functions, periodic digital controllers,
and multirate sampling to circumvent design limitations inherent to LTI sys-
tems [e.g., Khargonekar et al., 1985, Kabamba, 1987, Francis and Georgiou, 1988,
Hagiwara and Araki, 1988, Das and Rajagopalan, 1992, Yan et al., 1994]. Within
these two research avenues, we shall restrict the discussion here to optimal H∞
sampled-data control, and control techniques using generalized sampled-data hold
functions (GSHFs).

The earliest efforts to extend H∞ control methods to sampled-data systems
focused on the computation of the induced L2-norm. The L2-induced norm mea-
sures the maximum gain of an operator acting on spaces of square integrable,
or “finite energy”, signals. For a LTI system, the optimization of the L2-induced
norm is equivalent to the minimization of the H∞-norm of its transfer matrix.
This is not trivial to extend to sampled-data systems, since they are time-varying
due to the presence of the sampler, and hence we cannot describe their input-
output behavior with ordinary transfer matrices. Therefore, special procedures
have been developed. For example, Thompson et al. [1983], and Thompson et al.
[1986] provided the first bounds for the norm of open-loop hybrid systems using
conic sector techniques. Exact expressions of the L2-induced norms were later
on obtained by Chen and Francis [1990] via frequency-domain methods. In 1991,
Leung et al. derived a formula for sampled-data feedback systems with band-
limited signals.

In recent years, different general frameworks to handle intersample behavior
appeared on the scene, and led the way to the solution of certain hybrid optimal
H∞ control problems2. These frameworks include lifting techniques [Bamieh et al.,
1991, Toivonen, 1992, Bamieh and Pearson, 1992, Yamamoto, 1993, 1994], descrip-
tor system techniques [Kabamba and Hara, 1993], and techniques based on linear
systems with jumps [Sun et al., 1993, Sivashankar and Khargonekar, 1994]. More
specifically, the lifting technique consists on transforming the original sampled-
data system into an equivalent LTI discrete-time system with infinite-dimensional
input-output signal spaces. Then, the L2-induced norm of the sampled-data sys-
tem is shown to be less than one if and only if the H∞-norm of this equivalent
discrete system is less than one. In the descriptor system approach, on the other
hand, the system is represented by a hybrid state-space model, from which the
descriptor system is formulated. The solution of the H∞ sampled-data problem
is then characterized by the solution of certain associated Hamiltonian equation.
In contrast with these procedures, the theory of linear systems with jumps allows
a direct characterization of the problem in similar — although more involved —
terms to those of standard LTIH∞-control problems, and leads to a pair of Riccati
equations. Despite the procedural differences in all these approaches, the results

2Yet, as pointed out by Glover [1995], practical design guidelines are still under development.
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obtained are mathematically equivalent.

On the other hand, new control schemes using GSHFs were introduced to ap-
proach various problems that are insoluble with LTI control schemes. A GSHF
reconstructs an analog signal from a discrete sequence of values, but instead of
holding these values constant along the sample period — as it is the case of a clas-
sic zero-order hold (ZOH) — a GSHF scales a fixed suitable waveform. In particu-
lar, by selecting this waveform it is possible to assign the zeros of the discretized
plant, and hence, e.g., convert a non-minimum phase (NMP) analog plant into
a minimum phase discrete plant [Bai and Dasgupta, 1990]. This is the key tech-
nique of several applications of GSHFs. For example, Kabamba [1987] obtained
simultaneous pole-assignment of an arbitrary finite number of plants using a sin-
gle GSHF; and Yan et al. [1994] proposed the combination of a discrete controller
with a GSHF to achieve arbitrary gain-margin improvement of continuous-time
NMP linear systems. Other applications of GSHFs include decoupling, exact
model-matching, and exact discrete loop transfer recovery of NMP plants [Liu
et al., 1992, Paraskevopoulos and Arvanitis, 1994, Er and Anderson, 1994].

Besides the benefits offered by GSHFs, some authors have pointed out the
existence of intersample difficulties and serious robustness and sensitivity prob-
lems associated with the use of these devices [Araki, 1993, Feuer and Goodwin,
1994, Zhang and Zhang, 1994]. For example, Feuer and Goodwin [1994] have
argued that GSHF control relies on the generation of high-frequency harmonics,
which tend to make the system more sensitive to high-frequency plant uncer-
tainty, disturbances and noise. As a consequence, the potential utility of GSHFs
in overcoming LTI design limitations seems still to be a matter of debate.

Despite these advances in synthesis, there is as yet no well-developed the-
ory of inherent design limitations for hybrid feedback systems. For analog feed-
back systems, on the other hand, many results on design limitations are available.
Bode first stated the sensitivity integral theorem in 1945, whose importance for
feedback control was emphasized by Horowitz [1963]. Later extensions were ob-
tained by several researchers; of particular relevance to the present discussion are
the results of Freudenberg and Looze [1985] and Middleton [1991]. Briefly, the
theory describes how plant properties such as NMP zeros, unstable poles, and
time delays limit the achievable performance of a feedback system consisting of
a LTI plant and a continuous-time controller. These limitations manifest them-
selves as tradeoffs between desirable system properties in different frequency
ranges, and are expressed mathematically using Bode and Poisson integrals.

A parallel theory of inherent design limitations for purely discrete-time feed-
back systems is also available [Sung and Hara, 1988, Middleton and Goodwin,
1990, Mohtadi, 1990, Middleton, 1991]. Unfortunately, this theory is insufficient
to describe fundamental limitations in hybrid systems. Indeed, discrete-time re-
sults do not consider intersample behavior, and therefore do not tell us the whole
story (in particular, good sampled behavior is necessary but not sufficient for
good overall behavior). The development of an equivalent theory for sampled-
data systems is one of the main goals of this thesis.
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1.2 Contributions of this Thesis

This thesis is aimed at analysis of sampled-data feedback systems. Our approach
is in the frequency-domain, and stresses the study of sensitivity and complemen-
tary sensitivity operators. Our main contributions may be summarized as fol-
lows:

(i) We expound a systematic frequency-domain framework to describe sampled-
data systems considering full-time information. This framework allows us
to study important properties of the system in a way that appears to be
simpler than in alternative state-space approaches. There are two reasons
why we believe the frequency-domain approach to be simpler. First, this
frequency-domain setting has better links with classical frequency-domain
analysis for analog control systems, in which a large heuristic knowledge
is available. Second, the mathematics involved seems easier to understand
and relate to the original plant model.

(ii) We develop a theory of design limitations for sampled-data systems. This
theory allows us to quantify the essential constraints imposed by NMP ze-
ros of the hold function, and NMP zeros and unstable poles of the analog
plant and discrete controller. As an application, we quantitatively analyze
the sensitivity and robustness properties of control schemes that rely on
GSHF discrete zero-shifting capabilities.

(iii) We derive closed-form expressions to compute the L2-induced norms of the
hybrid sensitivity and complementary sensitivity operators. These expres-
sions have interesting interpretations in terms of signal spaces associated
with the hold, the plant and the anti-aliasing filter. All our formulas admit
straightforward implementation in a numerically reliable fashion.

(iv) We study the frequency-domain properties of GSHFs, providing results that
describe in detail their zero-distribution, and some integral relations that
their frequency response must satisfy. In particular, these results show the
source of some of the difficulties associated with the use of GSHFs.

The framework of (i), and the results of (iii) are valid for multiple-input multiple-
output (MIMO) systems. The results in (ii) and (iv) are restricted to the single-
input single-output (SISO) case. Due to the issue of directionality, the general-
ization of these results to multivariable is difficult — for (ii) this is so even in the
analog case — and hence we have not pursued it here.

Many of the results referred to in (ii) have been developed in collaboration,
and published in Freudenberg et al. [1995] and Freudenberg et al. [1994], with
significant input from the first author. The results in (i) and (iii) have been par-
tially communicated in Braslavsky et al. [1995b], while some of the results in (iv)
will appear in Braslavsky et al. [1995a].

We now give an overview of the rest of the thesis.

Chapter 2: This chapter introduces most of our notation, main assumptions, and
the basic preliminary results upon which the rest of the chapters will be
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developed. Here, we define the mathematical representations of the A-D
and D-A interfaces, the sampler, and the hold device. A distinctive fea-
ture of our approach is that the hold device is not restricted to the ZOH.
Indeed, we shall consider that the hold is a GSHF of the type introduced by
Kabamba [1987], which will allows us to develop a comprehensive frame-
work to study sampled-data systems. We also present in this chapter a basic
but key sampling formula concerning the Laplace transform of a sampled
signal. This relation will be the starting point of our discussion on the fre-
quency response of hybrid systems in the following chapters. We conclude
with a review of two important results concerning the closed-loop stabiliz-
ability properties of sampled-data systems.

Chapter 3: The focus of this chapter is the frequency response of a GSHF. As
opposed to that of a ZOH, the frequency response of a GSHF may have
large high-frequency peaks that compromise the robustness properties of
the system. It is also known that GSHFs may have zeros off the jω-axis that
pose discrete stabilizability difficulties. In this chapter we go deeper into
the analysis of these issues by studying fundamental properties of the fre-
quency response of GSHFs. Specifically, we describe their zero-distribution
and the constraints that these zeros impose on the values on the jω-axis.
One of the main results of this chapter is that GSHFs with “asymmetric”
pulse response function will necessarily have zeros off the jω-axis.

Chapter 4: In this chapter, we study the frequency response of a sampled-data
system, and develop a theory of design limitations wherein we consider
the response of the analog system output. To do this, we use the fact that
the steady-state response of a hybrid feedback system to a sinusoidal input
consists of a fundamental component at the frequency of the input together
with infinitely many harmonics, located at frequencies spaced integer mul-
tiples of the sampling frequency away from the fundamental. This fact al-
lows us to define fundamental sensitivity and complementary sensitivity
functions that relate the fundamental component of the response to the in-
put signal. These sensitivity and complementary sensitivity functions must
satisfy integral relations analogous to the Bode and Poisson integrals for
purely analog systems. The relations show, for example, that design limi-
tations due to NMP zeros of the analog plant constrain the response of the
sampled-data feedback system regardless of whether the discretized system
is minimum phase, and independently of the choice of hold function.

Chapter 5: This chapter deals with the analysis and computation of the L2-induced
norm of operators in sampled-data systems. We first expound a frequency-
domain lifting technique to derive “closed-form” expressions for the fre-
quency gains of hybrid sensitivity operators in a MIMO setup. We show
that these frequency-gains can be characterized by the maximum eigen-
value of certain finite-dimensional discrete transfer matrices; even in the
case of the sensitivity operator, which — since it is known to be non-compact
— presents extra difficulties for the analysis. The L2-induced norm is then
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computed by searching the maximum of this eigenvalue over a finite range
of frequencies. At the end of the chapter, we provide expressions from
which the generation of numerical algorithms to compute these norms is
straightforward.

Chapter 6: This chapter is about stability robustness of sampled-data systems.
Dullerud and Glover [1993] have derived necessary and sufficient condi-
tions for robust stability of hybrid systems against multiplicative perturba-
tions in the analog system. These authors have used a frequency-domain
formulation based on state-space lifting techniques. We show in this chap-
ter that the same type of result may be obtained in a simpler way when
the problem is directly formulated in the frequency-domain. We do this
by using the frequency-domain lifting framework introduced in Chapter 5.
We also give both necessary conditions and sufficient conditions for robust
stability as simple expressions that emphasize the role played by the fun-
damental and harmonic sensitivity functions defined in Chapter 4. We con-
clude the chapter by showing that the same framework may be used to
approach the problem of robust stability against divisive perturbations.

Chapter 7: As an application of the preceding results, in this chapter we study
the difficulties associated with the zero-shifting capabilities of GSHFs. Many
GSHF-based proposed schemes rely on zero-shifting, since this appears to
circumvent fundamental limitations imposed by analog NMP zeros. We
show that if the plant has a NMP zero with significant phase lag within the
desired closed-loop bandwidth of the system, then zero-shifting will nec-
essarily lead to serious robustness and sensitivity problems in both analog
and discrete performances of the system.

Chapter 8: In this chapter we summarize the main results of the thesis, and give
some concluding remarks and directions for future research.





2
Preliminaries

This chapter defines most of our notation, and introduces general assumptions
and preliminary results required in the sequel. We present a key formula concern-
ing the Laplace transform of a sampled signal that will play an important role in
the rest of this thesis. This formula yields the well-known infinite summation ex-
pression showing that the response of the discretized plant at a given frequency
depends upon that of the analog plant at infinitely many frequencies. We finish
the chapter reviewing the basic conditions for closed-loop stability of sampled-
data systems; i.e., a non-pathological sampling assumption, and the closed-loop
stability of the discretized system.

2.1 Analog and Discrete Signals

2.1.1 Signal Spaces

We start introducing some standard signal spaces. We denote the set of complex
numbers by C. The open and closed right halves of C are denoted by C+ and C+

respectively, and sometimes we shall use the acronyms ORHP and CRHP. Corre-
spondingly, we denote by C− and C− the open and closed left halves of C, also
referred as OLHP and CLHP, respectively. We denote the set of real numbers by
R, and by R+

0 we represent the set of non-negative real numbers, i.e., the segment
[0,∞). The open and closed unit disks in C are denoted by D , {z : |z| < 1} and
D , {z : |z| ≤ 1} respectively; we denote their complements by DC and D

C
.

As usual, Lnp(R+
0 ) denotes the space of Lebesgue measurable functions f from

R
+
0 to Rn that satisfy

‖f‖Lp ,
(∫∞
0

|f(t)|p dt

)1/p
<∞ for 1 ≤ p <∞,

and
‖f‖L∞ , ess sup

t∈R+
0

|f(t)| <∞,
where | · | denotes the Euclidean norm in Rn. We denote by Lnpe(R

+
0 ) the extended

space of Lnp(R+
0 ), i.e., the space of functions whose truncations to intervals [0, a)

are in Lnp(R+
0 ) for any finite real number a.
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In a similar way, Ln2 denotes the space of functions F(jω) defined on jR with
values over Cn and satisfying

‖F‖L2 ,
(∫∞

−∞ |F(jω)|2 dω

)1/2
<∞.

Here the Euclidean norm | · | is taken on Cn, i.e., |F| =
√
F∗F, where F∗ denotes the

complex conjugate transpose of F. In general, we shall denote the transpose of a
matrixM byMT, and byM its conjugate.

In discrete-time we represent by `np the space of sequences u , {uk}
∞
k=−∞

valued in Cn and satisfying

‖u‖`p ,

( ∞∑
k=−∞ |uk|

p

)1/p
<∞ for 1 ≤ p <∞,

and
‖u‖`∞ , sup

k

|uk| <∞.
We shall dispense with the superscript n in the above notations whenever the

dimension of the spaces is clear from the context. We shall also omit the subindex
that indicates the spaces in the notation of norms ‖ · ‖ when they are clear from
the context.

We shall represent linear dynamic systems as input-output operators acting
on Lp spaces. If M is a linear operator defined by

M : Lp(R
+
0 )→ Lp(R

+
0 )

: u 7→ y = Mu,

the Lp-induced norm of the operator M is defined as

‖M‖p , sup
{‖My‖Lp
‖u‖Lp

: for u in Lp(R+
0 ), and ‖u‖Lp 6= 0

}
.

A quick-reference list of the above notations may be found on page 165.

2.1.2 Samplers and Holds

As discussed in Chapter 1, the implementation of a controller for a continuous-
time system by means of a digital device, such as a computer, implies the process
of sampling and reconstruction of analog signals. By sampling, an analog signal
is converted into a sequence of numbers that can then be digitally manipulated.
The hold device performs the inverse operation, translating the output of the
digital controller into a continuous-time signal. We shall assume throughout that
nonlinearities associated with the process of discretization, such as finite memory
word-length, quantization, etc., have no significant effect on the sampled-data
system.
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We assume also that sampling is regular, i.e., if T is the sampling period, sam-
pling is performed at instants t = kT , with k = 0,±1,±2, . . .. Associated with T ,
we define the sampling frequency ωs = 2π/T . By ΩN we denote the Nyquist range
of frequencies [−ωs/2,ωs/2].

We consider an idealized model of the sampler. If y is an analog signal defined
on the time set R+

0 with values over Cn, we define the sampling operator with
sampling period T , denoted by ST , as

ST {y} = {yk}
∞
k=−∞, (2.1)

where {yk}
∞
k=−∞ is the sequence representing the sampled signal, and yk = y(kT+)1.

Thus, the sampler is a linear, periodically time-varying operator. Note that the
sampler operator may be unbounded in many standard signal spaces, as for ex-
ample from Lp(R

+
0 ) to `p when 1 ≤ p < ∞ Chen and Francis [1991]. Therefore,

we need to specify with some care the class of signals that are “sampleable”.
A class of functions that guarantee that the sampling operator is well-defined

is the class of functions of bounded variation (BV). These functions will be required
to define the hold devices we shall deal with, and to assure the validity of a sam-
pling formula that will be the starting point of our approach to sampled-data
systems. The following definition is taken from Riesz and Sz.-Nagy [1990].

Definition 2.1.1 (Function of Bounded Variation)
A function f defined over a real interval (a, b) is of BV if the following sum is
bounded,

n∑
k=1

|f(tk) − f(tk−1)| <∞, (2.2)

for every partition of the interval (a, b) into subintervals (tk, tk−1), where k =
1, 2, . . . , n, and t0 = a, tn = b. The least upper bound of the sum in (2.2) is called
the total variation of f in the interval (a, b). �

A function of BV is not necessarily continuous, but it is differentiable almost
everywhere and its derivative is a function in L1(a, b) Rudin [1987]. Moreover,
the limits f(t+) and f(t−) are well defined for every t in (a, b), which means that
f can have discontinuities of at most the finite-jump type.

The hold device that we shall consider is a GSHF a la Kabamba [1987], defined
by the operation

u(t) = h(t− kT)uk, for kT ≤ t < (k+ 1)T, (2.3)

where {uk}
∞
k=−∞ is a discrete sequence, and h is a bounded function with support

on the interval [0, T). We consider the case in which the sequence {uk}
∞
k=−∞ takes

values in Rp, and so h takes values in Rp×p. We shall assume throughout that h
satisfies the following technical conditions.

1Here, y(kT±) denotes the right (left) limit of y(·) at t = kT , i.e.,

y(kT±) , lim
ε↓0 f(kT ± ε), for ε > 0,

whenever the limit exists.
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Assumption 1
The hold function h is a function of BV on [0, T). ◦

As discussed in Middleton and Freudenberg [1995], we can associate a fre-
quency response function to this hold device, defined by

H(s) =

∫T
0

e−st h(t)dt. (2.4)

Since h is supported on a finite interval, it follows that H is an entire function,
i.e., analytic at every s in C. For example, in the case of the ZOH we have the
well-known responseH(s) = (1− e−sT )/s. Frequency responses of other types of
holds will be studied in detail in Chapter 3.

We shall be particularly interested in the zeros of the response function H.
These have transmission blocking properties, and may affect the stabilizability of
the discretized system Middleton and Freudenberg [1995]. Furthermore, as we
shall see in Chapter 4, they are an important factor in analysis of the achievable
performance of the sampled-data system.

Definition 2.1.2 (Zeros of the Hold Middleton and Freudenberg [1995])
Consider a response function defined by (2.4) and suppose that det(H) is not
identically zero. Then the zeros of H are those values s in C for which H(s) has
less than full rank. �

bb - -H
uk u

Figure 2.1: Response of a GSHF.

The frequency response of the hold defined in (2.4) is useful to compute the
Laplace transform of the output of the hold device (see Figure 2.1). As described
in Middleton and Freudenberg [1995], the i-th column of the frequency response
function (2.4) represents the Laplace transform of the output of the hold to an
unitary pulse in the ith input. More generally, if Ud is the Z-transform of the
input sequence {uk}

∞
k=−∞, then we have the following Åström and Wittenmark

[1990].

Lemma 2.1.1
Consider the hold defined by (2.3) and its associated frequency response (2.4).
Then

U(s) = H(s)Ud(e
sT ).

◦
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GSHFs have been proposed as a more versatile alternative to the traditional
ZOH [see for example Kabamba, 1987], and indeed, recent studies have shown
that if a solution to the sampled-data H∞ control problem exists, then it may
be realized by a LTI discrete controller and a GSHF Sun et al. [1993]. Neverthe-
less, these devices certainly are much more complex to be implemented and —
as some authors have suggested and we shall expand on — they may bring in
serious intersample difficulties.

2.1.3 A Key Sampling Formula

Our approach to sampled-data systems is in the frequency-domain. We now
present a result that is essential to the understanding of the frequency-domain
properties of sampled-data systems and will play a central role throughout the
following chapters. Unfortunately, despite the fact that the result is well-known
and appears in many textbooks [e.g., Åström and Wittenmark, 1990, Franklin
et al., 1990, Kuo, 1992, Ogata, 1987], it is difficult to find in the literature a proof
that is rigorous and self-contained, and which clearly delineates the classes of
signals to which it is applicable. Indeed, this fact has stimulated discussion in the
past [cf. Pierre and Kolb, 1964, Carroll and W.L. McDaniel, 1966, Phillips et al.,
1966, 1968].

Let g be a function of BV in every finite interval of R+
0 , and letG be its Laplace

transform,

G(s) =

∫∞
0

e−st g(t)dt.

If σG is the abscissa of absolute — and uniform — convergence of G, we denote
by DG the strip

DG , {s = x+ jy,with x > σG and y inΩN}.

Given a sequence {gk}
∞
k=0, we introduce the Z-transform, Gd = Z{{gk}}, defined

by

Gd(z) =

∞∑
k=0

gkz
−k. (2.5)

For a continuous-time signal g defined on R+
0 , and g(t) = 0 for t < 0, we define

the Z-transform as the transformation of its sampled version,

Gd(z) = Z{ST {g}}

=

∞∑
k=0

g(kT+) z−k.

Then we have the following lemma.

Lemma 2.1.2
If g is a function of BV in every finite interval of R+

0 , then for every s in DG

Gd(e
sT ) =

g(0+)

2
+

∞∑
k=1

g(kT+) − g(kT−)

2
e−skT +

1

T

∞∑
n=−∞G(s+ jnωs). (2.6)
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Proof: See Appendix A, §A.1. �

Lemma 2.1.2 shows the well-known fact that the frequency response of a sam-
pled signal is built upon the superposition of infinitely many copies of the orig-
inal frequency response of the signal. If the signal has finite discontinuities at
the sampling instants, then correction terms of half of the jumps at the corre-
sponding sampling instants have to be included — cf. the property of the Laplace
and Fourier inverse transforms which converge to the average of the limits of the
function from left and right at a jump discontinuity. In particular, (2.6) is closely
related to an important identity in Fourier analysis known as the Poisson Summa-
tion Formula2. See further remarks in Appendix A, §A.1.

Moreover, Lemma 2.1.2 clearly de-

?
�c b b c- -��

u y
F

yd

ST

Figure 2.2: Filtered sampling.

lineates two important classes of sig-
nals and systems to which the formula
is applicable, as we shall see in the fol-
lowing two corollaries. The first one
is concerned with sampling the response
of a strictly proper finite dimensional
(FD), LTI system (see Figure 2.2). This

represents a common practice in digital control engineering, i.e., to precede the
sampler by an anti-aliasing filter, and is also required for the the sampling opera-
tion to be well-defined [e.g., Chen and Francis, 1991].

Corollary 2.1.3
Let u be a signal in L1e(R+

0 ), and let F be a strictly proper rational function. Then
for every s in DFU

(FU)d(e
sT ) =

1

T

∞∑
n=−∞ F(s+ jnωs)U(s+ jnωs).

Proof: Immediate from Lemma 2.1.2 by noting that the response of a FDLTI
strictly proper system to an input in L1e(R+

0 ) is continuous [e.g., Desoer and
Vidyasagar, 1975], so y(t+) = y(t−) for every t. In particular, since y(t) = 0

for t < 0, this also implies that y(0) = 0, and the result then follows. �

The second corollary deals with sampling the pulse response of a hold func-
tion followed by a FDLTI strictly proper system, and displays the relation be-
tween the discrete equivalent of this cascade and the corresponding continuous-
time Laplace transforms (see Figure 2.3).

Corollary 2.1.4
Let H be a hold frequency-response function as described in Subsection 2.1.2 and
P a strictly proper rational function. Let (PH)d denote the discrete equivalent of
the cascade connection PH defined as

(PH)d(z) = Z{ST {L
−1{P(s)H(s)}}}.

2This is the following Rudin [1987]. If G is the Fourier transform of g, then∞∑
k=−∞g(kα) = β

∞∑
k=−∞G(jkβ),

where α > 0,β > 0, and αβ = 2π. Although named after S.D. Poisson, this formula seems to have
been first discovered by A.L. Cauchy in 1817 [Grattan-Guinness, 1990, p. 793].
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Then for every s in DP,

(PH)d(e
sT ) =

1

T

∞∑
n=−∞P(s+ jnωs)H(s+ jnωs). (2.7)

Proof: Since the pulse response of H is of BV by assumption, we then have that
the output of P is continuous Desoer and Vidyasagar [1975]. The result then fol-
lows from Lemma 2.1.2. �

?
�c bb c-- - -

....................................................................

....................................................................

...

...

...

...

...

...

...

...

...

..

...

...

...

...

...

...

...

...

...

..

��
u

(PH)d

y
P

ST

yd
H

ud

Figure 2.3: Discrete equivalent of the cascade of a hold and a FDLTI system.

Note that the domains of validity of these results can be further extended by
analyticity of Laplace transforms.

Equation (2.7) appears in many digital control textbooks [e.g., Åström and
Wittenmark, 1990, Franklin et al., 1990], and it has been the starting point of a
number of recent frequency-domain approaches to sampled-data systems Good-
win and Salgado [1994], Araki and Ito [1993], Araki et al. [1993], Freudenberg
et al. [1995]. Some authors refer to (2.7) as the impulse modulation formula [e.g.,
Araki and Ito, 1993, Araki et al., 1993].

2.2 Hybrid Systems

2.2.1 Basic Feedback Configuration

The basic feedback system of study is shown in Figure 2.4. The analog plant is
a linear time-invariant system represented by the transfer matrix P, and the con-
troller is given by the discrete transfer matrix Cd. The digital controller interfaces
with the analog parts of the system by a sampler ST and a hold function H as
described in Subsection 2.1.2. The transfer matrix F represents the anti-aliasing
filter.

Signals in Figure 2.4 are as follows,

r reference input,
y plant output,
d output disturbance,
n sensor noise,

uk discrete control sequence,
u analog control signal,
v analog output of the filter,
vk sampled output of the filter.
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Figure 2.4: Sampled-data control system.

Analog signals are given as functions defined over t in R+
0 , while discrete

signals are sequences defined at entire multiples k of the sampling time T . We
shall assume that the input signals satisfy the following condition.

Assumption 2
The reference signal r, disturbance d, and noise n are functions in L1e(R+

0 ). ◦

It is straightforward to verify that this assumption is satisfied by signals that
are steps, ramps, sinusoids or exponentials, and signals in Lp(R+

0 ) for 1 ≤ p ≤∞
Chen and Francis [1991]. Signals that contain impulses are excluded.

We shall assume throughout that the following conditions are satisfied by the
plant, filter, and compensator.

Assumption 3
The plant, filter, and compensator are full column rank rational transfer matrices,
each free of unstable hidden modes, and they satisfy the following additional
hypotheses,

(i) P(s) = P0(s) e
−sτ, where P0 is proper and τ ≥ 0,

(ii) F is strictly proper, stable and minimum-phase, and

(iii) Cd is proper. ◦

The assumption that the filter F is strictly proper is standard and guaran-
tees that the sampling operation is well-defined [e.g., Chen and Francis, 1991,
Sivashankar and Khargonekar, 1993]. The assumptions that F has no poles or
zeros in C+ may be removed, and are only invoked to facilitate discussion. In
practice anti-aliasing filters will satisfy these assumptions.

We define the discretized plant as the discrete transfer function of the series
connection of hold, plant, filter, and sampler,

(FPH)d(z) , Z{ST {L
−1{F(s)P(s)H(s)}}}. (2.8)
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It follows from Assumptions 1 and 3, and Corollary 2.1.4 that the discretized
plant satisfies the well-known relation

(FPH)d(e
sT ) =

1

T

∞∑
k=−∞ Fk(s)Pk(s)Hk(s), (2.9)

where the notation Fk(s) represents F(s + jkωs), i.e., the shift of F(·) by an entire
number of times the sampling frequency in the direction of the imaginary axis.
We shall use this notation throughout this thesis.

Suppose now that in the loop of Figure 2.4 we assume r = 0 and consider a
disturbance x at the input of the plant. Introduce a ficticious hold at x, and shift
the filter and sampler to the inputs at the summation point of n, as shown in
Figure 2.5. From this diagram we obtain the discrete loop of Figure 2.6.

�
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......... nnk+

+
F

�
?a a.......................

i i

b b

b- - - - -
?

-
?

?

�

?

+

Cd PH
− +

H

x

xk

uvk

d

yk
F

y

Figure 2.5: Sampled-data system with input disturbances.

We now define the discrete sensitivity and discrete complementary sensitivity
functions. Since the setup is multiple-input multiple output, there are two pairs of
functions corresponding to the scalar ones, depending where the loop is opened
Freudenberg and Looze [1988]. We shall require only the following input discrete
sensitivity function,

Sd(z) , [I+ Cd(z)(FPH)d(z))]
−1
, (2.10)

and output discrete complementary sensitivity function,

Td(z) , (FPH)d(z)Sd(z)Cd(z). (2.11)

These functions map signals in the discrete loop of Figure 2.6 as

Ũd(z) = Sd(z)Xd(z) and Yd(z) = Td(z)Nd(z),

where Ũd, Xd, Yd, andNd correspond to the Z-transforms of the signals ũx, xk, yk,
and nk, respectively.
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Figure 2.6: Discrete sensitivity functions.

2.2.2 Non-pathological Sampling and Internal Stability

As with the case of a ZOH, closed-loop stability is guaranteed by the assumptions
that sampling is non-pathological and that the discretized system is closed-loop
stable. The next result is a generalization of the well-known result of Kalman
et al. [1963] to the case of GSHFs.

Lemma 2.2.1 (Non-pathological Sampling, Middleton and Freudenberg [1995])
Suppose that P and F are as defined in Subsection 2.2.1 and assume further that

(i) if λi and λk are CRHP poles of P, then

λi 6= λk + jnωs, n = ±1,±2, · · · (2.12)

(ii) if λi is a CRHP pole of P, then H(s) has no zeros at s = λi.

Then the discretized plant (2.8) is free of unstable hidden modes. ◦

In particular, Lemma 2.2.1 says that since the response of a GSHF may have
zeros in C+, it may be necessary to require that none of these coincides with an
unstable pole of the analog plant (note that this is necessary in the SISO case). Un-
der the non-pathological sampling hypothesis, it is straightforward to extend the
exponential and L2 input-output stability results of Francis and Georgiou [1988]
and Chen and Francis [1991] to the case of GSHF.

Lemma 2.2.2
Suppose that P, F, Cd, and H are as defined in Subsections 2.1.2 and 2.2.1, that
the nonpathological sampling conditions (i) - (ii) are satisfied, that the product
(FPH)d Cd has no pole-zero cancelations in DC, and that all poles of Sd lie in
D. Then the feedback system in Figure 2.4 is exponentially stable and L2 input-
output stable.

Proof: The proof may be obtained by simple modification of the proofs of Fran-
cis and Georgiou [1988, Theorem 4] and Chen and Francis [1991, Theorem 6]. �

Lemma 2.2.2 establishes the conditions for the nominal stability of the sampled-
data system of Figure 2.4, and will be required in most of the remaining chapters.
In particular, this result guarantees that the operators mapping disturbances and
noise to the output are bounded on L2. This will be the starting point for the
analysis developed in Chapter 5.
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2.3 Summary

This chapter has introduced the main notation, definitions, and preliminary re-
sults that will be required in the rest of this thesis.





3
Generalized Sampled-data

Hold Functions

Generalized Sampled-data Hold Functions [e.g., Kabamba, 1987, Bai and Das-
gupta, 1990, Yan et al., 1994, Er et al., 1994] have been proposed as an approach
to several control problems that do not have answers with analog LTI, or tra-
ditional sampled-data settings based on the ZOH. GSHF-based control schemes
are sampled-data systems where the D-A conversion is performed using a special
waveform instead of the constant function generated by the ZOH (see Figure 3.1).
The choice of this waveform is an additional degree of freedom incorporated
to the design, and it seems to give a number of advantages over other control
schemes. For example, it has been recently shown that if there exist a solution to
the H∞ control problem for sampled-data systems, then this solution can be im-
plemented by a GSHF following a LTI discrete controller. [e.g., Sun et al., 1993].

However, serious robustness and sensitivity problems associated with the use
of GSHFs have been pointed out by some authors Feuer and Goodwin [1994],
Zhang and Zhang [1994] showing that many of the most impressive features of
GSHFs come along with quite undesirable “side-effects”. For example, Feuer and
Goodwin [1994] have shown that the arbitrary shaping of the sampled frequency
response of a system by means of a GSHF necessarily relies on the generation
of high frequency components in the continuous-time output. This exposes the
mechanism by which sensitivity and robustness properties of the system are com-
promised, since in practice high frequency uncertainty is very common.

Furthermore, as we shall see in Chapter 4, there are essential continuous-time
design limitations that are inherited by the sampled-data system, irrespective of
the particular discretization method employed. Particularly linked to these is-
sues are the frequency response and the zeros of the hold device. It turns out, for
example, that “non-minimum phase” holds, i.e., holds with zeros in C+, impose
extra limitations in the achievable continuous-time performance of the system.
These “non-minimum phase” zeros of the hold may also lead to poorly condi-
tioned discretized systems, as has been discussed by Middleton and Freudenberg
[1995] and Middleton and Xie [1995].

In this chapter, we study the frequency response and zero distribution of
GSHFs. The results obtained here allow us to go deeper into the understanding
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T

GSHF

ZOH

Figure 3.1: D-A conversion with ZOH and GSHF

of the design tradeoffs associated with the use of these devices. For example, one
of the key results of this chapter is that holds with “asymmetric” pulse response
will necessarily have zeros off the jω-axis, which may lead to the aforementioned
difficulties.

The organization of the chapter is as follows. In §3.1, we collect several prop-
erties of the frequency response of a GSHF. Among these properties are some
interesting relations between the frequency response of a generalized hold and
that of a ZOH. The distribution of zeros of GSHFs is the theme of §3.2. In §3.3, we
establish some connections between these zeros and the values of the frequency
response on the jω-axis. Finally, we provide some concluding remarks in §3.4.

3.1 Frequency Response of Generalized Sampled-data Holds

The most standard and simplest D-A converter in digital control implementations
is the ZOH. Given a discrete input sequence {uk}

∞
k=0, the ZOH is defined by

u(t) = uk, for kT ≤ t < (k+ 1)T.

In particular, the ZOH can be seen as a particular case of the GSHF defined in
(2.3) with the hold function

h(t) =

{
1 t ∈ [0, T)

0 otherwise

(see Figure 3.2).
The idea of a GSHF is to allow h to be some suitably chosen function instead

of just holding the discrete values constant during the sampling interval. In this
way a new degree of freedom is introduced in the sampled-data control design
problem, in addition to the choice of the discrete controller.

In this section we present some preliminary results concerning the frequency
response of a GSHF. In Subsections 3.1.1 and 3.1.2, we obtain some general prop-
erties of the frequency response of a GSHF, norms and reconstruction from bound-
ary values. These properties are intimately linked to the fact that GSHF frequency
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h(t)

T

Figure 3.2: Pulse response of a ZOH.

responses are entire functions, as we noted in Subsection 2.1.2. In Subsection 3.1.3
we introduce two important characterizations of GSHFs common in the litera-
ture, namely, GSHFs where h is the truncated pulse response of a dynamic sys-
tem, and GSHFs where h is a piecewise-constant function.

3.1.1 Norms and the Frequency Response of a GSHF

Let H be the frequency response of a GSHF defined by (2.4). Since h is of BV on
[0, T) by Assumption 1, then h is in L2(0, T), that is

‖h‖22 =

∫T
0

|h(t)|2 dt <∞.
A well-known result of Paley and Wiener [1934] says that the Laplace transform
of a square integrable function vanishing outside the interval (−T, T) is an entire
function of order 1 and type1 T . Moreover, since h actually vanishes outside [0, T),
the function H is uniformly bounded in the closed right half plane. Indeed, we
can easily check this from the following inequalities, which follow as a trivial
application of Cauchy-Schwarz Inequality.

|H(rejθ)|2 ≤

(∫T
0

|h(t)|2 dt

)(∫T
0

e−2rt cosθ dt

)

= ‖h‖22
(
1− e−2rT cosθ

2r cos θ

)
. (3.1)

Now, we can see from (3.1) that if the angle θ is on the interval [−π/2, π/2], then

|H(rejθ)| ≤
√
T ‖h‖2. (3.2)

In particular, (3.2) tells us that if the infinity norm, ‖H‖∞ = supω |H(jω)|, is
large, then the 2-norm,

‖H‖2 =

(∫∞
−∞ |H(jω)|2 dω

)1/2
,

1The order and type of an entire function quantify its growth properties, see Appendix B for a brief
description.
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will also be large, since by Parseval’s Formula ‖H‖2 =
√
2π ‖h‖2.

Another interesting connection between frequency and time domain values is
given by the following lemma [cf. Yamamoto and Araki, 1994, Lemma 3.3].

Lemma 3.1.1 (Parseval’s Equality for Holds)
For any real numberω and any H defined by (2.4),

1

T

∞∑
k=−∞ |H(jω+ jkωs)|

2 = ‖h‖22 (3.3)

Proof: Consider the function fω(t) = h(t) e−jωt, with support on the interval
[0, T). Its Fourier series representation is

fω(t) =

∞∑
k=−∞ ck e

jkωst, for t in [0, T)

where the Fourier coefficients are

ck =
1

T

∫T
0

fω(t) e−jkωst dt

=
1

T
H(jω+ jkωs) (3.4)

Hence, by Parseval’s Formula we have that

1

T

∫T
0

|fω(t)|2 dt =

∞∑
k=−∞ |ck|

2.

The result is then obtained by noting that |fω(t)| = |h(t)|, and replacing ck from
(3.4). �

An interpretation in terms of frequency aliasing can be given to the above result.
Suppose that H(0) 6= 0, i.e., the hold has non-zero DC-gain, and (without loss of
generality) assume thatH(0) = 1. If |H(jω)| has a large peak, say ‖H‖∞ � 1, then
from (3.2) and (3.3) follows that

∞∑
k=−∞ |H(jω+ jkωs)|

2 � 1. (3.5)

Hence, evaluation of (3.5) at small values ofω still gives a large sum, and so there
must be a significant number of other terms (k 6= 0) adding to |H(jω)| to give a
large 2-norm. Thus, a peak of |H(jω)| necessarily implies a lot of frequency “fold-
ing” going on. In particular, note that since HZOH has zeros at integer multiples
of the sampling frequency ωs, then the ZOH has the minimum L2-norm over all
the holds that satisfy H(0) = 1.

Yet a last property of GSHFs gives us the “gain” of the hold viewed as an
input-output operator. Let H denote the hold operator mapping `p to Lp, 1 ≤
p ≤ ∞, defined by (2.3). The lemma below is a generalization to GSHFs of a
result for the ZOH in Francis [1991].
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Lemma 3.1.2 (Input-output norm of a hold operator)
The hold operator H : `p → Lp is bounded and of norm ‖h‖p.

Proof: We prove this for p <∞; the case p =∞ follows similar steps. Let u be a
function in Lp, and v = {vk}

∞
k=−∞ a sequence in `p, such that u = Hv. Then,

‖u‖pp =

∫∞
−∞ |u(t)|p dt

=

∞∑
k=−∞

∫ (k+1)T

kT

|h(t− kT)vk|
p dt

=

(∫T
0

|h(t)|p dt

)( ∞∑
k=−∞ |vk|

p

)
= ‖h‖pp ‖v‖pp.

�

In particular, Lemma 3.1.2 tells us that the induced norm of the hold operator in
the case of bounded-input, bounded-output (BIBO) spaces (p = ∞) is precisely
‖h‖∞. Therefore, we see that a large value of ‖h‖∞ implies a “high gain” hold,
viewed as a BIBO device. Combining (3.2) with the fact that ‖h‖2 ≤

√
T ‖h‖∞,

we obtain
‖H‖∞ ≤ T ‖h‖∞.

So, we see that, for a given sampling rate, a large peak in |H(jω)| also implies a
large BIBO gain. Since the output of the hold is typically the input to the plant,
such large gain may introduce serious difficulties due to actuator saturations,
present in most real systems Gilbert [1992].

3.1.2 GSHF Frequency Responses from Boundary Values

Analytic functions can be reconstructed from their boundary values by means of
integral formulas like Poisson’s or Cauchy’s [e.g., Hoffman, 1962]. Not surpris-
ingly, since they are entire functions, GSHF frequency responses can be recov-
ered from similar relations. The interesting fact is that the frequency response of
a ZOH is involved in these reconstructions. In this subsection we present two
results on reconstruction from boundary values of the frequency response of a
GSHF.

Denote by HZOH the response of a ZOH,

HZOH(s) =
1− e−sT

s
.

The following lemma is a straightforward consequence of the Fourier representa-
tion of h [See also Feuer and Goodwin, 1996].
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Lemma 3.1.3 (Hold Response from Boundary Values: “Discrete” Version)
For any complex number s and any H defined by (2.4),

H(s) =
1

T

∞∑
k=−∞H(jkωs)HZOH(s− jkωs) (3.6)

Proof: Expand h into Fourier series,

h(t) =

∞∑
K=−∞ ck e

jkωst, where ck =
1

T

∫T
0

h(t) e−jkωst dt = H(jkωs). (3.7)

Then, the Laplace transform of (3.7) gives

H(s) =
1

T

∞∑
k=−∞H(jkωs)

1− e−sT

s− jkωs
,

completing the proof. �

Interestingly, there exists a — not so obvious — “continuous” version of the
above formula, arising from properties of Paley-Wiener spaces of entire functions
De Branges [1968].

Lemma 3.1.4 (Hold Response from Boundary Values: “Continuous” Version)
For any complex number s and any H defined by (2.4),

H(s) =
1

2π

∫∞
−∞H(jω)HZOH(s− jω)dω (3.8)

Proof: If f is a function that vanishes outside the interval [−T/2, T/2], and its
Laplace transform, F, is such that

∫∞
−∞ |F(jω)|2dω < ∞, then F is an entire func-

tion of type T/2 [De Branges, 1968, p. 45]. Moreover, for any complex number
s,

F(s) =

∫∞
−∞ F(jω)

sinh(jωT/2− sT/2)

π(jω− s)
dω. (3.9)

Applying (3.9) to the function H(s) e−sT/2 gives the result. �

3.1.3 Two Simple Classes of GSHFs

To further study properties of the frequency responses of GSHFs we need to de-
scribe them in greater detail. In this subsection we present two different classes
of GSHFs that are important for their simple mathematical description. These
holds have been suggested by different authors, and were studied in the present
formulation by Middleton and Freudenberg [1995].

The first class of GSHFs is characterized by a pulse response h generated as
the response of a finite dimensional linear time-invariant system truncated to
have support on the interval [0, T) (see Figure 3.3). This family covers, for ex-
ample, the type of GSHFs suggested by Kabamba [1987] to achieve simultaneous
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h(t)

T

Figure 3.3: Pulse response of a
FDLTI GSHF.

6

-

h(t)

T

Figure 3.4: Pulse response of a PC
GSHF.

stabilization of a finite number of continuous-time plants, decoupling, discrete
model matching, discrete simultaneous optimal noise rejection, and arbitrary
gain-margin improvement [See also Bai and Dasgupta, 1990, Liu et al., 1992, Had-
dad et al., 1994, Yang and Kabamba, 1994, Paraskevopoulos and Arvanitis, 1994].

Definition 3.1.1 (Finite Dimensional Linear Time-invariant GSHF)
Given suitably dimensioned matrices K, L and M, we define a finite dimensional
linear time-invariant GSHF (FDLTI GSHF) by the pulse response

h(t) = KeL(T−t)M, for t ∈ [0, T). (3.10)

�

FDLTI GSHFs have a simple and convenient model for analysis and design of
GSHF-based control systems. Yet, this model still seems an impractical scheme
for implementation.

The second class of GSHFs is characterized by a piecewise-constant pulse re-
sponse function h, typically with a regular partition ofN subintervals of the sam-
pling interval [0, T) (see Figure 3.4). Clearly [e.g. Yan et al., 1994], this type of
holds can arbitrarily approximate any GSHF of the form (3.10) by taking N suf-
ficiently large and, in addition, appears as a much more feasible alternative for
a practical implementation. Holds of this class have been suggested for discrete
loop transfer recovery, and arbitrary gain-margin improvement of continuous-
time non-minimum phase linear systems [Yan et al., 1994, Er et al., 1994, Er and
Anderson, 1994].

Definition 3.1.2 (Piecewise-constant GSHF)
A piecewise-constant GSHF (PC GSHF) is given by the following pulse response:

h(t) =


a0 if t ∈ [0, T/N),

a1 if t ∈ [T/N, 2T/N),

. . . . . .

aN−1 if t ∈ [(N− 1)T/N, T).

(3.11)

�
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The frequency response functions for FDLTI and PC GSHFs can be easily com-
puted from their definitions, and are given by the following lemmas taken from
Middleton and Freudenberg [1995].

Lemma 3.1.5 (Frequency Response Function of a FDLTI GSHF)
The frequency response function of a FDLTI GSHF defined by (3.10) is:

H(s) = K(sI+ L)−1(eLT − e−sT I)M. (3.12)

◦

Lemma 3.1.6 (Frequency Response Function of a PC GSHF)
The frequency response function of a PC GSHF defined by (3.11) is:

H(s) =
1− e−sT/N

s
Ad(e

−sT/N), (3.13)

where Ad(z) is the polynomial

Ad(z) ,
N−1∑
k=0

ak z
k. (3.14)

◦

In the rest of the chapter we shall assume that the following additional condi-
tion is satisfied by the pulse response h.

Assumption 4
The hold function h is non-zero almost everywhere in neighborhoods of t = 0

and t = T . ◦

This is a technical condition required only for simplicity of analysis; it may be
removed at the expense of more complexity in the notation. This assumption may
be interpreted as that the hold pulse response h has “effective” support on the
whole interval [0, T), e.g., no pure time-delays. This is clearly satisfied by FDLTI
GSHFs, as is easily seen from (3.12). For PC GSHFs Assumption 4 is equivalent
to a0 6= 0 6= aN−1.

3.2 Distribution of Zeros of GSHFs

Zeros of a hold response function have important connections with fundamental
properties of the sampled-data system. For example, Middleton and Freudenberg
[1995] have shown that these zeros have transmission blocking properties and
can also affect the stabilizability properties of the discretized system (cf. §2.2.2 in
Chapter 2). Furthermore, zeros of the hold in C+ impose design tradeoffs in the
achievable performance of the sampled-data system, as we shall see in Chapter 4.

This section focuses on the distribution of zeros of the hold frequency re-
sponse H. In Subsection 3.2.1 we describe the precise location and asymptotic
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distribution of the zeros of PC and FDLTI holds. Apart from the mentioned ef-
fects of “non-minimum phase” zeros on the system performance, it turns out —
and we shall see it in §3.3 — that all zeros compromise the shape of the hold
frequency response on the jω-axis. In Subsection 3.2.2, we derive a necessary
condition for these GSHFs to have frequency responses with all their zeros on
the jω-axis. We finish in Subsection 3.2.3 with an example that illustrates these
results.

3.2.1 Zeros of PC and FDLTI GSHFs

It is difficult to make general statements about the distribution of the zeros of a
GSHF. However, for important special cases, the locations and asymptotic distri-
bution of these zeros can be described precisely. The following lemma character-
izes exhaustively the zeros of PC holds, which are the GSHFs of greatest practical
significance.

Lemma 3.2.1 (Zeros of a Piecewise-constant GSHF)
Consider a GSHF given by (3.11) with associated frequency response function H
given by (3.13) and (3.14). Then the zeros of H are at

s = j`Nωs, where ` = ±1,±2, . . . , (3.15)

and
s = −

N

T
log ξi + jkNωs, with k = 0,±1,±2, . . . , (3.16)

where ξi, with i = 1, 2, . . . ,N, is any zero of Ad(z).

Proof: From Lemma 3.1.6, H can be written as (3.13). The zeros of

1− e−sT/N

s

are given by (3.15). It remains, therefore, to determine the zeros of Ad(e−sT/N),
which are given precisely by (3.16). The assumption that a0 6= 0 implies that
ξi 6= 0 for every i, and hence log ξi is defined. �

This result tells us that the zeros of a PC GSHF are essentially determined by
those of the polynomial Ad, and the sampling period.

Zeros of FDLTI holds are harder to determine, but we can say something in
particular cases. Consider a hold defined by (3.10), and suppose that h is not
identically zero. Letm and n be the smallest nonnegative integers such that

h(m)(0+) 6= 0 and h(n)(T−) 6= 0, (3.17)

where h(k) denotes the kth-derivative of h. We define

η ,
h(m)(0+)

h(n)(T−)
, (3.18)
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which, for the particular case of FDLTI GSHFs, equals

η =
K(−L)meLTM

K(−L)nM
.

Then we have the following result concerning the asymptotic locations of the
zeros of FDLTI GSHFs.

Lemma 3.2.2 (High Frequency Zeros of a FDLTI GSHF)
If H is the frequency response of a FDLTI GSHF, then it has an unbounded se-
quence of zeros {γ`}

∞̀
=1 “converging to infinity”. Furthermore, these zeros con-

verge to the roots of the equation η = e−φTφn−m. In particular, if n = m, the
zeros converge to the sequence defined by

φ` = −
1

T
logη+ j`ωs, ` = 0,±1,±2, . . . (3.19)

Proof: See §A.2 in Appendix A. �

A precise description of the zeros of a FDLTI hold is possible in a particular
case, as we see in the following lemma.

Lemma 3.2.3 (Zeros of a FDLTI GSHF (Special Case))
Consider a FDLTI GSHF, and suppose that KM 6= 0. Assume that L = λI, where
I is the identity matrix and λ is a scalar. Then the zeros of H are located precisely
at

γ` = −λ+ j`ωs, ` = ±1,±2, . . . (3.20)

Proof: Since KM 6= 0,H is not identically zero. The special structure of L implies
that

H(s) = KM
eλT − e−sT

s+ λ
,

and the result follows. �

Remark 3.2.1 (Approximation of the zeros of a FDLTI GSHF) Notice that since
a FDLTI GSHF will most probably be implemented as a PC GSHF, the additional
difficulty in characterizing zeros of FDLTI holds over PC holds is somehow de-
prived of practical significance2.

�

3.2.2 GSHFs with all Zeros on the jω-axis

A well-known property of a hybrid control system using a ZOH in conjunction
with a discrete integrator is the ability to asymptotically reject step disturbances.
This arises from the fact that the ZOH frequency response has zeros at multiples
of the sampling frequencyωs = 2π/T on the jω-axis,

HZOH(jkωs) = 0, for k = ±1,±2, . . . .
2See the example in Subsection 3.2.3.
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In addition, these zeros contribute to diminish high frequency components of
the plant response that are aliased down to low frequencies. This is particularly
important in sampled-data control applications, where the low-frequency range
is typically of great interest.

The response of a GSHF, on the other hand, need not have zeros at these fre-
quencies, and thus high frequency plant behavior (and uncertainty) may have
significant effect on the low-frequency range of the hybrid control system [cf.
Feuer and Goodwin, 1994]. To get a preliminary intuitive view of this, compare
for example the GSHF response with the response of a ZOH, plotted in Figure 3.5;
this GSHF is taken from Kabamba [1987, Example 2].

GSHF
ZOH 
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Figure 3.5: Frequency response of hold functions.

In addition, zeros ofH close to unstable open-loop poles of the plant may ren-
der an ill-conditioned discrete-time system Middleton and Freudenberg [1995],
Middleton and Xie [1995], due to an approximate pole-zero cancelation that tend
to violate the non-pathological sampling assumption of Lemma 2.2.1. Moreover,
as will become clear in §3.3, also zeros in C− compromise the frequency response
of the hold, depending on the specifications that this frequency response is re-
quired to meet.

An interesting question then arises from the above observations: What is the
class of GSHFs that, as the ZOH, have all their zeros on the jω-axis? The fol-
lowing proposition gives a necessary condition that the hold frequency response
must satisfy to have such a zero distribution.

Proposition 3.2.4
Let H be the frequency response function of a PC or a FDLTI GSHF; suppose that
h satisfy Assumption 4. Then if H has all its zeros on the jω-axis, either

H(s) = e−sT H(−s), (3.21)

or
H(s) = −e−sT H(−s). (3.22)
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Proof: Suppose that {jak} are the nonzero zeros of H repeated according to mul-
tiplicity, and thatH has a zero at z = 0 of order p ≥ 0 (p = 0means thatH(0) 6= 0).
Since H is an entire function of exponential type T , using the Hadamard Factor-
ization Theorem [e.g., Markushevich, 1965] we can represent it as

H(s) = speg0+g1s
∞∏
k=1

(
1−

s

jak

)
es/jak , (3.23)

where g0 and g1 are real numbers. Without lost of generality we may assume
g0 = 0 (since otherwise we considerH(s)e−g0), and since the zeros are symmetric
with respect to the real axis, (3.23) simplifies to

H(s) = speg1s
∞∏
`=1

(
1+

s2

a2`

)
, (3.24)

where now {a`} denote the zeros in the upper (or lower) half of the jω-axis.
As in Subsection 3.2.1 let m and n be the smallest integers such that (3.17)

holds. Notice that both h(m)(0+) and h(n)(T+) are nonzero finite numbers for PC
and FDLTI GSHFs with compact support on [0, T). Hence, the number η defined
in (3.18) is also nonzero and finite. Next we use the Initial Value Theorem [e.g.,
Zemanian, 1965] to compute h(n)(0+) from (3.24). Thus, for x real we have that

h(m)(0+) = lim
x→∞ xm+1H(x)

= lim
x→∞ xp+m+1eg1x

∞∏
k=1

(
1+

x2

a2`

)
. (3.25)

An analogous expression can be obtained for h(n)(T−) following similar steps
with H(−s)e−sT ,

h(n)(T−) = lim
x→∞(−x)n+1e−xTH(−x)

= lim
x→∞(−1)n+pxp+n+1e−(g1+T)x

∞∏
k=1

(
1+

x2

a2`

)
. (3.26)

Therefore, we can write from (3.25) and (3.26),

η =
h(m)(0+)

h(n)(T−)

= lim
x→∞(−1)n+pxm−ne(2g1+T)x. (3.27)

Since η is nonzero and finite, it necessarily follows from (3.27) that m = n and
g1 = −T/2. With this value of g1 in (3.24), it is easy to check that H verifies the
required conditions (3.21) or (3.22) (the sign depending on the order of the zero
at s = 0), completing the proof. �
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Notice in the proof above that the conditions m = n, and g1 = −T/2 imply
that η = (−1)n+p, which in turn, by Lemma 3.2.2, tells us that the zeros of H
approach asymptotically to the jω-axis as the distance from the origin increases.
We could say then that conditions (3.21) and (3.22) become also “sufficient” for
large values of s.

The fact that η = (−1)n+p also suggests that if H has all its zeros on the jω-
axis, then h has some kind of symmetry with respect to the middle point of the
interval [0, T). For example, if n = 1 and p = 0 say, then h(0+) = 0 = h(T−),
and the corresponding derivatives are mirrored, h ′(0+) = −h ′(T−). In fact, con-
ditions (3.21) and (3.22) are equivalent to “symmetry” of h, as we shall prove next.
Let us first make more precise what we mean by this.

Definition 3.2.1 (Symmetry of h)
We say that h has even (odd) symmetry if h(t) = h(T − t) (h(t) = −h(T − t)). We
say that h is symmetric if h has either even or odd symmetry. �

The following corollary to Proposition 3.2.4 establishes that holds with all
their zeros on the jω-axis are necessarily symmetric in the sense just defined.

Corollary 3.2.5
If H has all its zeros on the jω-axis, then h is symmetric. Moreover,

(i) ifH has none or an even number of zeros at s = 0, then h is even symmetric;

(ii) if H has an odd number of zeros at s = 0, then h is odd symmetric.

Proof: We prove only (i); the proof of (ii) is obtained in a similar way. We know
from Proposition 3.2.4 that if H has all its zeros on the jω-axis — and none or an
even number of them at s = 0, then condition (3.21) is satisfied. Write the Fourier
Series representation of h,

h(t) =

∞∑
k=−∞ ck e

jkωst, (3.28)

with

ck =
1

T

∫T
0

e−jkωst h(t)dt

=
H(jkωs)

T
.

We prove now that condition (3.21) is satisfied if and only if all ck — i.e.,H(jkωs)
— are real. Indeed, if ck is real for all k, then H(jkωs) = H(−jkωs), and using
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Lemma 3.1.3 we have that

H(s) =
1

T

∞∑
k=−∞H(jkωs)HZOH(s− jkωs)

=
1

T

∞∑
`=−∞H(j`ωs)HZOH(s+ j`ωs)

=
e−sT

T

∞∑
`=−∞H(j`ωs)HZOH(−s− j`ωs)

= e−sTH(−s).

The converse is immediate. Finally, (i) follows easily from noting that h has all
real Fourier coefficients if and only if it is even symmetric. �

This corollary provides an easy way of determining whether the hold fre-
quency responseHmay have zeros off the jω-axis by just examining the shape of
the hold function h; i.e., an asymmetric hwill necessary imply zeros in either C+

or C−.

Remark 3.2.2 (A Conjecture for a General GSHF) Strictly, we have proved these
results only for PC and FDLTI GSHFs; nevertheless, we could conjecture that they
hold for the general case. Indeed, notice that any admissible h can be arbitrarily
approximated by a piecewise-constant function hPC, and then the zeros of HPC
will approximate the zeros of H. Then, it is clear that if H has all its zeros on
the jω-axis, we can build a sequence of symmetric PC functions whose zeros will
approach to the jω-axis. Since the result holds for HPC, we can expect that, in the
limit, it will hold also for H. A rigorous proof seems difficult, though. �

3.2.3 Example: Zeros of a FDLTI GSHF

In this example we illustrate the previous results on zero locations of GSHFs. We
consider the FDLTI GSHF used in Kabamba [1987, Example 2] to simultaneously
stabilize two continuous-time systems that violate the appropriate parity inter-
lacing property (cf. Example 7.1.1). The matrices that define the hold function
with the characterization given by Definition 3.1.1 are

K =
[
1 0 0

]
, L =

1 1 0

2 0 1

0 0 0

 , M =

 87.5619

−616.4937
1322.6

 .
The sampling period is T = 1s, to which corresponds a sampling frequency

ωs = 2π. The hold function h is shown on the left in Figure 3.6.
As we can see in the figure, h is not symmetric, so we know by Corollary 3.2.5

that the corresponding frequency response H will have zeros off the jω-axis. In-
deed, this can be seen in Figure 3.7, where we have plotted a section of the func-
tion log |H| for s = x + jy, with −1.5 ≤ x ≤ 0.5 and −ωs/2 ≤ y ≤ 3ωs. The zeros
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Figure 3.6: Hold function h, and contour plot of H.
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Figure 3.7: Zeros of H.
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are indicated by the negative peaks on this surface; a contour plot is given on the
right in Figure 3.6.

Let us check the asymptotic behavior of the zeros ofH. Following the notation
of Lemma 3.2.2 we compute η from (3.18), which, for the values of K, L, and M
given is η = 1.4718, with n = 0 = m. Then, by Lemma 3.2.2 we know that there
is an infinite sequence of zeros that approach asymptotically to a sequence given
by (3.19), which for this case is

φ` = −0.3865+ j`ωs. (3.29)

This is can be anticipated already in Figure 3.6, where for reference we have
drawn a vertical line at x = −0.3865.

As we discussed in Remark 3.2.1, the zeros of a FDLTI GSHF can be ap-
proximated by the zeros of a PC GSHF, which are completely characterized in
Lemma 3.2.1. This is verified in Figures 3.8, 3.9, and 3.10, where we have de-
picted analogs to Figure 3.6 for PC approximations to hwith 4, 32, and 256 parti-
tions respectively. We can see there how the zeros approach to the locations given
in Figure 3.6 as the number of partitions is increased. Notice, however, that the
convergence is slow, particularly for those zeros on the real axis.

0 0.5 1
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

t

h(
t)

jy
/ω

s

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

3

x

Figure 3.8: PC approximation to h, N = 4.

3.3 Integral Relations

Integral relations quantifying inherent limitations in the achievable performance
of feedback control systems have been known for some time. Bode and Poisson
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Figure 3.9: PC approximation to h, N = 32.
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Figure 3.10: PC approximation to h, N = 256.
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integrals on the sensitivity and complementary sensitivity functions of continuous-
time systems have been used to describe design tradeoffs arising from the feed-
back structure, and the requirement of closed-loop stability Freudenberg and
Looze [1985]. Similar results have been also extended to discrete-time systems
Sung and Hara [1988], Middleton and Goodwin [1990]. In Chapter 4 we shall
study the case of sampled-data systems.

In this section, we present two types of integral relations for the frequency
response of a GSHF. These integrals translate the connection between growth
characteristics and the distribution of zeros into constraints that the magnitude
of the frequency response of the GSHF must satisfy on the jω-axis. We show how
zeros off the jω-axis impose tradeoffs over the values of the frequency response
of the hold at all frequencies. In contrast, a zero on the jω-axis only imposes a
constraint at one point (namely, the frequency response is zero at that frequency).

3.3.1 Poisson Integral for GSHFs

Let H be the frequency response function of a GSHF defined by (2.4). Recall the
definition of the Poisson kernel for the half plane, [e.g., Freudenberg and Looze,
1988]. Let s = x + jy, s in C, and let ω be a real number. We define the Poisson
kernel for the half plane, Ψ(s,ω), by

Ψ(s,ω) ,
x

x2 + (ω− y)2
+

x

x2 + (ω+ y)2
. (3.30)

The following proposition presents a Poisson integral relation for the function
1−H.

Proposition 3.3.1 (Poisson integral for 1−H)
Let ξ = x+ jy be a zero of H. Then

(i) if x > 0, ∫∞
0

log |1−H(jω)|Ψ(ξ,ω)dω ≥ 0; (3.31)

(ii) if x < 0, ∫∞
0

log |1−H(jω) ejωT |Ψ(−ξ,ω)dω ≥ 0. (3.32)

Proof: We prove only (3.31); (3.32) is obtained in a similar way. Consider the
function F = 1−H. Since H is entire, so is F, and therefore, we may factorize it as

F = F̃ B,

where F̃ is an entire function without zeros in C+, and B is the Blaschke product
of the sequence of zeros of F, {φk}

Nφ
k=1 (with Nφ possibly infinite), in C+,

B =

Nφ∏
k=1

φk − s

φk + s
.



3.3 Integral Relations 41

Note that log F̃ is analytic in C+, and furthermore, it satisfies the conditions for
a Poisson Integral representation Freudenberg and Looze [1988]. Hence, we can
write, ∫∞

0

log |F̃(jω)|Ψ(s,ω)dω = π log |F̃(s)|

= π log |F(s)| − π log |B(s)|. (3.33)

Evaluating (3.33) at a zero of H in C+, and noting that |F̃(jω)| = |F(jω)| and
− log |B(s)| ≥ 0 for each s in C+, we get inequality (3.31), completing the proof.
Inequality (3.32) is obtained similarly by starting with the function F(s) = 1 −
H(−s) e−sT . �

It follows from (3.31) and (3.32) that zeros of the hold off the jω-axis impose
design tradeoffs on its frequency response. More specifically, if we require that
|H(jω)| be close to 1 over some range of frequencies, |H(jω)| will necessarily show
a peak somewhere else. The extent of this difficulty is linked to the relative lo-
cation of these zeros, and depends on the specifications that the hold frequency
response is required to satisfy on the low-frequency range, as we see next.

Consider an interval of low frequencies Ω = [0,ωb], where ωb ≤ ωs/2, and
suppose that we require the hold response H(jω) to be close to 1 over this inter-
val. The interval Ω may be interpreted as the closed-loop bandwidth of a hybrid
feedback system with hold H. Asking H(jω) not too large on Ω is a reasonable
specification in practice, since a “high gain” hold may bring in difficulties with
actuator saturations (cf. Lemma 3.1.2 and the discussion following). We state this
requirement as

|1−H(jω)| < α, forω inΩ = [0,ωb], (3.34)

where α is a small positive number.
Assume that H has a zero ξ = x + jy in either C+ or C−. Let Θ(ξ,Ω) denote

the weighted length of the intervalΩwith the Poisson kernel for the half plane,

Θ(ξ,Ω) ,
∫ωb
0

Ψ(ξ,ω)dω, (3.35)

It is not difficult to check that

Θ(ξ,Ω) = arctan
(
ωb − y

x

)
+ arctan

(
ωb + y

x

)
.

As discussed in Freudenberg and Looze [1985] and Freudenberg and Looze [1988],
the weighted length Θ(ξ,Ω) may also be interpreted as a phase lag introduced
by the term of a Blaschke product corresponding to the zero ξ over Ω; e.g., if ξ is
real, then

Θ(ξ,Ω) = −^
ξ− jωs

ξ+ jωs
; (3.36)
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i.e., the weighted length of the interval Ω equals the negative of the phase lag
contributed by the Blaschke product (ξ− s)/(ξ+ s) at the upper end point of the
interval.

The following result is a straightforward consequence of Proposition 3.3.1.

Corollary 3.3.2
Suppose that |H(jω)| satisfies (3.34). Then, if ξ = x+ jy is a zero of H, with x 6= 0,

(i) if x > 0,

sup
ω>ωb

|H(jω)| ≥
(
1

α

)MΩ(ξ)

− 1, (3.37)

(ii) if x < 0,

sup
ω>ωb

|H(jω)| ≥
(
1

α

)MΩ(−ξ)

− 1, (3.38)

where

MΩ(ξ) =
Θ(ξ,Ω)

π−Θ(ξ,Ω)

◦

Note from (3.37) and (3.38), that the effect of zeros in C− is as detrimental
as the effect of zeros in C+. To illustrate these bounds, suppose that we wish
to design a hold satisfying specification (3.34), and that due to the type of hold
chosen, there will be a real zero ξ = x. It follows that if the hold response has
zeros off the jω-axis, and we require |H(jω)| very close to 1 on Ω, then |H(jω)|
will necessarily have a large peak at higher frequencies. The tradeoff relaxes as
the zero tends to be located at relatively high frequencies. By contrast, if the zero
gets closer to the jω-axis, the constraint worsen. In the limit, when the zero is on
the jω-axis, then the Poisson integrals (3.31) and (3.32) collapse into an algebraic
constraint3: 0 ≤ log |1 − H(ξ)| = 0. Figure 3.11 shows plots of the bounds (3.37)
and (3.38) vs. the location of the zero inΩ for different values of the specification
α.

3.3.2 Middleton Integral for GSHFs

Another integral relation that evidences the penalties imposed by zeros and poles
of an analytic function over its values on the jω-axis has been proposed by Mid-
dleton and Goodwin [1990, Corollary 13.4.1]. This integral relation can be used
to quantify the effect of zeros off the jω-axis of the frequency response of holds
with H(0) 6= 0. In contrast with the previous integral relation, here we obtain a
single integral for both cases of zeros in C− and C+.

Denote by {λk}
Nλ
k=1 and {ρk}

Nρ
k=1 the sequence of zeros of H, counted with mul-

tiplicities, in C− and C+, respectively. Typically, Nλ + Nρ = ∞. Without lost of
generality, we also assume H(0) = 1. Then, we have the following result.

3For which the specification (3.34) becomes incompatible unless α ≥ 1.
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Figure 3.11: Lower bound (3.37) (or (3.38)) for a real zero.

Proposition 3.3.3 (Middleton Integral for H)

∫∞
0

log |H(jω)|

ω2
dω =

π

4

−T − 2

Nλ∑
k=1

1

λk
+ 2

Nρ∑
k=1

1

ρk

 . (3.39)

Proof: Factorize H as H = H̃ Bρ, where Bρ is the Blaschke product of the zeros
of H in C+,

Bρ(s) =

Nρ∏
k=1

ρk − s

ρk + s
.

From similar arguments to those in the proof of Proposition 3.3.1, we obtain the
following Poisson Integral relation, which we evaluate at a real s = x, x > 0,∫∞

0

log |H(jω)|
2x

x2 +ω2
dω = π log |H(x)| − π log |Bρ(x)|. (3.40)

Dividing both sides of (3.40) by x, and taking the limit when x→ 0 yields4.

2

∫∞
0

log |H(jω)|

ω2
dω = lim

x→0π
log |H(x)|

x
− lim
x→0π

log |Bρ(x)|

x
. (3.41)

The application of L’Hopital’s rule to the limits on the RHS of (3.41), our assump-
tionH(0) = 1, and the fact that zeros ofHmust occur in complex conjugate pairs,
yield

2

∫∞
0

log |H(jω)|

ω2
dω =

dH(s)

ds

∣∣∣∣
s=0

+ 2

Nρ∑
k=1

1

ρk
. (3.42)

4The interchange between limit and integration on the LHS is valid by the Lebesgue Dominated
Convergence Theorem Riesz and Sz.-Nagy [1990]
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From analogous arguments applied to H(−s)e−sT , and noting that |H(jω)| =
|H(−jω)|, we obtain an integral relation for the zeros of H in C−,

2

∫∞
0

log |H(jω)|

ω2
dω = −T −

dH(s)

ds

∣∣∣∣
s=0

− 2

Nλ∑
k=1

1

λk
. (3.43)

Finally, adding term-to-term (3.42) and (3.43) yields (3.39), completing the proof.
�

In the particular case of a PC hold, the location of zeros is well determined, and
therefore, we obtain a more specific result. As it follows from Lemma 3.2.1, zeros
off the jω-axis for a PC hold are determined by the zeros of the discrete polyno-
mial Ad(z). Denote by {φk}

Nφ
k=1 and {ψk}

Nψ
k=1 the set of zeros of Ad(z) inside and

outside the unit circle, respectively (note that there is a finite number of them,
Nψ +Nφ ≤ N). The following corollary states the analog to Proposition 3.3.3 for
PC holds.

Corollary 3.3.4 (Middleton Integral for PC GSHFs)

∫∞
0

log |H(jω)|

ω2
dω =

πT

4

 1

N

Nψ∑
k=1

ψk + 1

1−ψk
+
1

N

Nφ∑
k=1

φk + 1

φk − 1
− 1

 . (3.44)

Proof: From Lemma 3.2.1 we have that zeros of H in C+ are

ρk,i = −
N

T
logφi + jkNωs, with i = 1, . . . ,Nφ and k = 0,±1,±2 . . . (3.45)

and zeros in C− are

λk,i = −
N

T
logψi + jkNωs, with i = 1, . . . ,Nψ and k = 0,±1,±2 . . . , (3.46)

From (3.45) and (3.46), and using the identity [Rudin, 1987, p. 195]

e2πx + 1

e2πx − 1
=
1

π

∞∑
k=−∞

x

x2 + k2
,

in the form
e2πα/β + 1

e2πα/β − 1
=
β

π

∞∑
k=−∞

1

α+ jkβ
,

we obtain the following closed forms for the series on the RHS of (3.39),

Nφ∑
i=1

∞∑
k=−∞

1

λk,i
=

T

2N

Nφ∑
i=1

φk + 1

φk − 1
,

and
Nψ∑
i=1

∞∑
k=−∞

1

ρk,i
=

T

2N

Nψ∑
i=1

ψk + 1

ψk − 1
.

Replacing these in (3.39) yields (3.44), concluding the proof. �
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Proposition 3.3.3 and Corollary 3.3.4 show that if |H(jω)| < 1 over some fre-
quency range, then it must necessarily be greater than one at other frequencies.
This tradeoff is minimized if H has all its zeros on the jω-axis, and can only
worsen if there are zeros off the jω-axis. Indeed, notice on the RHSs of (3.39)
and (3.44) that the terms due to zeros off the jω-axis are always positive. In par-
ticular, the RHSs of (3.39) and (3.44) can get arbitrarily large with real zeros of H
approaching s = 0.

Remark 3.3.1 (Middleton Integral and Zero Density) There is an interesting con-
nection between this integral relation and the results of §3.2. Let {ak} denote the
infinite sequence of zeros of H repeated according multiplicity. If n(r) denotes
the number of zeros of moduli not exceeding r, i.e., the number of ak such that
|ak| < r, with r real positive, we define the density of zeros δ as

δ , lim
r→∞ n(r)

r
.

The following is a well-known result for entire functions of exponential type.

Proposition 3.3.5 (Boas [1954, Theorem 8.2.1])
IfH is an entire function of exponential type with all its zeros on the jω-axis, then
the following two conditions

lim
R→∞

∫R
−R

|H(jω)|

ω2
dω = −π2B, (3.47)

and

lim
r→∞ n(r)

r
= 2B (3.48)

are equivalent. ◦

If we consider the integral relation (3.39) for a GSHF without zeros off the
jω-axis, we obtain ∫∞

0

log |H(jω)|

ω2
dω = −

πT

4
. (3.49)

Since |H(jω)| = |H(−jω)| we can change the interval of integration on the LHS of
(3.49) to (−∞,∞) by multiplying by 2 its RHS. Then, according to (3.47) we have
that B = ω−1

s , and therefore by Proposition 3.3.5 the density of zeros of H is

δ = 2/ωs.

From this we can deduce that the number of zeros ofH in a ball of radius r = kωs
is approximately 2k when k is large, in agreement with our previous result of
Lemma 3.2.2. �



46 3. Generalized Sampled-data Hold Functions

3.3.3 Example: Tradeoffs in H(jω)

To illustrate the above results, we take an example from Er and Anderson [1994],
where a PC hold of two steps is used to achieve discrete-time perfect loop transfer
recovery of a non-minimum phase continuous plant. The zero-placement capa-
bilities of GSHFs are used in their algorithm. The PC hold obtained for a sampling
time T = 0.04s, is the following:

h(t) =

{
−1957 for 0 ≤ t < 0.02
1707 for 0.02 ≤ t < 0.04

(3.50)

From Lemma 3.2.1 we see that there is an infinite sequence of zeros at

s = −6.8338+ jkωs, k = 0,±1,±2, . . . ,

withωs = 157.0796. Figure 3.12 shows the normalized magnitude ofH(jω) (such
that H(0) = 1), compared to that of a ZOH. We can see that the frequency re-
sponse of this GSHF displays large peaks both within and outside the Nyquist
range of frequencies, peaks that will tend to amplify potential plant uncertain-
ties and disturbances at those frequencies. The magnitude of these peaks may
be estimated by considering the bound (3.38). In this case, the bandwidth of the
closed loop system is given [from Er and Anderson, 1994] byωb = 15.3rad/s, so
we have that the ratio x/ωb = 0.44. This value in Figure 3.11 gives an indication
of the peak expected in |H(jω)| when we require that the specification (3.34) be
satisfied on the interval [0,ωb]. �
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Figure 3.12: GSHF frequency response.

3.4 Summary

In this chapter, we have analyzed the frequency response and zero locations of
non-traditional D-A devices known as GSHFs. We have presented general prop-
erties and results concerning norms and boundary values arising from the fact
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that the frequency response of a GSHF is an entire function. In particular, we
have shown that a frequency response with a large infinity-norm implies a hold
device with large BIBO gain, which may bring in implementation difficulties in
conjunction with the presence of plant input saturation.

Differently to the ZOH, GSHFs may have zeros off the jω-axis, which — as we
shall see in detail in the following chapter — may seriously damage sensitivity
and robustness properties of the hybrid system. For two important classes of
GSHFs, we have obtained exact and asymptotic characterizations of their zero
locations in function of the hold response data. A key result of this chapter shows
that if the hold has all its zeros on the jω-axis, then necessarily its pulse response
function has to meet certain condition of symmetry on its interval of definition.

In addition, we have derived integral relations displaying the connections be-
tween zero locations and the frequency response of the hold. Our results indicate
there exist design tradeoffs that may imply frequency responses with relatively
large values at high frequencies. This again, may be detriment on the sensitivity
and robustness characteristics of the hybrid system, since these large values will
amplify the effects of high frequency plant behavior and uncertainty on lower
frequencies.





4
Frequency Response and
Performance Limitations

In this chapter we develop a theory of inherent design limitations for sampled-
data feedback systems wherein we consider full intersample behavior.

As pointed out in Chapter 1, a well-developed theory of design limitations is
available for LTI feedback systems, both in continuous and discrete-time cases.
Yet, this theory is insufficient to deal with hybrid systems, since they are periodi-
cally time-varying due to the action of the sampler. As explained in textbooks on
sampled-data control, this fact implies that one cannot use transfer functions to
describe system input-output properties1. However, it is possible to calculate the
Laplace transform of the response of a hybrid system to a particular input, and
hence one may evaluate the steady-state response of a stable hybrid system to a
sinusoidal input of given frequency. For analog systems, the response to such an
input is a sinusoid of the same frequency as the input, but with amplitude and
phase modified according to the transfer function of the system evaluated at the
input frequency. The response of a stable hybrid system to an input signal, on
the other hand, consists of a sum of infinitely many sinusoids spaced at integer
multiples of the sampling frequency away from the frequency of the input. We
shall refer to that component with the same frequency as the input as the funda-
mental, and the other components as the harmonics2. Each of these components is
governed by a frequency-response function with many properties similar to those of
a transfer function. In particular, the response functions have sufficient structure
to allow complex analysis to be applied to derive a set of formulas analogous to
the Bode and Poisson integrals. As in the continuous-time case, these integrals
describe tradeoffs between system properties in different frequency ranges.

Frequency response properties of hybrid systems have been discussed in sev-
eral recent papers [e.g., Thompson et al., 1983, 1986, Leung et al., 1991, Araki
and Ito, 1993, Araki et al., 1993, Yamamoto and Khargonekar, 1993, Goodwin and

1An interesting notion of transfer function defined using lifting techniques is developed in Ya-
mamoto and Araki [1994], and Yamamoto and Khargonekar 1993, 1996.

2In fact, the fundamental corresponds to the first harmonic. Our denomination is motivated by
the fact that the first harmonic will be predominant in most applications, since the anti-aliasing filter
should be designed to suppress higher frequency components.
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Salgado, 1994, Feuer and Goodwin, 1994, Yamamoto and Araki, 1994]. The fre-
quency response of periodic analog feedback systems was treated in Wereley and
Hall [1990]. Particularly related to our setting are the works of Goodwin and
Salgado [1994], Araki and Ito [1993], and Araki et al. [1993]. Goodwin and Sal-
gado first introduced the idea of sensitivity functions to describe the fundamental
response of a sampled-data system, and so give insights into the analysis of its in-
tersample behavior. A frequency-domain framework to analyze both the funda-
mental and the harmonics, was communicated in Araki and Ito [1993] and Araki
et al. [1993]. This framework introduced the concept of FR-operators, which are
a hybrid system counterpart of transfer functions, and emphasized on the study
of the sensitivity and complementary sensitivity operators. In this chapter, we
develop similar methods to analyze fundamental properties of the frequency re-
sponse of a sampled-data system.

The chapter is organized as follows. In §4.1 we define the hybrid fundamental
sensitivity, fundamental complementary sensitivity, and the harmonic response
functions. These functions have many common properties with transfer func-
tions and govern the steady-state response of the hybrid system to sinusoidal
disturbance and noise inputs. Using these functions we discuss the use of high-
gain feedback, and describe differential sensitivity properties of the sampled-data
system. §4.2 is devoted to a catalogue of interpolation constraints for these hy-
brid functions. As with their analog counterparts, the values of these functions
at points in the ORHP is constrained by poles, zeros, and time delays in the plant
and controller. Unlike the analog case, the constraints imposed by the compen-
sator manifest themselves differently than do those imposed by the plant, and
this fact leads to interesting design interpretations. Some of this interpretations
are given in §4.3 in terms of steady-state disturbance rejection properties of the
hybrid system. In §4.4, these interpolation constraints are used to derive gen-
eralizations of the Bode and Poisson integrals to the hybrid response functions.
Design implications of these integrals are discussed in detail. Of particular inter-
est is the fact that non-minimum phase zeros of the analog plant impose inherent
tradeoffs upon the values of the fundamental sensitivity function on the jω-axis.
Non-minimum phase zeros of the discretized plant, on the other hand, do not. A
summary discussion of the costs and benefits of sampled-data feedback is given
in §4.5.

4.1 Frequency Response of a Sampled-data System

The steady-state response of a stable hybrid feedback system to a complex sinu-
soidal input consists of a fundamental component at the frequency of the input
as well as additional harmonics located at integer multiples of the sampling fre-
quency away from the fundamental. This well-known fact is discussed in text-
books [cf. Åström and Wittenmark, 1990, Franklin et al., 1990], and has been
emphasized in several recent research papers3 Araki and Ito [1993], Araki et al.

3Similar results for systems with periodically time-varying analog controllers were derived by
Wereley and Hall [1990].
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[1993], Goodwin and Salgado [1994], Yamamoto and Araki [1994], Feuer and
Goodwin [1994].

We now present expressions for the response of y in Figure 2.4 to disturbances
and noise. Analogous expressions may be stated for the response to the refer-
ence input, and for the response of the control u to these signals. When evalu-
ated along the jω-axis, the following expressions are identical to those derived in
Goodwin and Salgado [1994, Theorem 2.1] using Fourier transform techniques.

Recall the notation introduced in (2.9) on page 19, i.e., we write Fk(s) to rep-
resent F(s+ jkωs), for k = 0,±1,±2, . . .

Lemma 4.1.1
Denote the responses of y to each of d and n by yd and yn respectively. Then the
Laplace transforms of these signals are given by

Yd(s) =

[
I−

1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) F(s)

]
D(s)

−

∞∑
k=−∞
k 6=0

[
1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) Fk(s)

]
Dk(s),

(4.1)

and

Yn(s) = −

[
1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) F(s)

]
N(s)

−

∞∑
k=−∞
k6=0

[
1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) Fk(s)

]
Nk(s).

(4.2)

Proof: These formulas may be derived using standard techniques from sampled-
data control theory [e.g., Franklin et al., 1990, Åström and Wittenmark, 1990]. We
present only a derivation of (4.2). Assume that r and d are zero. Block diagram
algebra in Figure 2.4 and Lemma 2.1.1 yield

Yn(s) = P(s)H(s)Ud(e
sT ) (4.3)

and
Ud(z) = −Sd(z)Cd(z)Vd(z). (4.4)

The sampled output of the antialiasing filter can be written as

Vd(z) = Z{ST {L
−1{V(s)}}}

= Z{ST {L
−1{F(s)N(s)}}}.

The assumptions that F is strictly proper and that n satisfies Assumption 2 allow
Corollary 2.1.3 to be applied, yielding

V(esT ) =
1

T

∞∑
k=−∞ Fk(s)Nk(s). (4.5)

Substituting (4.4) - (4.5) into (4.3) and rearranging yields the desired result. �
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If the feedback system is stable, then the preceding formulas may be used
to derive the steady-state response of the system to a periodic input. As noted
above, the response will be equal to the sum of infinitely many harmonics of
the input frequency. The magnitude of each component is governed by a func-
tion analogous to the usual sensitivity or complementary sensitivity function for
FDLTI systems.

Definition 4.1.1 (Hybrid Sensitivity Functions)
We define the fundamental sensitivity and complementary sensitivity functions by

S0(s) , I−
1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) F(s) (4.6)

and
T0(s) ,

1

T
P(s)H(s)Sd(e

sT )Cd(e
sT ) F(s) (4.7)

respectively. For k 6= 0 define the k-th harmonic response function by

Tk(s) ,
1

T
Pk(s)Hk(s)Sd(e

sT )Cd(e
sT ) F(s) (4.8)

�

These hybrid response functions are not transfer functions in the usual sense,
because they do not equal the ratio of the transforms of output to input signals.
Moreover, note that they are not even rational functions, since their definition in-
volves functions of the variable esT , likeH(s), Cd(esT ), and Sd(esT ). However, as
the following result shows, these functions do govern the steady-state frequency
response of the sampled-data system. We note that (4.6) and (4.7) are identical
to the disturbance and reference gain functions defined in Goodwin and Salgado
[1994].

From now and for the rest of this chapter, we confine our analysis to the case
of a SISO system.

Lemma 4.1.2 (Steady-State Frequency Response)
Suppose that the hypotheses of Lemma 2.2.2 are satisfied and assume that d(t) =

ejωt, t ≥ 0, and n(t) = ejωt, t ≥ 0. Then as t→∞, we have that

yd(t)→ ydss(t) and yn(t)→ ynss(t),

where

ydss(t) = S0(jω)ejωt −

∞∑
k=−∞
k6=0

Tk(jω)ej(ω+kωs)t, (4.9)

and

ynss(t) = −T0(jω)ejωt −

∞∑
k=−∞
k6=0

Tk(jω)ej(ω+kωs)t. (4.10)
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Proof: The proof is a straightforward but tedious contour integration, so it is
deferred to Subsection A.3.1 of Appendix A. �

Note that the fundamental component of the disturbance response can poten-
tially be reduced through use of feedback. The fundamental component of the
noise response, on the other hand, is only increased by using feedback. These
facts are analogous to the continuous-time case. Two other properties of (4.9)-
(4.10) are unique to hybrid systems. First is the presence of harmonics at frequen-
cies other than that of the input. The existence of these harmonics is due to the
use of sampled-data feedback, and is a cost of feedback having no counterpart
for analog systems. A second difference between analog and hybrid feedback
systems is a limitation upon the ability of high-gain feedback to reduce the mag-
nitude of the fundamental component of the disturbance response4.

Lemma 4.1.3 (High Compensator Gain)
Assume that (FPH)d(e

jωT ) 6= 0. Then, in the limit as |Cd(e
jωT )| → ∞, we have

that S0(jω)→ SHG(jω), where

SHG(s) , 1−
F(s)P(s)H(s)

T(FPH)d(esT )
(4.11)

and
Sd(e

jωT )→ 0. (4.12)

Furthermore, the steady-state responses of the system output and the sampler
input to a disturbance d(t) = ejωt, t ≥ 0, satisfy

ydss(kT) =

[
1−

F(jω)
∑∞
n=−∞ Pn(jω)Hn(jω)

T(FPH)d(ejωT )

]
ejωkT (4.13)

and
vdss(kT) = 0. (4.14)

Proof: The formula (4.11) follows from (2.9) and the proof of Theorem 4.2.1 (vii).
The limit (4.12) is obvious. Equation (4.13) follows by setting t = kT in (4.9).
Finally, (4.14) follows by first showing that

vdss(t) = F(jω)S0(jω) ejωT −

∞∑
k=−∞
k6=0

T0(j(ω+ kωs))F(j(ω+ kωs))e
j(ω+kωs)t

yielding
vdss(kT) = Sd(e

jωT )F(jω)ejωkT . (4.15)

Together (4.12) and (4.15) yield (4.14). �

4By contrast, recall that the disturbance response of an analog system can be made arbitrarily small
at a given frequency provided that the plant gain is nonzero there.
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It follows from (4.11) that use of high gain in the digital controller does not in
general diminish the fundamental component of the disturbance response arbi-
trarily closely to zero5. For a disturbance lying in the Nyquist range, the obstruc-
tion to doing so is precisely the fact that the discrete frequency response depends
upon the high frequency behavior of the plant, prefilter, and hold. It is true, of
course, that the response of the sampler input may be reduced to zero at the sam-
pling instants (cf. (4.14)). On the other hand, the sampled steady-state output due
to a disturbance in the Nyquist range will be nonzero unless F is an ideal low pass
filter, i.e., F(jω) = 1, for allω ∈ ΩN, and F(jω) = 0 otherwise.

The fundamental sensitivity and complementary sensitivity functions, together
with the harmonic response functions, may be also used to describe differential
sensitivity properties of a hybrid feedback system. It is well-known Bode [1945],
that the sensitivity function of a continuous-time feedback system governs the
relative change in the command response of the system with respect to small
changes in the plant. Derivations similar to those of Lemma 4.1.2 show that the
steady-state response of the system in Figure 2.4 to a command input r(t) = ejωt,
t ≥ 0, is given by

yrss(t) = T0(jω)ejωt −

∞∑
k=−∞
k6=0

Tk(jω)ej(ω+kωs)t. (4.16)

Since T0(jω) depends upon Sd(ejωT ), it follows from (2.8) that the fundamen-
tal component of the command response at a particular frequency is sensitive to
variations in the plant response at infinitely many frequencies.

Lemma 4.1.4 (Differential Sensitivity)
At each frequency ω, the relative sensitivity of the steady state command re-
sponse (4.16) to variations in P(j(ω+ `ωs)) is given by

(i) For ` = 0,
P(jω)

T0(jω)

∂T0(jω)

∂P(jω)
= S0(jω). (4.17)

(ii) For all ` 6= 0,
P`(jω)

T0(jω)

∂T0(jω)

∂P`(jω)
= −T0(j(ω+ `ωs)) (4.18)

Proof: The proof is a straightforward calculation, keeping in mind the depen-
dence of Sd(ejωT ) upon P(s+ j`ωs). �

These results may best be interpreted by considering frequencies in the Nyquist
range. Fixω ∈ ΩN. Then (4.17) states that the sensitivity of the fundamental com-
ponent of the command response to small variations in the plant at that frequency
is governed by the fundamental sensitivity function and hence may potentially

5However, see the remarks following Theorem 4.2.1 concerning the ZOH and use of integrators in
Cd.



4.2 Interpolation Constraints 55

be reduced through use of feedback6. On the other hand, (4.18) states that the
sensitivity of the fundamental component to higher frequency plant variations is
governed by the fundamental complementary sensitivity function evaluated at
the higher frequency, and thus cannot be reduced through the use of feedback.
Further note that since

T0(j(ω+ `ωs)) =
1

T
P(s+ j`ωs)H(s+ j`ωs)F(s+ j`ωs)Cd(e

jωT )Sd(e
jωT ),

the sensitivity of the command response at a frequency in the Nyquist range to
higher frequency plant variations is proportional to the gain of the hold frequency
response at the higher frequency, thus suggesting that the hold response should
not be excessively large at high frequencies7.

4.2 Interpolation Constraints

It is well known that the sensitivity and complementary sensitivity functions of
a stable, continuous-time feedback system must satisfy certain interpolation con-
straints at the CRHP poles and zeros of the plant and compensator. Specifically,
the sensitivity function must equal zero at the CRHP poles, and the complemen-
tary sensitivity function must equal zero at the CRHP zeros.

As shown by Freudenberg and Looze [1985], these constraints may be used
in conjunction with the Poisson integral to describe frequency dependent design
tradeoffs. An entirely analogous set of interpolation constraints and design trade-
offs applies to the discrete-time part of a hybrid feedback system Sung and Hara
[1988], Mohtadi [1990], Middleton [1991], Middleton and Goodwin [1990].

In this section we present a set of interpolation constraints that must be satis-
fied by the hybrid sensitivity functions defined in (4.6)-(4.8). Hybrid sensitivity
responses have fixed values on C+ that are determined by the open-loop zeros
and poles of the plant, hold response, and digital compensator. As we shall see
later, a significant difference between the hybrid case and the continuous-time
only or discrete-time only cases is that the poles and zeros of the compensator
yield different constraints than do those of the plant. The following theorem de-
scribe these interpolation relations for the fundamental sensitivity and comple-
mentary sensitivity functions.

Theorem 4.2.1 (Interpolation Constraints for S0 and T0)
Assume that P, F,H and Cd satisfy all conditions stated in Chapter 2 and that the
hybrid feedback system of Figure 2.4 is stable. Then the following conditions are
satisfied:

(i) S0 and T0 have no poles in C+.

6See the comments following Lemma 4.1.2.
7See also the preliminary remarks in Subsection 3.2.2, Chapter 3.
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(ii) Let p ∈ C+ be a pole of P. Then

S0(p) = 0,

T0(p) = 1.
(4.19)

(iii) Let ζ ∈ C+ be a zero of P. Then

S0(ζ) = 1,

T0(ζ) = 0.
(4.20)

(iv) Let γ ∈ C+ be a zero of H. Then

S0(γ) = 1,

T0(γ) = 0.

(v) Let a ∈ DC be a zero of Cd. Define

am ,
1

T
log(a) + jmωs, m = 0,±1,±2, · · ·

Then

S0(am) = 1,

T0(am) = 0.

(vi) Let p ∈ C+ be a pole of P. Define

pm , p+ jmωs, m = ±1,±2, · · ·

Then

S0(pm) = 1,

T0(pm) = 0.
(4.21)

(vii) T0 has no CRHP zeros other than those given by (iii) - (vi) above.

(viii) Let b ∈ DC be a pole of Cd. Define

bm ,
1

T
log(b) + jmωs, m = 0,±1,±2, · · ·

Then

S0(bm) = 1−
P(bm)H(bm) F(bm)

T(FPH)d(b)
, (4.22)

T0(bm) =
P(bm)H(bm) F(bm)

T(FPH)d(b)
. (4.23)
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Proof: Introduce factorizations

P(s) F(s) = e−sτ N(s)

M(s)
,

where N andM are coprime rational functions with no poles in C+, and

(FPH)d(z) =
Nd(z)

Md(z)
, (4.24)

where Nd and Md are coprime rational functions with no poles in DC. By the
Youla parameterization, all controllers Cd that stabilize (4.24) have the form8

Cd =
Yd +MdQd

Xd −NdQd
, (4.25)

where Qd, Xd, and Yd are stable, and Xd and Yd satisfy the Bezout identity

MdXd +NdYd = 1. (4.26)

It follows that Sd = Md(Xd −NdQd) and

CdSd = Md(Yd +MdQd). (4.27)

Using (4.27) in (4.6) and (4.7) yields

S0(s) = 1−
1

T
e−sτN(s)H(s)

M(s)
Md(e

sT )
[
Yd(e

sT ) +Md(e
sT )Qd(e

sT )
]

(4.28)

and

T0(s) =
1

T
e−sτN(s)H(s)

M(s)
Md(e

sT )
[
Yd(e

sT ) +Md(e
sT )Qd(e

sT )
]
. (4.29)

(i) T0 is stable because each factor in the numerator of (4.29) is stable, and because
the assumption of non-pathological sampling guarantees that any unstable
pole of 1/Mmust be canceled by a corresponding zero ofMd(e

sT ).

(ii) It follows from (4.26) that Yd(epT ) = 1/Nd(e
pT ). Using this fact, and evaluat-

ing (4.28) in the limit as s→ p yields

S0(s) −→ 1− lim
s→p F(s)P(s)H(s)

T(FPH)d(esT )
.

Replace (FPH)d(e
sT ) using (2.8):

S0(s) −→ 1− lim
s→p H(s)P(s)F(s)∑∞

k=−∞ F(s+ jkωs)P(s+ jkωs)H(s+ jkωs)
. (4.30)

By the assumptions that F is stable and that sampling is non-pathological,
P and F have no poles at p + jkωs, k 6= 0. Using this fact, and the fact
thatH has no finite poles, yields that each term in the denominator of (4.30)
remains finite as s→ p except the term k = 0. The result follows.

8We suppress dependence on the transform variable when convenient; the meaning will always
be clear from context.
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To prove (iii)-(vi), observe first that (4.29) implies T0 can have CRHP zeros only
at the CRHP zeros of N, H,Md(e

sT ), or [Yd(e
sT ) +Md(e

sT )Qd(e
sT )].

(iii)-(vii) By Assumption 3, P, F, and PF are each free of unstable hidden modes.
Hence N and M can have no common CRHP zeros and (iii) follows. By the
assumption of non-pathological sampling, neither can H and M. Hence
(iv) follows. Note next that the zeros of Md(e

sT ) lie at p + jkωs, k =
0,±1,±2, · · · , where p is any CRHP pole of P and hence a zero of M. It
follows from this fact that the ratio Md(e

sT )/M(s) can have zeros only for
k = ±1,±2, · · · . By the assumption of non-pathological sampling, no other
cancelations occur, and all these zeros are indeed zeros of T0. This proves
(vi). By (4.25), the CRHP zeros of [Yd(e

sT ) +Md(e
sT )Qd(e

sT )] are identical
to the CRHP zeros of Cd(esT ). By the hypotheses of Lemma 2.2.2, none of
these zeros can coincide with those of Md(e

sT ), and thus with those of M.
This proves (v). Statement (vii) now follows because (iii)-(vi) exhaust all
possibilities for T0 to have CRHP zeros.

(viii) It follows from (4.27) that Cd(b)Sd(b) = 1/(FPH)d(b). Substitution of this
identity into (4.6)-(4.7) yields (4.22)-(4.23).

�

A summary of the interpolation constraints satisfied by S0 and T0 is given in
Table 4.1.

ξ ∈ C+
Fundamental Fundamental

Sensitivity Complementary Sensitivity

Plant pole
S0(ξ) = 0 T0(ξ) = 1

P(ξ) =∞ S0(ξ+ jkωs) = 1 T0(ξ+ jkωs) = 0

k 6= 0 k 6= 0

Plant zero
S0(ξ) = 1 T0(ξ) = 0

P(ξ) = 0

Controller pole
S0(ξ) = 1−

F(ξ)P(ξ)H(ξ)

T(FPH)d(eξT )
T0(ξ) =

F(ξ)P(ξ)H(ξ)

T(FPH)d(eξT )Cd(e
ξT ) =∞

Controller zero
S0(ξ) = 1 T0(ξ) = 0

Cd(e
ξT ) = 0

Hold zero
S0(ξ) = 1 T0(ξ) = 0

H(ξ) = 0

Table 4.1: Summary of interpolation constraints on S0 and T0.

Harmonic response functions Tk also satisfy interpolation constraints, which
are easily derived from the previous theorem.
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Corollary 4.2.2 (Interpolation constraints for Tk)
Under the same hypotheses of Theorem 4.2.1 the following conditions are satis-
fied:

(i) Tk has no poles in C+.

(ii) Let p be a pole of P with p in C+. Then

Tk(p) = 0. (4.31)

(iii) Let ζ be a zero of P with ζ in C+. Then

Tk(ζ− jkωs) = 0. (4.32)

(iv) Let γ be a zero of H with γ in C+. Then

Tk(γ− jkωs) = 0.

(v) Let a be a zero of Cd with a in DC, and am as defined in Theorem 4.2.1 (v).
Then

Tk(am) = 0.

(vi) Let p be a pole of P with p in C+, and pm as defined in Theorem 4.2.1 (vi).
Then

Tk(pm) =


F(pm)

F(p)
ifm = −k,

0 ifm 6= −k

(4.33)

(vii) Tk has no CRHP zeros other than those given by (iii) - (vi) above.

(viii) Let b be a pole of Cd with b in DC, and bm as defined in Theorem 4.2.1 (viii).
Then

Tk(bm−k) =
P(bm)H(bm) F(bm−k)

T(FPH)d(b)
. (4.34)

Proof: Note that the harmonic functions Tk can be expressed as

Tk(s− jkωs) =
F(s− jkωs)

F(s)
T0(s). (4.35)

By Assumption 3, F is minimum phase and stable, so F−k/F is bistable. The result
then follows straightforward from Theorem 4.2.1. �

There are a number of differences between the interpolation constraints for
the hybrid and the continuous-time cases; we now describe these in detail.

Remark 4.2.1 (CRHP Plant Poles) Each CRHP plant pole yields constraints (4.19)
directly analogous to the continuous-time case. Furthermore, each of these poles
yields the additional constraints (4.21), which arise from the periodically spaced
zeros of Sd(esT ) and the fact that non-pathological sampling precludes all but one
of these zeros from being canceled by a pole of P. �
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Remark 4.2.2 (CRHP Plant Zeros) Each CRHP plant zero yields constraints (4.20)
directly analogous to the continuous-time case. Note in particular that these con-
straints are present independently of the choice of the hold function. The zeros of
the discretized plant lying in DC, on the other hand, do not impose any inherent
constraints on S0. Indeed, suppose that ν ∈ DC is a zero of (FPH)d. Then for each
νk , 1

T log(ν) + jkωs, k = 0,±1,±2, · · · , it follows that

S0(νk) = 1−
1

T
P(νk)H(νk)Cd(ν)F(νk), (4.36)

and thus the size of S0(νk) is not independent of the choice of compensator. �

Remark 4.2.3 (Unstable Compensator Poles) For analog systems, unstable plant
and compensator poles yield identical constraints on the sensitivity and comple-
mentary sensitivity functions; namely, when evaluated at such a pole, sensitivity
must equal zero and complementary sensitivity must equal one. Comparing (ii)
and (vii) in Theorem 4.2.1, we see that in a hybrid system unstable plant and
compensator poles will generally yield different constraints on sensitivity and
complementary sensitivity. In particular, unstable compensator poles will yield
corresponding zeros of S0 only in special cases. �

Remark 4.2.4 (Zeros of Cd) Each zero of the compensator lying inDC imposes in-
finitely many interpolation constraints upon the continuous-time system because
there are infinitely many points in the s-plane that map to the location of the zero
in the z-plane. These constraints are due to the fact that a pole at any of these
points will lead to an unstable discrete pole-zero cancelation. �

Remark 4.2.5 (Zeros of Hold Response) By Theorem 4.2.1 (iv), zeros of H lying
in the CRHP impose constraints on the sensitivity function identical to those im-
posed by CRHP zeros of the plant. A ZOH has CRHP zeros only on the jω-axis.
As discussed in Chapter 3, GSHF response functions may have zeros in the open
right half plane. �

Remark 4.2.6 (Zeros of S0) Our list of CRHP zeros for T0 and Tk is exhaustive;
however, our list for S0 is not. It is interesting to contrast this situation with
the analog case. For analog systems, the CRHP zeros of the sensitivity function
consist precisely of the union of the CRHP poles of the plant and compensator.
On the other hand, by Theorem 4.2.1 (ii) and (vii), unstable plant poles yield
zeros of S0 while unstable compensator poles generally do not. Furthermore, as
the following example shows, S0 may have CRHP zeros even if both plant and
compensator are stable.

Example 4.2.1 Consider the plant P(s) = 1/(s + 1). Discretizing with a ZOH,
sample period T = 1, and no anti-aliasing filter (i.e., F(s) = 1) yields (FPH)d(z) =
.6321/(z− .3670). A stabilizing discrete controller for this plant is

Cd(z) =
(4.8158)(z2 + .1z+ 0.3988)

(z2 − 1.02657z+ 0.9025)
.
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Both plant and compensator are stable; yet it may be verified that S0 has zeros at
s = 0.2± j (see Figure 4.1).
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Figure 4.1: Fundamental sensitivity for Example 4.2.1

�

4.3 Hybrid Disturbance Rejection Properties

In the last section we derived a set of interpolation constraints that must be satis-
fied by the hybrid sensitivity responses S0, T0, and Tk in the CRHP. As we shall
see in this section, these constraints have interpretations in terms of steady-state
disturbance rejection properties of the system. In particular, we analize periodic
disturbances of frequencies within and outside the Nyquist range, and the effect
that corresponding unstable poles of the plant and compensator have on these
rejection properties. For analog systems, it is well-known that, by the internal
model principle, an input disturbance can be asymptotically rejected if the sys-
tem includes the dynamics of the disturbance [e.g., Wonham, 1985]. As we shall
see in this section, this is not generally the case for sampled-data systems.

We start analyzing those properties that are associated with unstable poles of
the plant.

Corollary 4.3.1
Assume that P has a pole at s = jω, ω ∈ ΩN. Then the steady-state response to
a disturbance d(t) = ej(ω+`ωs)t, t ≥ 0,ω ∈ ΩN, ` = 0,±1,±2, . . ., is given as
follows.
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(i) If ` = 0, then
ydss(t) = 0 . (4.37)

(ii) If ` 6= 0, then

ydss(t) = ej(ω+`ωs)t −
F(j(ω+ `ωs))

F(jω)
ejωt. (4.38)

Proof: By (4.9) the steady-state response is given by

ydss(t) = S0(j(ω+ `ωs))e
j(ω+`ωs)t −

∞∑
k=−∞
k6=0

Tk(j(ω+ `ωs))e
j(ω+(k+`)ωs)t

(i) By (4.19) and (4.31), S0(jω) = 0 and Tk(jω) = 0.

(ii) By (4.21), S0(j(ω + `ωs)) = 1. From (4.33) follows that Tk(j(ω + `ωs)) = 0

if k 6= −`, and T−`(j(ω+ `ωs)) = F(j(ω+ `ωs))/F(jω) if k = −`.
�

It follows from (4.37) that a disturbance of frequency ω ∈ ΩN will be asymp-
totically rejected if the plant has a pole at jω (if necessary, the pole may be aug-
mented to the plant via an analog precompensator). However, any high frequency
disturbance of frequencyω+ `ωs,ω ∈ ΩN, ` 6= 0will be passed directly through
to the output along with an alias of frequencyω whose amplitude is determined
by the ratio of the gains of the anti-aliasing filter evaluated at the two frequencies.

As pointed out in Remark 4.2.4, unstable compensator poles do not yield the
same type of constraints on S0 as the unstable poles of the plant. Moreover, unsta-
ble compensator poles do not in general yield asymptotic disturbance rejection,
as the following result shows.

Corollary 4.3.2
Assume that Cd has a pole at z = ejωT , and that P has no poles at s = j(ω+kωs),
k = 0,±1,±2, . . .. Then the steady-state response to a disturbance input d(t) =
ej(ω+`ωs)t, t ≥ 0,ω ∈ ΩN, ` = 0,±1,±2, . . ., satisfies

ydss(t) = S0` (jω)ej(ω+`ωs)t −

∞∑
k=−∞
k6=0

Tk` (jω)ej(ω+(k+`)ωs)t, (4.39)

where

S0` (jω) = 1−
P(j(ω+ `ωs))H(j(ω+ `ωs)) F(j(ω+ `ωs))

T(FPH)d(ejωT )
(4.40)

and

Tk` (jω) =
P(j(ω+ (k+ `)ωs))H(j(ω+ (k+ `)ωs)) F(j(ω+ `ωs))

T(FPH)d(ejωT )
. (4.41)

◦
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Note that even for ` = 0 the steady-state disturbance response is in general
nonzero. For continuous-time systems, it is well known that a periodic distur-
bance may be asymptotically rejected by incorporating the dynamics of the dis-
turbance into the system. For a hybrid system, Corollaries 4.3.1 and 4.3.2 show
that for asymptotic disturbance rejection to be present, the dynamics should be
augmented to the plant using an analog precompensator. Including a discretized
version of these dynamics in the digital compensator will not, in general, achieve
the desired result. Exceptions to this statement may be obtained by imposing
additional structure on the hold response function.

Corollary 4.3.3
Let the hypotheses of Corollary 4.3.2 be satisfied. Chooseω ∈ ΩN. Assume that

P(jω) 6= 0 (4.42)
H(jω) 6= 0 (4.43)

and
H(j(ω+ kωs)) = 0, for all k = ±1,±2, · · · (4.44)

Then

(i) the steady-state response to an input d(t) = ejωt, t ≥ 0 satisfies ydss(t) = 0,

(ii) the steady-state response to an input d(t) = ej(ω+`ωs)t, t ≥ 0, ` = ±1,±2, · · ·
satisfies

ydss(t) = ej(ω+`ωs)t −
F(j(ω+ `ωs))

F(jω)
ejωt (4.45)

Proof:

(i) The steady-state response to ejωt is given by (4.9). Hypotheses (4.42)-(4.43)
imply that (FPH)d(e

jωt) = 1
T F(jω)P(jω)H(jω) 6= 0, and it follows from

Theorem 4.2.1 (iv) that the coefficient of ejωt in (4.9) equals one. Using
(4.44) in (4.41) shows that the coefficients of the higher frequency terms in
(4.9) all equal zero.

(ii) Hypotheses (4.42)-(4.44) imply that (4.40) equals one, (4.41) equals zero for
k+ ` 6= 0, and that

T−`(j(ω+ `ωs)) =
F(j(ω+ `ωs))

F(jω)
.

These facts, together with (4.39) yield (4.45).
�

A consequence of Corollary 4.3.3 is the well known fact that a discrete inte-
grator may be used in conjunction with a ZOH to achieve asymptotic rejection of
constant disturbances. Related results for hybrid systems with a ZOH are found
in Franklin and Emami-Naeini [1986] and Urikura and Nagata [1987]. A recent
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and more general study of tracking problems in hybrid systems is given in Ya-
mamoto [1994].

The role played by the hold frequency response function in the disturbance
rejection properties of the system may be further explored by considering plant
input disturbances. We shall now see that, in conjunction with a pole of the analog
plant at the frequency of the disturbance, input disturbance rejection is essentially
determined by the shape of the frequency response of the hold.

?
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Figure 4.2: System with input disturbance.

Consider the SISO sampled-data system of Figure 4.2. In a similar way to
the cases of output disturbance and noise, we can derive expressions describing
the steady-state response of the plant input u to a periodic disturbance c. The
following lemma, analogous to Lemma 4.1.2, shows this.

Lemma 4.3.4 (Steady-state Frequency Response to Input Disturbance)
Suppose the hypothesis of Lemma 2.2.2 are satisfied, and assume that c(t) = ejω,
t ≥ 0. Then as t→∞, u(t)→ uss(t), where

uss(t) = S0(jω)ejωt −

∞∑
k=−∞
k 6=0

Rk(jω)ej(ω+kωs)t, (4.46)

and

Rk(s) ,
1

T
Hk(s)Sd(e

sT )Cd(e
sT )F(s)P(s). (4.47)

Proof: The proof is similar to that of Lemma 4.1.2. �

Note that, like the response to plant output disturbances, the fundamental
component of uss is governed by S0, and so may also be potentially reduced by
feedback. The main difference in this case lies on the harmonics, which are given
by the responses Rk. From (4.47) we could foresee that the behavior of the hold
response function at high frequencies will have a significant role in the relative
magnitude of these harmonics. This is perhaps further clarified by the following
result, which describes the steady-state disturbance rejection properties of the
system in Figure 4.2 when the plant has an unstable pole at the frequency of the
disturbance9.

9Compare with Corollary 4.3.1.
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Lemma 4.3.5
Assume that P has a pole at s = jω, ω in ΩN. Then the steady-state response
to an input disturbance c(t) = ej(ω+`ωs)t, t ≥ 0, ` = 0,±1,±2, . . ., is given as
follows:

(i) if ` = 0

uss(t) = −

∞∑
k=−∞
k 6=0

Hk(jω)

H(jω)
ej(ω+kωs)t, (4.48)

(ii) if ` 6= 0

uss(t) = ej(ω+`ωs)t. (4.49)

Proof: From Lemma 4.3.4 we have that the steady-state response is given by

uss(t) = S0(j(ω+ `ω))ej(ω+`ωs)t −

∞∑
k=−∞
k6=0

Rk(j(ω+ `ωs))e
j(ω+(k+`)ωs)t. (4.50)

(i) By the assumption of non-pathological sampling H(jω) 6= 0 holds, and so
comparing (4.47) and (4.7) we may alternatively write

Rk(jω) =
Hk(jω)

H(jω)
T0(jω). (4.51)

Replacing (4.51) in (4.50), and applying Theorem 4.2.1 (ii) gives S0(jω) = 0

and T0(jω) = 1, from which the result follows.

(ii) Theorem 4.2.1 (vi) yields S0(j(ω + `ωs)) = 1. Since Sd(ejωT ) = 0 and
s = j(ω + `ωs) could not be a pole of P by the non-pathological sampling
assumption, we have that

Rk(j(ω+ `ωs)) =
1

T
Hk+`(jω)Sd(e

jωT )Cd(e
jωT )F`(jω)P`(jω)

= 0.

Equation (4.49) follows.
�

Notice from (4.49) that harmonics are asymptotically rejected if the frequency
of the disturbance is higher than the Nyquist frequency, but the fundamental
component is passed directly to the input of the plant (cf. Corollary 4.3.1).

In the case of a disturbance of frequency ω within ΩN, it follows from (4.48)
that the fundamental component of the steady-state response will be asymptot-
ically rejected if the plant has a pole at s = jω. However, harmonics of this
frequency will pass with amplitudes proportional to the ratios |Hk(jω)/H(jω)|,
with k = ±1,±2, . . .

In practice, the system will have acceptable asymptotic rejection properties
if the hold frequency response rolls off at frequencies higher than the Nyquist
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frequency, as is the case of a ZOH10. If on the other hand the hold response is
large at high frequencies, as from Chapter 3 we know it may happen with GSHFs,
harmonics at those frequencies will be amplified, thereby degrading the input
disturbance rejection properties of the hybrid system. In addition, the presence
of these harmonics in conjunction with plant input saturation phenomena may
compromise the system’s overall performance11.

The connection between the hold response and the “size” of the steady-state
signals generated by a disturbance in case (i) of Lemma 4.3.5 is further illustrated
by the following straightforward corollary. Let w denote the output of the hold
device, i.e.,

w(t) = uss(t) − c(t). (4.52)

From Lemma 4.3.5 follows that if c(t) = ejωT , and the plant has a pole at s = jω,
then w is given by

w(t) =

∞∑
k=−∞

Hk(jω)

H(jω)
ej(ω+kωst). (4.53)

Notice that w is not necessarily periodic. However, its amplitude does corre-
spond to that of a periodic function, since

|w(t)| =

∣∣∣∣∣
∞∑

k=−∞
Hk(jω)

H(jω)
ejkωst

∣∣∣∣∣ . (4.54)

We measure the size of the steady-state value ofw by its 2-norm, over an interval
of length T . From (4.54) it follows that this is the same as

‖w‖2 =

(∫T
0

|w(t)|2 dt

) 1
2

.

We then have the following result.

Corollary 4.3.6
Assume the conditions of Lemma 4.3.5 are satisfied. Then for a disturbance c(t) =

ejωt, withω inΩN,
1

T
‖w‖22 =

‖h‖22
|H(jω)|2

. (4.55)

Proof: From (4.53) we have that w(t)e−jωT is periodic with Fourier Series rep-
resentation

w(t)e−jωT =

∞∑
k=−∞

Hk(jω)

H(jω)
ejkωst. (4.56)

10Notice then that the hold should have similar roll-off properties as those of the anti-aliasing filter.
Further related comments are given in Chapter 5, Remark 5.2.3.

11See remarks following Lemma 3.1.2 in Chapter 3.
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Application of Parseval’s Identity [e.g., Rudin, 1987] to the series (4.56) yields∫T
0

|w(t)|2 dt =

∞∑
k=−∞

∣∣∣∣Hk(jω)

H(jω)

∣∣∣∣2
=

T‖h‖22
|H(jω)|2

where in the last equality we have used Lemma 3.1.1. The result follows. �

Corollary 4.3.6 shows that the “average power” of the signal generated at the
output of the hold device by a periodic disturbance in the Nyquist range ΩN is
proportional to the 2-norm of the hold pulse response h. Noting that

|H(jω)| ≤
∫T
0

|h(t)|dt

= ‖h‖1,

we obtain the lower bound

‖w‖2 ≥
√
T
‖h‖2
‖h‖1

. (4.57)

Since ‖h‖1 ≥
√
T‖h‖2, we get that ‖w‖2 ≥ 1 always. It is interesting to note that

for a ZOH ‖h‖1 =
√
T‖h‖2, and so it achieves the lowest bound for the size of the

signal w.
We illustrate these results with a numerical example.

Example 4.3.1 (GSHF control of a harmonic oscillator) We consider Example 1
in Kabamba [1987], where a GSHF is designed to stabilize the plant

P(s) =
1

s2 + 1

by output feedback. The setup corresponds to the system in Figure 4.2 with
F(s) = 1. This system cannot be made asymptotically stable by continuous-time
direct output feedback. However, it can be asymptotically stabilized by a digital
compensator and a ZOH, although the closed-loop eigenvalues cannot be arbi-
trarily assigned. The technique proposed by Kabamba allows the stabilization
with just a GSHF (i.e., Cd = 1), and arbitrary closed-loop eigenvalues. The hold
suggested is a FDLTI GSHF (Definition 3.1.1) given by the matrices

K =
[
0 1

]
L =

[
0 −1
1 0

]
M =

[
−13.1682
7.0898

]
.

The sampling period selected was T = 1. This GSHF sets the closed-loop discrete
eigenvalues to z = 0, so the system is stabilized in two sampling periods. For
comparison, we alternatively computed a stabilizing solution using a ZOH and
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a discrete compensator. A constant compensator of gain k = −0.9348 renders a
double real pole of the discretized system at z = 0.7552.

We computed the frequency response of this GSHF using the formula given
by Lemma 3.1.5 in Chapter 3. This is plotted in Figure 4.3, together with the
response of the ZOH for reference. We have indicated with dotted lines the ab-
scissas corresponding to the frequencies ω, ω +ωs, and ω + 2ωs, where ω = 1

is the frequency of the complex poles of the plant.
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Figure 4.3: Frequency response of
GSHF and ZOH.
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Figure 4.4: Response to input distur-
bance.

In reference to the summation of (4.48), we can see in this plots that the GSHF
will have a larger number of terms with significant contribution than the ZOH.
Therefore, we should expect from the GSHF solution a larger steady-state re-
sponse to a sinusoidal input disturbance of frequency ω = 1. This is illustrated
in Figure 4.4, where we plotted the corresponding steady-state responses u for
the GSHF system (above) and for the ZOH system (below). The amplitude of the
signal produced in the GSHF case is approximately 10 times larger than that of
the ZOH case. �

4.4 Integral Relations

The interpolation constraints derived in the preceding section fix the values of the
hybrid response functions at points of the CRHP. For continuous-time systems,
the Poisson integral may be used to translate the interpolation constraints into
equivalent integral relations that the sensitivity and complementary sensitivity
functions must satisfy along the jω - axis Freudenberg and Looze [1985]. In this
section, we show that similar integral relations must be satisfied by the hybrid
sensitivity functions. We also show that these functions must satisfy generaliza-
tions of the Bode sensitivity integral Bode [1945] and its dual for complementary
sensitivity Middleton and Goodwin [1990], Middleton [1991].
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4.4.1 Notation

Denote the non-minimum phase zeros of P by

{ζi; i = 1, . . . ,Nζ}, (4.58)

the non-minimum phase zeros of H by

{γi; i = 1, . . . ,Nγ}, (4.59)

the non-minimum phase zeros of Cd by

{ai; i = 1, . . . ,Na} (4.60)

and the ORHP poles of P by

{pi; i = 1, . . . ,Np}, (4.61)

including multiplicities in each case. To each ai and pi, denote the associated
NMP zeros of T0 by

{aik =
1

T
log(ai) + jkωs, k = 0,±1,±2, . . .} (4.62)

and
{pik = pi + jkωs, k = ±1,±2, . . .}, (4.63)

respectively. As discussed in Chapter 3, it is possible that the hold function has a
countable infinity of NMP zeros, and thus that Nγ in (4.59) equals infinity.

Denote the Blaschke products of NMP zeros of P and H by

Bζ(s) =

Nζ∏
i=1

(
ζi − s

ζ̄i + s

)
(4.64)

and12

Bγ(s) =

Nγ∏
i=1

(
γi − s

γ̄i + s

)
. (4.65)

Denote the Blaschke product of ORHP plant poles by

Bp(s) =

Np∏
i=1

(
pi − s

p̄i + s

)
(4.66)

For each NMP zero of Cd and for each ORHP pole of P, denote the Blaschke
products of associated NMP zeros of T0 by12

Bai(s) =

∞∏
k=−∞

(
aik − s

āik + s

)
(4.67)

12That the Blaschke product (4.65) converges even if Nγ is infinite follows from Hoffman [1962].
The same is valid for (4.67)-(4.68).
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and

Bpi(s) =

∞∏
k=−∞
k 6=0

(
pik − s

p̄ik + s

)
. (4.68)

4.4.2 Poisson Sensitivity Integral

We now derive an integral inequality that must be satisfied by log |S0(jω)|.

Theorem 4.4.1 (Poisson integral for S0)
Assume that the hypotheses of Lemma 2.2.2 are satisfied. Let ξ = x + jy equal
one of (4.58)-(4.59) or (4.62)-(4.63). Then∫∞

0

log |S0(jω)|Ψ(ξ,ω)dω ≥ π log|B−1
p (ξ)|, (4.69)

where Ψ(s,ω) is the Poisson kernel for the half plane defined in (3.30).

Proof: Denote the NMP zeros of S0 by µ1, µ2, · · · and define the Blaschke prod-
uct

Bµ(s) =
∏
i

µi − s

µ̄i + s
.

Then S0 = ŠBµ where Š has no poles or zeros in the ORHP. The Poisson integral
[Levinson and Redheffer, 1970, p. 225] implies that (4.69) holds with equality if
Bp(ξ) is replaced by Bµ(ξ). Since the set of NMP zeros of S0 due to the ORHP
poles of P is generally a proper subset of all such zeros (cf. Remark 4.2.6) inequality
(4.69) follows. �

Theorem 4.4.1 has several design implications, which we describe in a series
of remarks.

Remark 4.4.1 (NMP Plant Zeros) As in the continuous time case, if the plant is
non-minimum phase, then requiring that |S0(jω)| < 1 over a frequency range Ω
implies that, necessarily, |S0(jω)| > 1 at other frequencies. The severity of this
tradeoff depends upon the relative location of the NMP zero and the frequency
rangeΩ. We now discuss this in more detail.

We recall the definition of the weighted length of an interval by the Poisson
kernel for the half plane, introduced in Chapter 3, (3.35). Let ξ = x+ jy be a point
lying in C+, and consider the frequency intervalΩ = [0,ω0). Then, we had that

Θ(ξ,Ω) ,
∫ω0
0

Ψ(ξ,ω)dω.

We have seen in Subsection 3.3.1 thatΘ(ξ,Ω) equals the negative of the phase lag
contributed by a Blaschke product of ξ at the upper end point of the interval Ω.
With this notation, the following result is an immediate consequence of (4.69).
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Corollary 4.4.2
Suppose that ζ = x+ jy is a NMP zero of the plant, and suppose that

|S0(jω)| ≤ α, for allω inΩ.

Then

sup
ω>ω0

|S0(jω)| ≥ (1/α)
Θ(ζ,Ω)
π−Θ(ζ,Ω)

∣∣B−1
p (ζ)

∣∣ π
π−Θ(ζ,Ω) (4.70)

◦

The bound (4.70) shows that if disturbance attenuation is required throughout a
frequency interval in which the NMP zero contributes significant phase lag, then
disturbances will be greatly amplified at some higher frequency. The term due to
the Blaschke product in (4.69) shows that plants with approximate ORHP pole-
zero cancelations yield particularly sensitive feedback systems. �

Remark 4.4.2 (NMP Hold Zeros) A non-minimum phase zero of the hold response
imposes precisely the same tradeoff as does a zero of the plant in the same loca-
tion. This tradeoff is exacerbated if the NMP hold zero is near an unstable plant
pole. Poor sensitivity in this case is to be expected, as an exact pole-zero cancela-
tion yields an unstable hidden mode in the discretized plant13. �

Remark 4.4.3 (Unstable Plant Poles) Using an analog controller, the sensitivity
function of a system with an unstable, but minimum phase, plant can be made
arbitrarily small over an arbitrarily wide frequency range Zames and Bensous-
san [1983] while maintaining sensitivity bounded outside this range. This is no
longer true for digital controllers and the fundamental sensitivity function. The
following result is an immediate consequence of (4.69). �

Corollary 4.4.3
(i) Assume that the plant has a real ORHP pole, p = x. Then

‖S0‖∞ ≥
√
1+

(
x

ωN

)2
(4.71)

(ii) Assume that the plant has an ORHP complex conjugate pole pair, p = x +
jy, p̄ = x− jy. Then for k = ±1,±2 . . .

‖S0‖∞ ≥
√
1+

(
x

kωN

)2√
1+

(
x

y− kωN

)2
(4.72)

◦
13See the conditions for non-pathological sampling in Lemma 2.2.1. An example of a poorly condi-

tioned discretized system is given at the end of §7.1 in Chapter 7.
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Proof: We show only (i); (ii) is similar. Evaluate (4.69) with ξ equal one of (4.63),
i.e., ξ = x+ jkωs, with k = ±1,±2, . . . Then

π log ‖S0‖∞ ≥
∫∞
0

log |S0(jω)|Ψ(ξ,ω)dω

≥ π log
∣∣∣∣2x+ jkωs

−jkωs

∣∣∣∣ . (4.73)

From (4.73) follows

|S0‖∞ ≥
√
1+

(
x

kωN

)2
≥

√
1+

(
x

ωN

)2
.

�

In either case of Corollary 4.4.3, the fundamental sensitivity function neces-
sarily has a peak strictly greater than one.

For a real pole, achieving good sensitivity requires that the sampling rate
be sufficiently fast with respect to the time constant of the pole; e.g., achieving
‖S0‖∞ < 2 requires that ωN > x/

√
3. This condition is also necessary for a com-

plex pole pair. Furthermore, sensitivity will be poor if y ≈ kωN for some k 6= 0.
The reason for poor sensitivity in this case is clear; if y = kωN, then the com-
plex pole pair violates the non-pathological sampling condition (2.12), and the
discretized plant will have an unstable hidden mode.

More generally, we have

Corollary 4.4.4
Assume that the plant has unstable poles pi and p` with pi 6= p̄`. Then

‖S0‖∞ ≥ max
k6=0

∣∣∣∣ p̄i + p` + jkωs

pi − p` − jkωs

∣∣∣∣ (4.74)

and

‖S0‖∞ ≥ max
k6=0

∣∣∣∣pi + p` + jkωs

p̄i − p` − jkωs

∣∣∣∣ (4.75)

◦

It follows that if sampling is “almost pathological”, in that pi − p` ≈ jkωs, or
p̄i − p` ≈ jkωs, then sensitivity will be large.

Remark 4.4.4 (Approximate Discrete Pole Zero Cancelations) Suppose that the
discrete compensator has an NMP zero ai. Then (4.69) holds with ξ equal to one
of the points aik (4.62) in the s-plane that map to ai in the z-plane. If the plant has
an unstable pole near one of these points, then the right hand side of (4.69) will
be large, and S0 will have a large peak. Poor sensitivity is plausible, because this
situation corresponds to an approximate pole-zero cancelation between a NMP
zero of the compensator and a pole of the discretized plant. �
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4.4.3 Poisson Complementary Sensitivity Integral

We now derive a result for T0 dual to that for S0 obtained in the previous section.
An important difference is that we can characterize all NMP zeros of T0, and thus
obtain integral equalities.

First, we note an additional property of the hold response function.

Lemma 4.4.5
The hold response function (2.4) may be factored as

H(s) = Ȟ(s)e−sτHBγ(s), (4.76)

where τH ≥ 0, Bγ is given by (4.65), and log |Ȟ| satisfies the Poisson integral
relation.

Proof: Follows from Hoffman [1962, pp. 132-133]. �

As we discussed in Chapter 3, page 30, for a FDLTI GSHF, τH = 0. For a PC
GSHF, defined by (3.11), if k̄ denotes the smallest value of k for which ak 6= 0,
then is easily seen from (3.13)-(3.14) that τH = k̄T/N.

We have seen in Chapter 3 explicit expressions for the zeros of a piecewise
constant hold with α0 6= 0 and approximations to the zeros of a FDLTI hold.
We remark that, in each case, H possesses infinitely many zeros which approach
infinity along well defined paths which may lie in the ORHP (See §3.2).

Theorem 4.4.6 (Poisson integral for T0)
Assume that the hypotheses of Lemma 2.2.2 are satisfied. Let p` = x + jy be an
ORHP pole of P. Then∫∞

0

log |T0(jω)|Ψ(p`,ω)dω = πxτP + πxτH + πxNCT

+ π log |B−1
ζ (p`)| + π log |B−1

γ (p`)|

+ π

Np∑
i=1

log |B−1
pi

(p`)| + π

Na∑
i=1

log |B−1
ai

(p`)|

(4.77)

where Ψ(s,ω) is the Poisson kernel for the half plane defined in (3.30).

Proof: Note that T0 has an inner-outer factorization

T0(s) = Ť(s) e−sτP e−sτH e−sτNCT Bζ(s)Bγ(s)

Np∏
i=1

Bpi(s)

Na∏
i=1

Bai(s)

where log |Ť | satisfies the Poisson integral Levinson and Redheffer [1970]. Since
log |Ť(jω)| = log |T0(jω)|, the result follows. �

We comment on the design implications of Theorem 4.4.6 in a series of re-
marks.
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Remark 4.4.5 The first three terms on the right hand side of (4.77) show that
|T0(jω)| will display a large peak if there is a long time delay in the plant, digital
controller, or hold function. �

Remark 4.4.6 The fourth and fifth terms on the right hand side of (4.77) show that
|T0(jω)| will display a large peak if there is an approximate unstable pole-zero
cancelation in the plant, or between the plant and the hold function. By the non-
pathological sampling condition (ii) in Lemma 2.2.1, the latter peak corresponds
to an approximate unstable pole-zero cancelation in the discretized plant. �

The following result is analogous to Corollary 4.4.4 for T0.

Corollary 4.4.7
(i) Assume that p` = x, a real pole. Then

‖T0‖∞ ≥
sinh

(
πx

ωN

)
(
πx

ωN

) . (4.78)

(ii) Assume that p` = x+ jy, a complex pole. Then

‖T0‖∞ ≥
sinh

(
πx

ωN

)
(
πx

ωN

)
∣∣∣∣∣∣∣∣
sinh

(
πp`

ωN

)
(
πp`

ωN

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(
πy

ωN

)
sin
(
πy

ωN

)
∣∣∣∣∣∣∣∣ . (4.79)

Proof: By rearranging definition (4.68), we have

Bpi(s) =

∞∏
k=1

1−

(
pi − s

jkωs

)2
1−

(
p̄i + s

jkωs

)2
Using the identities [Levinson and Redheffer, 1970, p. 387],

sinπα
πα

=

∞∏
k=1

(
1−

α2

k2

)
and sin jα = j sinhα yields

Bpi(s) =

sinhπ
(
pi − s

ωs

)
π

(
pi − s

ωs

) π

(
p̄i + s

ωs

)
sinhπ

(
p̄i + s

ωs

) (4.80)
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Note that the first factor on the right hand side of (4.80) converges to one as
s→ pi. It follows that

Bp`(p`) =

(
πx

ωN

)
sinh

(
πx

ωN

) (4.81)

Inverting yields (4.78). Furthermore

Bp̄`(p`) =

sin
(
πy

ωN

)
(
πy

ωN

)
(
πp`

ωN

)
sinh

(
πp`

ωN

) (4.82)

Together (4.81)-(4.82) yield (4.79). �

Figure 4.5(a) give plots of the bound (4.79) versus Re {p`} for various values
of Im {p`}, and Figure 4.5(b) give plots of the bound (4.79) versus Im {p`} for var-
ious values of Re {p`}. The pole location has been normalized by the Nyquist
frequency. Note in Figure 4.5(b) that for a complex pole ‖T0‖∞ will become arbi-
trarily large as y→ kωN, k = ±1,±2 . . . , because sampling becomes pathological
at such frequencies. It follows from these plots that to achieve good robustness
the Nyquist frequency should be chosen several times larger than the radius of
any unstable pole.
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Figure 4.5: Lower bounds on ‖T0‖∞.

4.4.4 Poisson Harmonic Response Integral

Harmonic response functions (4.8) also satisfy Poisson integral relations. As for
the case of T0, in this case we also obtain an integral equality, since all the zeros of
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Tk in C+ are characterized. The result follows as a straightforward corollary to
Theorem 4.4.6.

Corollary 4.4.8 (Poisson Integral for Tk)
Assume that the hypotheses of Lemma 2.2.2 are satisfied. Let p` = x + jy be an
ORHP pole of P. Then∫∞
0

log |Tk(jω)|Ψ(p` − jkωs,ω)dω = π log
∣∣∣∣F−k(p`)

F(p`)

∣∣∣∣+ πxτP + πxτH + πxNCT

+ π log |B−1
ζ (p`)| + π log |B−1

γ (p`)|

+ π

Np∑
i=1

log |B−1
pi

(p`)|

+ π

Na∑
i=1

log |B−1
ai

(p`)|

(4.83)

where Ψ(s,ω) is the Poisson kernel for the half plane defined in (3.30).

Proof: Immediately from relation (4.35),∫∞
0

log |Tk(jω)|Ψ(p` − jkωs,ω)dω =

∫∞
0

log
∣∣∣∣ F(jω)

Fk(jω)

∣∣∣∣ Ψ(p` − jkωs,ω)dω

+

∫∞
0

log |T0(j(ω+ kωs))|Ψ(p` − jkωs,ω)dω.

The first integral on the RHS of the equation above gives the first term on the RHS
of (4.83), since by our assumptions on F, log(F(s)/F(s− jkωs)) satisfies a Poisson
integral relation. The second integral is the Poisson Complementary Sensitivity
Integral of (4.77). The result follows. �

The implications of this integral constraint are similar to those for T0, since —
except for the first — all terms on the RHS of (4.83) are the same on the RHS of
(4.77). Hence |Tk(jω)| will display a large peak if there are long time delays in the
plant, digital controller, or hold function. There will be also large peaks if there
are approximate unstable pole-zero cancelations in the plant or between the plant
and the hold function. Differently in this case, these constraints are relaxed by the
presence of the first term on the RHS of (4.83), which will be generally negative
since the anti-aliasing filter is normally designed to roll off at high frequencies.
The following corollary, corresponding with Corollary 4.4.7, shows this.

Corollary 4.4.9
(i) Assume that p` = x, a real pole. Then

‖Tk‖∞ ≥
sinh

(
πx

ωN

)
(
πx

ωN

) ∣∣∣∣F−k(x)

F(x)

∣∣∣∣ .
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(ii) Assume that p` = x+ jy, a complex pole. Then

‖Tk‖∞ ≥
sinh

(
πx

ωN

)
(
πx

ωN

)
∣∣∣∣∣∣∣∣
sinh

(
πp`

ωN

)
(
πp`

ωN

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(
πy

ωN

)
sin
(
πy

ωN

)
∣∣∣∣∣∣∣∣
∣∣∣∣F−k(p`)

F(p`)

∣∣∣∣ .
◦

4.4.5 Bode Sensitivity Integral

The following is a generalization of the classical sensitivity integral theorem of
Bode [1945]. As in the case of the Poisson sensitivity integral, we only obtain
an inequality, because S0 may possess NMP zeros in addition to those associated
with ORHP plant poles.

Theorem 4.4.10
Assume that the hypotheses of Lemma 2.2.2 are satisfied.

∫∞
0

log |S0(jω)|dω ≥ π
Np∑
i=1

Re {pi} (4.84)

Proof: Assumption 1 implies that |sH(s)| is bounded on C+ (see (A.12) in Chap-
ter A). This fact, together with the assumption that F is strictly proper, imply
that

lim
s→∞
Re{s}≥0

|s T0(s)| = 0.

Hence the technique used in Freudenberg and Looze [1985] to derive the continuous-
time version of (4.84) may be applied. �

The sensitivity integral states that if |S0(jω)| < 1 over some frequency range,
then necessarily |S0(jω)| > 1 at other frequencies. Hence there is a tradeoff be-
tween reducing and amplifying the fundamental component of the response to
disturbances at different frequencies. This tradeoff is exacerbated if the plant has
ORHP poles. As in the analog cases, (4.84) does not impose a meaningful design
limitation unless an additional bandwidth constraint is imposed [e.g., Freuden-
berg and Looze, 1985]. The need to prevent aliasing in hybrid systems implies
that bandwidth constraints are potentially more severe than in the analog case.
Design implications remain to be worked out, but it should be noted that the fre-
quency response of the hold function as well as that of the anti-aliasing filter will
need to be considered.

4.4.6 Middleton Complementary Sensitivity Integral

We here derive an integral relation for T0 that is dual to the Bode sensitivity inte-
gral obtained for S0 in the preceding section. This result is a generalization to hy-
brid systems of the complementary sensitivity integral introduced in Middleton



78 4. Frequency Response and Performance Limitations

and Goodwin [1990], and Middleton [1991]. As in the case of the Poisson com-
plementary sensitivity integral, exhaustive knowledge of the zeros of T0 yields
an integral equality.

Theorem 4.4.11
Assume that the hypotheses of Lemma 2.2.2 are satisfied. Suppose also that
T0(0) 6= 0. Define T́0(0) = dT0/ds|s=0. Then

∫∞
0

log
∣∣∣∣T0(jω)

T0(0)

∣∣∣∣ dωω2 =
π

2
(τP + τH +NCT) + π

Nζ∑
k=1

1

ζk
+ π

Nγ∑
k=1

1

γk
− π

Np∑
k=1

1

pk

+
πT

2

Np∑
k=1

coth
(
pkT

2

)
+
πT

2

Na∑
k=1

coth
(
akT

2

)

+
π

2

T́0(0)

T0(0)
.

(4.85)

Proof: See §A.3 in Appendix A. �

This result states that if the ratio |T0(jω)/T0(0)| < 1 over some frequency
range, then necessarily this ratio must exceed one at other frequencies. Hence,
there is a tradeoff between reducing and amplifying the fundamental component
of the response to noise in different frequency ranges. Further comments are
found in the following series of remarks.

Remark 4.4.7 The first term on the right hand side of (4.85) show that the tradeoff
worsens if the plant, hold, or compensator has a time delay. The second three
terms show that the tradeoff worsens if the plant, hold, or compensator has NMP
zeros. It is easy to verify that the sum of the fifth and sixth terms is positive, and
thus the tradeoff also worsens if the plant has ORHP poles. For an interpretation
of the seventh term, see Remark 4.4.9 below. �

Remark 4.4.8 One difference between (4.85) and the analogous results in Mid-
dleton and Goodwin [1990], Middleton [1991] is that the latter references assume
the presence of an integrator in the system. We avoid this requirement by instead
assuming that T0(0) 6= 0 and normalizing T0 by its DC value. This approach
could also have been taken in Middleton and Goodwin [1990], Middleton [1991];
we have adopted it here to obtain a more general result. If there is indeed an
integrator in the system, then the following corollary, which follows from Corol-
laries 4.3.1 and 4.3.2, shows that the normalization factor is unnecessary. �

Corollary 4.4.12
Assume that

(i) P contains at least one integrator, and/or
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(ii) Cd contains at least one integrator and H is a ZOH.

Then T0(0) = 1. ◦

Remark 4.4.9 We now provide an interpretation for the ninth term in (4.85). To
do this, we consider the hybrid system depicted in Figure 4.6.
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Figure 4.6: Hybrid system.

The proof of the following result is straightforward, and hence omitted.

Lemma 4.4.13
Suppose that the hypotheses of Lemma 2.2.2 are satisfied.

(i) Consider the response of the system to a unit step input. Then, as t → ∞,
e→ ess, where

ess(t) =

∞∑
`=−∞
`6=0

−
P(j`ωs)H(j`ωs)

P(0)H(0)
ej`ωst (4.86)

Furthermore, if H is a ZOH and/or if P contains an integrator, then ess = 0.

(ii) Consider the response of the system to a unit ramp input. Then as t → ∞,
e→ ess, where

ess(t) = −
T́0(0)

T0(0)
−

∞∑
`=−∞
6̀=0

[α` + β`t] e
j`ωst, (4.87)

with

α` =
d

ds

[
T0(s)

T0(0)

F(s+ j`ωs)

F(s)

]∣∣∣∣
s=−j`ωs

(4.88)

and

β` =
P(−j`ωs)H(−j`ωs)

P(0)H(0)
. (4.89)

Furthermore, if H is a ZOH and/or if P contains an integrator, then β` = 0

and ess is bounded. If both these conditions are satisfied, then α` = 0 and

ess(t) = −
T́0(0)

T0(0)
. (4.90)
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◦

It follows from part (ii) of Lemma 4.4.13 that the constant T́0(0)/T0(0) plays
a role similar to that played by the reciprocal of the velocity constant in a Type-1
analog feedback system14. Hence the ninth term on the right hand side of (4.85)
can ameliorate the severity of the design tradeoff only if the steady-state error to
a ramp input is large and positive, so that the output lags the reference input
significantly. �

4.5 Summary

We conclude this chapter with a brief summary of inherent design limitations for
hybrid feedback systems.

Perhaps most important is the fact that those plant properties such as non-
minimum phase zeros, unstable poles, and time delays that pose design diffi-
culty for analog feedback systems continue to pose difficulty when the controller
is implemented digitally. Furthermore, the existence of such a difficulty is in-
dependent of the type of hold function used. It is important, however, that the
intersample behavior be examined if the problems are to be detected. Examining
system response only at the sampling instants may be misleading.

There are also a number of design limitations unique to digital controller im-
plementations. First, there are limits upon the ability of high compensator gain
to achieve disturbance rejection unless the hold function satisfies additional con-
straints. Second, there are design limitations due to potential non-minimum
phase zeros of the hold function. Perhaps most interesting are the design limi-
tations due to unstable plant poles. If the sample rate is “almost pathological”
and/or is slow with respect to the time constant of the pole, then sensitivity, ro-
bustness, and response to exogenous inputs will all be poor.

Furthermore, as it is apparent from the results in Araki and Ito [1993], Leung
et al. [1991], and Thompson et al. [1983], the fundamental and harmonic response
functions introduced here have connections with the L2-induced norm of the sys-
tem, and therefore with its robustness properties against linear time-varying per-
turbations. We shall deal with these issues in depth in the forecoming chapter.

Perhaps most interesting is the observation that the hold response function
plays a role identical to that of the anti-aliasing filter in mapping high frequency
plant behavior, including uncertainty, into the response of the discretized plant.
This will be the main subject of Chapter 7.

14For an analog version of (4.90), see Truxal [1955, p. 286]



5
Sensitivity Operators on L2

This chapter studies the computation of L2-induced norms of sampled-data sen-
sitivity operators. The L2-induced norm is the operator norm when inputs and
outputs belong to the space of square-integrable signals L2, and it is closely re-
lated to important control problems. Indeed, for LTI systems, the L2-induced
norm of a system’s operator is the H∞-norm of its transfer matrix, which repre-
sents an extremely useful measure in many applications of modern control theory
[e.g., Francis, 1991].

Concepts and methods associated with LTI H∞ control bear no immediate
equivalent for sampled-data systems, since in this case the operators are time-
varying and no transfer functions are associated with them. In view of this, con-
siderable research during the last years has focused on the study of L2-norms and
H∞ related problems for sampled-data systems.

Early works considering L2-norms for hybrid systems studied restricted classes
of sampled-data systems Thompson et al. [1983, 1986], Chen and Francis [1990],
Leung et al. [1991]. Conic sectors were applied by Thompson et al. [1983] and
Thompson et al. [1986] to obtain upper bounds for the L2-norm of cascade con-
nections involving a sampler and a ZOH. Exact expressions for these open-loop
systems appeared later on in Chen and Francis [1990]. A formula for the L2-norm
of hybrid operators in a general feedback configuration was derived by Leung
et al. [1991] for the case of band-limited signals.

More recent works introduced the use of lifting techniques for the H∞ analy-
sis and synthesis of sampled-data systems Bamieh and Pearson [1992], Toivonen
[1992], Yamamoto [1990, 1993]. As mentioned in Chapter 1, the lifting technique
transforms the sampled-data system into a discrete time-invariant equivalent sys-
tem acting over infinite-dimensional signals. Time-invariance comes as a con-
sequence of periodicity, but in contrast to the classical pure discrete approach,
intersample behavior is built in the model, which is reflected in the infinite di-
mensionality of the transformed signals. Sampled-data H∞-norm computation
and optimization Bamieh and Pearson [1992], Toivonen [1992], Yamamoto [1993],
robust stabilization to LTI perturbations Dullerud and Glover [1993], and track-
ing Yamamoto [1994] are some recent results obtained via lifting.

Other time-domain approaches include the formulation of an associated Hamil-
tonian descriptor system Kabamba and Hara [1993], and the solution of continu-
ous and discrete Riccati equations derived using the theory of linear systems with
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jumps Sivashankar and Khargonekar [1994], Sun et al. [1993], Tadmor [1991].
An interesting and novel application derived from the computation of L2-

norms is the extension of the LTI concept of frequency-gain to sampled-data sys-
tems Araki and Ito [1993], Araki et al. [1993], Yamamoto and Khargonekar [1996],
Hagiwara et al. [1995], Yamamoto and Araki [1994]. The so-called frequency-gain
of a sampled-data system is equivalent to the magnitude of a Bode plot of certain
discrete transfer function associated with the hybrid system. In Yamamoto and
Khargonekar [1996] lifting techniques were used to compute the frequency-gain
of a sampled-data system. In Hagiwara et al. [1995] the same issue was addressed
using a frequency-domain framework that uses the notion of FR-operators Araki
and Ito [1993], Araki et al. [1993].

Our approach in this chapter evolves from the frequency-domain formulation
introduced in Chapter 4. In §5.1 we expound a frequency-domain lifting framework,
which further exposes the harmonic structure of the sampled-data system, yield-
ing a compact description of the operators that govern its behavior. This frame-
work is equivalent to that of FR-operators introduced by Araki and Ito [1993]
and Araki et al. [1993]. Yet, our formulation builds up on spaces of Fourier trans-
forms of the original signals, while the FR-operators are defined on special spaces
of time-domain signals called SD-sinusoids. The advantages of both methods
over time-domain alternatives are similar, and arise from the simplicity of the
frequency-domain description.

In §5.2 we exploit the benefits of the frequency-domain lifting to compute the
L2-induced norms and frequency-gains of sampled-data sensitivity and comple-
mentary sensitivity operators. Note that the complementary sensitivity opera-
tor is a finite-rank operator — and therefore compact — which implies that its
norm can be computed relatively easily. On the other hand, the sensitivity oper-
ator is non-compact, which imposes a greater difficulty in the computation of
its norm Yamamoto and Khargonekar [1996]. We show that either norm and
the frequency-gains can be computed in a straightforward way from finite di-
mensional discrete transfer functions. The expressions derived are easily imple-
mented in numerically reliable algorithms, as we show in §5.2.2.

5.1 A Frequency-domain Lifting

Many important concepts and methods for LTI systems have no immediate ex-
tension to sampled-data systems for the simple fact that sampled-data systems
are time-varying. Nevertheless, they belong to a particular class of time-varying
systems that have a lot of structure, namely, they can be represented by periodic
operators. Most of recent advances in sampled-data control theory have been
based on mathematical frameworks that profit from this periodic characteristic.
An example of this is the time-domain lifting technique of Bamieh and Pearson
[1992] and Yamamoto 1990, 1994. By lifting, a signal valued in a finite dimen-
sional space is bijectively mapped into a signal valued in infinite dimensional
spaces. The great attractiveness of the transformation lies on the fact that in the
new spaces the operators are represented as LTI operators, which allow a simpler
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treatment of many important problems.
In this section we describe a similar mathematical formalism that we call the

frequency-domain lifting1. The lifting of Bamieh and Pearson [1992] and Yamamoto
[1994] is done over signals in the time-domain, which leads to state-space repre-
sentations of the sampled-data system. The main difference in our approach is
that we lift signals directly in frequency-domain, which — as we shall see in the
remaining sections of this chapter — may allow a simpler and more intuitive
treatment2 of problems that are naturally formulated in input-output scenarios.

Consider a signal y in the space L2(0,∞). Then, its Fourier transform Y(jω)
is known to belong to L2(−∞,∞). Introduce the following sequence of functions
constructed from Y(jω),

Yk(jω) = Y(j(ω+ kωs)), (5.1)

for ω in the Nyquist range ΩN and k integer. We arrange this sequence in an
infinite vector, and we denote it by

y(ω) ,



...
Y1(jω)
Y0(jω)
Y−1(jω)

...

 . (5.2)

We say that the infinite vector y(ω) is the — frequency-domain — lifting of the
signal Y(jω). Figure 5.1 illustrates the action of the lifting operation, which chops
up the function Y(jω) defined on (−∞,∞) into a sequence of functions Yk(jω),
k = 0,±1,±2, . . . defined onΩN.

F

−2ωN−3ωN −ωN ωN

|Y(jω)|

ω

2ωN 3ωN ωN−ωN

|Y0(jω)|

2ωNωN

|Y1(jω)|

3ωN2ωN

|Y2(jω)|

ω ω ω

· · · · · ·

Figure 5.1: Action of the frequency-domain lifting operation.

Thus, y(ω) can be seen as a function defined a.e.3 over ΩN taking values in
`2. Moreover, the space of such functions is a Hilbert space under the norm

‖y‖ ,
(∫
ΩN

‖y(ω)‖2`2dω
)1/2

, (5.3)

1The concept of frequency-domain lifting is not new; it was developed in the signal processing
literature for linear discrete-time periodic systems [e.g., Shenoy et al., 1994].

2Simpler and more intuitive in the sense explained in Chapter 1, §1.2 (i).
3With respect to the standard Lebesgue measure.
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and inner product

〈y, x〉 ,
∫
ΩN

〈y(ω), x(ω)〉`2 dω . (5.4)

We denote this space by L2(ΩN; `2) [cf. Balakrishnan, 1981]. Since the signals in
L2(ΩN; `2) are basically rearrangements of signals in L2(−∞,∞), it is not difficult
to see that both spaces are isomorphic with preservation of norm, as the following
lemma asserts.

Lemma 5.1.1
The space L2(ΩN; `2) is isometrically isomorphic to L2(−∞,∞).

Proof: See Appendix A, §A.4. �

Lemma 5.1.1 tells us that there is a bijective relation between elements in
L2(−∞,∞) and elements in L2(ΩN; `2), and moreover, they have the same mea-
sure, i.e.,

‖y‖L2(ΩN;`2) = ‖Y‖L2(−∞,∞).

We formalize this relationship by defining the frequency-domain lifting operator,
F, mapping

F : L2(−∞,∞) → L2(ΩN; `2)

Y(jω) 7→ y(ω) .

Evidently from Lemma 5.1.1, F is invertible, and moreover, ‖F‖ = 1 = ‖F−1‖. In
particular, if M is a bounded linear operator from L2(−∞,∞) to L2(−∞,∞), then
the lifted operator M = F M F−1 is a bounded linear operator from L2(ΩN; `2) to
L2(ΩN; `2) with the same operator norm. A key observation at this point is that it
will be in general easier and numerically more tractable to compute ‖M‖ rather
than ‖M‖.

The representation of sampled-data operators by their liftings also reveals
structure with interesting similarities to ordinary LTI operators and their cor-
responding transfer matrices. Indeed, it turns out that the lifted operator M is
a multiplication operator in `2 sense, so it has an associated representation as an
infinite-dimensional “transfer matrix”. In other words, we can write (My)(ω) =
Mωy(ω), where Mω is a bounded linear operator in `2 at (almost) every fixed ω
in ΩN. An important consequence of this fact is that the L2-induced norm of the
operator can be computed as [cf. Yamamoto and Khargonekar, 1996]

‖M‖ = sup
ω∈ΩN

‖Mω‖`2 , (5.5)

where ‖Mω‖`2 denotes the induced `2-norm of the operator Mω. Notice the
similarity of (5.5) to the familiar expression of the L2-induced norm of an operator
in a LTI system, i.e., the H∞-norm of its associated transfer matrix.

In particular, we shall be concerned with compact and approximable operators
on these spaces, so we finish the section with a brief discussion of these concepts.
This follows Willis [1994].
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Recall that a set K in a metric space is compact if each sequence in K has a
convergent subsequence. Equivalently, for any collection of open sets {Vk} that
covers K, then K is compact if and only if {Vk} has a finite subcollection that covers
K. To say that a set is compact is to say that it is “small” in some sense. The Heine-
Borel Theorem [e.g., Rudin, 1987] asserts that a set in a finite-dimensional space
is compact if and only if it is closed and bounded.

Definition 5.1.1 (Compact Operator)
Let X and Y be metric spaces, and let BX denote the unit ball in X. Then the
operator T : X → Y is said to be compact if the closure of T(BX) is a compact
set. �

Compact operators are very close to finite-rank operators, i.e., operators whose
range is finite-dimensional. Since T(BX) is bounded if T is a bounded operator,
it follows from the Heine-Borel Theorem that each finite-rank operator is com-
pact. In a sense, a “converse” of this is also true in the spaces we are interested
in. Namely, a compact operator on these spaces is approximable by sequences
of finite-rank operators; i.e., if {En} is a sequence of finite-rank operators, then
limn→∞ ‖En − T‖ = 0, where ‖ · ‖ denotes the induced operator norm.

5.2 L2-induced Norms and Frequency-gains

5.2.1 Sensitivity Operators

We study the sensitivity and complementary sensitivity operators for the sampled-
data system of Figure 2.4. As for LTI systems, we define these operators as the
mappings relating output disturbance d and noise n to the output y, and denote
them respectively by

S : L2 → L2
Sd 7→ y

and T : L2 → L2
Tn 7→ y.

Under the assumptions of closed-loop L2-stability, S and T are bounded operators
on L2.

The actions of the sensitivity and complementary sensitivity operators are re-
spectively defined in frequency-domain by the steady-state responses (4.1) and
(4.2) introduced in Chapter 4, §4.1. From the definition of frequency-domain lift-
ing in §5.1, it is straightforward to alternatively write (4.1) and (4.2) evaluated at
s = jω in a very compact form as

y = Sωd and y = −Tωn , (5.6)

where Tω and Sω are the following infinite-dimensional transfer matrices de-
fined onΩN

Tω =


. . .

...
...

· · · GkFk GkFk−1 · · ·
· · · Gk−1Fk Gk−1Fk−1 · · ·

...
...

. . .

 , (5.7)
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Sω =


. . .

...
...

· · · 1−GkFk −GkFk−1 · · ·
· · · −Gk−1Fk 1−Gk−1Fk−1 · · ·

...
...

. . .

 , (5.8)

where, to ease notation, we have omitted the explicit dependence of the variable
jω in the entries of the matrices. Keep also in mind the notation Fk(jω) repre-
senting F(j(ω + kωs)), which will be profusely used in the sequel. Here F(jω) is
the transfer matrix of the anti-aliasing filter, and the function G(jω) denotes the
product

G(jω) ,
1

T
P(jω)H(jω)Sd(e

jωT )Cd(e
jωT ) . (5.9)

Associated with F(jω) and G(jω) we define the following discretized transfer
matrices that will be required to formulate our results,

Gd(e
jωT ) ,

∞∑
k=−∞G

∗
k(jω)Gk(jω), (5.10)

and

Fd(e
jωT ) ,

∞∑
k=−∞ Fk(jω)F∗k(jω), (5.11)

where F∗ denotes the conjugated transpose of F. Note that if y, n, and d are valued
in Rm, then Gd(ejωT ) and Fd(ejωT ) arem×m discrete transfer matrices.

Operators Sω and Tω are infinite-dimensional transfer matrix representations
of the hybrid sensitivity and complementary sensitivity operators S and T, and
verify the complementarity relation Sω + Tω = I [cf. Araki and Ito, 1993, Araki
et al., 1993, Yamamoto and Araki, 1994]. From (5.5) their induced norms are given
by

‖T‖ = sup
ω∈ΩN

‖Tω‖`2 and ‖S‖ = sup
ω∈ΩN

‖Sω‖`2 , (5.12)

and so, they can be evaluated by computing the functions ‖Tω‖`2 and ‖Sω‖`2 —
the so-called frequency-gains of the hybrid operators [e.g., Hagiwara et al., 1995]
— and then searching for suprema over the finite intervalΩN.

An important fact about the complementary sensitivity operator T is that it
has finite rank (and therefore is compact, as discussed in §5.1). We show this in
the following lemma.

Lemma 5.2.1
If the inputs to the system in Figure 2.4 are valued in Rm, then T has at most rank
m.

Proof: Partition F(jω) by rows, and G(jω) by columns, i.e.,

F(jω) =


f1(jω)
f2(jω)

...
fm(jω)

 , and G(jω) =
[
g1(jω) g2(jω) · · · gm(jω)

]
.
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Introduce the liftings for F∗(jω) and G(jω),

f(ω) ,



...
F∗1(jω)
F∗0(jω)
F∗−1(jω)

...

 , and g(ω) ,



...
G1(jω)
G0(jω)
G−1(jω)

...

 . (5.13)

Using the partitions above, we can alternatively write

f(ω) =
[
f1(ω) f2(ω) . . . fm(ω)

]
,

and
g(ω) =

[
g1(ω) g2(ω) . . . gm(ω)

]
,

where each column fi = Ff∗i in f, and gi = Fgi in g is certainly a vector in
L2(ΩN; `2), since F and G are both stable and strictly proper from our assump-
tions in Chapter 2. Using this notation, the action of Tω can be alternatively
written as

Tωn =

m∑
i=1

gi〈n, fi〉`2 , (5.14)

where, 〈n, fi〉`2 is a scalar-valued function defined a.e. on ΩN4. Equation (5.14)
shows that Tω is the sum ofm rank-one operators on L2(ΩN; `2). Hence it has at
most rankm, and so does T. �

The fact that T is compact — and so approximable — suggests a way of nu-
merically computing the norm of T by truncating Tω between harmonics −n
and n, say, and evaluating the maximum singular value of the finite dimensional
transfer matrix so obtained Araki et al. [1993]. The convergence of this sequence
of computations could be slow, though, since in generalG(jω) and F(jω) decay as
1/ωp, where p is some integer depending on the relative degrees of the transfer
matrices involved.

Actually, since T is of finite-rank, more efficient ways of numerically evaluat-
ing the induced norm of Tω are possible and already available. Using frequency-
domain techniques similar to ours, Hagiwara et al. [1995] have shown that the
computation of the frequency-gain of a compact operator can be obtained as the
magnitude of an associated discrete-time transfer matrix. For the case of ZOH,
they show how to implement their procedures in a numerically reliable fashion.

The following theorem is analogous to the result of Hagiwara et al. [1995]
for the case of the hybrid complementary sensitivity operator T. The pattern
of our proof is quite different though, and importantly, we shall use the same
pattern for the more difficult case of the hybrid sensitivity operator, which is non-
compact. Our results extend to the case of GSHF, and are also implementable in
a numerically reliable way, as we shall see in Subsection 5.2.2.

4Often, we shall drop the dependence of the independent variable when convenient; meaning will
always be clear from context.
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We denote by λmax[M] the maximum eigenvalue of a square matrix M. Then
we have the following result.

Theorem 5.2.2 (L2-induced Norm of the Complementary Sensitivity Operator)
If the hybrid system of Figure 2.4 is L2-input-output stable, then

‖T‖2 = sup
ω∈ΩN

λmax
[
Gd(e

jωT )Fd(e
jωT )

]
. (5.15)

Proof: Using (5.13) write Tω as a dyadic product

Tω = g(ω)f(ω)∗,

where f∗ denotes the conjugate transpose of f (i.e., f∗ is composed of “row” vec-
tors of L2(ΩN, `2)). From (5.12) we have that ‖T‖ = supω∈ΩN ‖Tω‖`2 . Fix ω in
ΩN, and decompose `2 into

`2 = PF ⊕ P⊥F ,
where PF is the subspace of `2 spanned by the range of f, and P⊥F its orthogonal
complement. Hence, if v is a vector in P⊥F then Tωv = 0. So,

‖Tω‖`2 = sup
v∈`2
v 6=0

‖Tωv‖`2
‖v‖`2

= sup
v∈PF
v 6=0

‖Tωv‖`2
‖v‖`2

.

Vectors of `2 in PF can be finitely parameterized as

v = fα,

where α belongs to Cm, withm the number of inputs of F. Thus, we have

‖Tω‖2`2 = sup
α

fα6=0

α∗f∗fg∗gf∗fα
α∗f∗fα

= λmax

[
(f∗f)1/2(g∗g)(f∗f)1/2

]
. (5.16)

Notice that both (g∗g) and (f∗f) are finitem×mmatrices, and particularly, f∗f is
non-singular since F was assumed full column rank.

Since eigenvalues are invariant under similarity transformations, (5.16) yields

‖Tω‖2`2 = λmax [(g∗g)(f∗f)] .

The proof is finished by noting that

(g∗g)(ω) = Gd(e
jωT )

and
(f∗f)(ω) = Fd(e

jωT )

are the discrete transfer matrices defined in (5.10) and (5.11). �
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The case of S has to be considered more carefully, since this is a non-compact
operator, and as such, it may not be in principle approximable by sequences of
finite-rank operators (which means that the norms of progressive truncations of
Sω would not necessarily converge to the norm of the operator). Frequency-
gains of possibly non-compact sampled-data operators have been discussed in
Yamamoto and Khargonekar [1996]. Their method computes the frequency-gain
γω at the frequency ω by searching for the maximum value γ such that a γ-
dependent generalized eigenvalue problem has an eigenvalue ejωT . Yet, the pro-
cedure seems in general very hard to be implemented numerically in a reliable
fashion Hagiwara et al. [1995].

The following theorem gives an expression for the frequency-gain and L2-
induced norm of the hybrid sensitivity operator S. Our result relies on the fact
that S verifies the complementarity relation

S = I − T,

and since T is of finite rank, it is also possible to reduce the computation of the
frequency-gain of S to a finite-dimensional eigenvalue problem. As for Theo-
rem 5.2.2, these results admit a simple and reliable numerical implementation.

Theorem 5.2.3 (L2-induced Norm of the Sensitivity Operator)
If the hybrid system of Figure 2.4 is L2-input-output stable, then

‖S‖2 = 1+ sup
ω∈ΩN

λmax

[
Fd(e

jωT )Gd(e
jωT ) − Td(e

jωT ) −Fd(e
jωT )

Td(e
−jωT )Gd(e

jωT ) −Gd(e
jωT ) −Td(e

−jωT )

]
. (5.17)

Proof: The same idea for the proof of Theorem 5.2.2 works here. Again, for a
fixedω inΩN, decompose `2 into

`2 = P(F,G) ⊕ P⊥(F,G),

where P(F,G) denotes the subspace spanned by both f and g, and P⊥(F,G) its orthog-
onal complement. Since Sω is block diagonal in these spaces,

‖Sω‖`2 = max

 sup
v∈P(F,G)

v 6=0

‖Sωv‖`2
‖v‖`2

, sup
v∈P

(F,G)⊥

v 6=0

‖Sωv‖`2
‖v‖`2


= max

 sup
v∈P(F,G)

v 6=0

‖Sωv‖`2
‖v‖`2

, 1

 . (5.18)

Now, any vector v in P(F,G) can be finitely parameterized as

v = fα+ gβ
= [f,g]γ, (5.19)
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with γ in C2m. Denote h , [f,g], and M , h∗h. Notice that M is a finite-
dimensional Hermitian matrix and, moreover, since for any vector η in C2m we
have that η∗Mη = η∗h∗hη = ‖hη‖2, M is also non-negative definite, i.e., M ≥
0. Using the notation introduced in (5.10) and (5.11), and the definition of the
discrete output complementary sensitivity function (2.11) (i.e., notice that Td =
f∗g), we can writeM as

M =

[
Fd Td
T∗d Gd

]
.

Introduce also the matrix N,

N ,

[
Gd −I
−I 0

]
.

It then follows that h∗(I−fg∗)(I−gf∗)h = (I+MN)M, and hence we obtain from
(5.19) that

sup
v∈P(F,G)

v 6=0

‖Sωv‖2`2
‖v‖2`2

= sup
γ∈C2m

γ∗Mγ+ γ∗MNMγ

γ∗Mγ

= 1+ λmax

[
M1/2NM1/2

]
(5.20)

= 1+ λmax [MN] . (5.21)

Since in (5.21) the productMN is

MN =

[
FdGd − Td −Fd
T∗dGd −Gd −T∗d

]
,

from (5.18) and (5.21) we see that it remains to show that λmax [MN] is nonnega-
tive to complete the proof. This follows easily from the fact that M ≥ 0. Indeed,
ifM is positive definite, i.e.,M > 0, then

δ =

[
Fd Td
T∗d Gd

]−1/2 [
I

0

]
,

gives δ∗M1/2NM1/2δ = Gd ≥ 0. Thus λmax in (5.20) is nonnegative. If otherwise
M is not positive definite it is then necessarily singular, and therefore 0 must be
in the spectrum ofM1/2NM1/2, which then shows that λmax [MN] ≥ 0. The proof
is now complete. �

Remark 5.2.1 (L2-norms and Hybrid Sensitivity Functions) As anticipated at the
end of Chapter 4, the L2-induced norm of these operators may be linked to certain
measure of the hybrid sensitivity functions S0, T0, and Tk. In fact, this connec-
tion establishes that large harmonics will necessarily imply a large norm of the
operator on L2, as we shall see next. We define first the hybrid (k,m)-harmonic
response

Tk,m , GkFm.
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Notice that Tk,m for k,m = ±1,±2, . . . appear as the off-diagonal entries of the
infinite-dimensional transfer matrices Tω and Sω in (5.7) and (5.8). In particu-
lar, Tk,0 = Tk and T0,0 = T0, the harmonic and fundamental complementary
sensitivity responses of Chapter 4. We require the following preliminary lemma.

Lemma 5.2.4
Let A,B1, B2, . . . , Bk, . . . be square hermitian positive-definite matrices. Then

λmax

[∑
k

BkA

]
≥ max

k
λmax [BkA] .

Proof:

λmax

[∑
k

BkA

]
= λmax

[∑
k

[A
1
2BkA

1
2 ]

]
= max
ν,‖ν‖=1

∑
k

[ν∗A
1
2BkA

1
2ν]

≥ max
k

max
ν,‖ν‖=1

ν∗A1/2BkA
1/2ν

= max
k
λmax [BkA]

�

Now we have the following result.

Proposition 5.2.5
Assume the conditions of Lemma 2.2.2 are satisfied. Then

‖T‖ ≥ max
k,m
‖Tk,m‖∞

Proof: From Theorem 5.2.2,

‖T‖2 =
1

T2
sup
ω∈ΩN

λmax

[(∑
k

G∗kGk

)(∑
m

FmF
∗
m

)]
.

Use Lemma 5.2.4 with A = (
∑
kG
∗
kGk), and Bm = FmF

∗
m to get

‖T‖2 ≥ 1

T2
sup
ω∈ΩN

max
m
λmax

[∑
k

G∗kGkFmF
∗
m

]
,

and once more with A = FmF
∗
m, and Bk = G∗kGk. This yields

‖T‖2 ≥ 1

T2
sup
ω∈ΩN

max
k,m

λmax [G∗kGkFmF
∗
m]

= max
k,m

sup
ω∈ΩN

‖ 1
T
GkFm‖22

= max
k,m
‖Tk,m‖2∞.

�
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This result establishes that a peak in any of the harmonics will increase the L2-
induced norm of T, reducing the system’s stability robustness properties against
T -periodic perturbations Sivashankar and Khargonekar [1993]. �

In the particular case of SISO systems, we can derive simpler formulas from
Theorems 5.2.2 and 5.2.3. The operator T is then of rank one, and so the compu-
tation of its norm and the norm of S reduces to a single-eigenvalue problem.

Corollary 5.2.6
If the hybrid system of Figure 2.4 is SISO, then

‖T‖ = sup
ω∈ΩN

Φd(e
jωT )|Td(e

jωT )|, (5.22)

and

‖S‖ = sup
ω∈ΩN

1

2

(√
(Φ2d(e

jωT ) − 1)|Td(ejωT )|2 + (|Sd(ejωT )| + 1)2

+

√
(Φ2d(e

jωT ) − 1)|Td(ejωT )|2 + (|Sd(ejωT )| − 1)2
)
, (5.23)

where

Φ2d(e
jωT ) =

Fd(e
jωT )Gd(e

jωT )

|Td(ejωT )|2
. (5.24)

Proof: The proof of (5.22) follows immediately from Theorem 5.2.2. Formula
(5.23) is obtained by computing λmax in (5.17) and after some algebraic manipu-
lation. �

The function Φd may be given some interesting interpretations that we con-
sider in the following remarks.

Remark 5.2.2 (Φd as a Measure of Intersample Activity) The function Φd may
be given an interpretation as a “fidelity function”, that is, a measure of the amount
of intersample behavior in the sampled-data system. Indeed, note that Φd is
always greater than or equal to 1, since by Cauchy-Schwarz

|(FPH)d(e
jωT )|2 =

∣∣∣∣∣ 1T
∞∑

k=−∞ Fk(jω)Pk(jω)Hk(jω)

∣∣∣∣∣
2

≤

( ∞∑
k=−∞ |Fk(jω)|2

)(
1

T2

∞∑
k=−∞ |Pk(jω)Hk(jω)|2

)
.

Thus, from (5.22) we can see that

‖T‖ ≤ ‖Φd‖∞‖Td‖∞,
so ‖Φd‖∞ is an upper bound of the quotient between the L2-induced norms con-
sidering full-time information, and sampled behavior respectively.
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Also notice that since Φd ≥ 1, for all ω in ΩN, then ‖T‖ ≥ ‖Td‖∞; i.e., the L2-
induced norm of the discretized system gives a lower bound for the L2-induced
norm of the sampled-data system, as should be expected. The following result
formalizes this observation.

Corollary 5.2.7
Under the assumptions of Corollary 5.2.6,

lim
Φd→1 ‖T‖ = ‖Td‖∞ (5.25)

lim
Φd→1 ‖S‖ = ‖Sd‖∞ (5.26)

Proof: Proof of (5.25) is immediate from (5.22). For (5.26) we have the following
from (5.23):

lim
Φd→1 ‖S‖ = lim

Φd→1 sup
ω∈ΩN

|Sd(e
jωT )| + 1+ ||Sd(e

jωT )| − 1|

2

= max{‖Sd‖∞, 1}
= ‖Sd‖∞.

(5.27)

�

Hence, for example, if ‖Φd‖∞ is close to 1, then ‖T‖ ≈ ‖Td‖∞ and ‖S‖ ≈ ‖Sd‖∞,
and we should expect little intersample activity. �

Remark 5.2.3 (An Alignment Condition) Notice that Φd is independent of the
controller, but depends on the prefilter, plant, and hold function. This suggests
a possibly interesting way of looking at an optimization problem; i.e., selecting
a suitable discrete complementary sensitivity function Td, and then choosing the
prefilter and hold to minimize Φd. In particular, when Φd = 1 the matrix on
the RHS of (5.17) becomes singular, since the vectors f and g “align”. Therefore,
minimization of the intersample behavior may be interpreted as an “alignment
condition” between the hold, plant, and prefilter. This remains as a topic for
future investigation. Further related comments may be found in Hagiwara and
Araki [1995]. �

5.2.2 Numerical Implementation

The expressions for the frequency-gains and L2-induced norms obtained in the
last section can be readily numerically implemented by computing Gd and Fd
from (5.10) and (5.11). These computations can be approached as “special dis-
cretizations” by considering relations similar to (2.8). In this way, the arguments
of supω∈ΩN in (5.15) and (5.17) are expressed by two rational transfer functions
in z = ejωT — the frequency-gains of the sampled-data sensitivity operators. The
induced norms can then be computed by a straightforward search of maxima
over the finite intervalΩN5.

5Similar formulas have been derived for the case of ZOH in Leung et al. [1991, Theorem 3].
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Computation of Fd(e
jωT )

We compute (5.11) from the discretization Fd(z) = TZ{ST {L
−1{F(s)F̃(s)}}} (see Fig-

ure 5.2), where F̃(s) denotes F(−s)T. Since F is a strictly proper rational function,
the sampling of the output of FF̃ is well-defined.

?
�a a��
T

b b- - -
uk y yk

FF̃

Figure 5.2: Scheme to compute Fd(ejωT ).

Let {a, b, c, 0} be a minimal state-space realization of F. Then, a minimal real-
ization for FF̃ is given by

A =

[
a bbT

0 −aT

]
, B =

[
0

−cT

]
, C =

[
c 0

]
.

We then have the following.

Lemma 5.2.8 (Computation of Fd(ejωT ))
The function Fd(ejωT ) is given by

Fd(e
jωT ) = TC(ejωT I− eAT )−1B.

Proof: At the sampling instants the state response of FF̃ is given by

xk+1 = eATxk +

∫T
0

eA(T−τ)Bu(τ)dτ

= eATxk +

∫T
0

eA(T−τ)Bδ(τ− T)dτuk , (5.28)

where δ is Dirac’s delta, since there is no hold device at the input of the system.
From (5.28) we get the discrete system

xk+1 = Adxk + Bduk

yk = Cxk ,

where Ad = eAT and Bd = B. The result then follows from application of
Lemma 2.1.2. �

Computation of Gd(e
jωT )

The case of Gd is slightly more complicated than the previous one, but can be
approached in a similar fashion. From (5.10) we have

Gd(e
jωT ) =

∞∑
k=−∞G

∗
k(jω)Gk(jω)

=
1

T
C∗d(e

jωT )S∗d(e
jωT )Ed(e

jωT )Sd(e
jωT )Cd(e

jωT ),
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where

Ed(e
jωT ) ,

1

T

∞∑
k=−∞H

∗
k(jω)P∗k(jω)Pk(jω)Hk(jω). (5.29)

Hence, to compute Gd we need to evaluate Ed(ejωT ). We do this by discretizing
the system depicted in Figure 5.3, i.e., the cascade of the hold H̃, the system PP̃,
and the hold H. Since H is proper by definition, so is the cascade, and therefore
the sampling operation is again well-defined.

?
�a a��
T
bvkb -- - - -

uk H P̃P
y

H̃
u v

Figure 5.3: Scheme for computing (5.29).

Suppose that the plant P has a minimal realization {a, b, c, d}. Then, a minimal
realization for P̃P is given by

A =

[
a 0

cTc −aT

]
, B =

[
b

cTd

]
, C =

[
dTc −bT

]
, D =

[
dTd

]
We consider the case of a FDLTI GSHF; similar derivations are also valid for a

PC GSHF. As seen in Chapter 3, a LTI GSHF is defined by a pulse response h,

h(t) =

{
KeL(T−t)M if t ∈ [0, T)
0 otherwise

, (5.30)

for matrices K, L, and M of appropriate dimensions. The following lemma gives
a formula for the computation of Ed(ejωT ) given the matrices A,B,C,D, and
K, L,M.

Lemma 5.2.9 (Computation of Ed(ejωT ))
The function Ed(ejωT ) in (5.29) is given by

Ed(e
jωT ) = Cd(e

jωT I−Ad)Bd +Dd, (5.31)

where

Ad = eAT

Bd =

∫T
0

eAτBKeLτMdτ

Cd =

∫T
0

MTeL
T(T−τ)KTCeAτ dτ

Dd =

∫T
0

MTeL
TτKTDKeLτMdτ+

∫T
0

MTeL
T(T−τ)KTC

∫τ
0

eA(τ−σ)BKeL(T−σ)Mdσdτ
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Proof: We discretize the system of Figure 5.3 in four steps. Suppose t is in the
interval [kT, (k+ 1)T ]. First we compute the continuous-time response of the hold
H to a pulse in uk. This is

u(t) = KeL((k+1)T−t)Muk. (5.32)

Second, feed u from (5.32) into PP̃ to get

x(t) = eA(t−kT)xk +

∫t−kT
0

eA(t−kT−σ)BKeL(T−σ)Mdσuk (5.33)

y(t) = Cx(t) +DKeL((k+1)T−t)Muk. (5.34)

Third, compute the response of the hold H̃ to the output y given by (5.34) above.
By Lemma 3.1.5 we know that the frequency response of the LTI GSHF is H(s) =
K(sI+L)−1(eLT−e−sT )M. Let h̃ denote the impulse response of the “conjugated”
hold whose frequency response is H̃(s) = MT(sI−LT)−1(e−LTT−e−sT )eL

TTesTKT.
Here, we neglect for the moment the “advance” of one sampling period due to
the non-causality of H̃, i.e., we are considering e−sT H̃(s) instead. It follows then
that

h̃(t) =

{
MTeL

TtKT if t ∈ [0, T)
0 otherwise

. (5.35)

We get

v(t) =

∫t
kT

h̃(t− τ)y(τ)dτ

=

∫t−kT
0

MTeL
T(t−kT−τ)KTCx(τ+ kT)dτ

+

∫t−kT
0

KeL
T(t−kT−τ)KTDu(τ+ kT)dτ.

(5.36)

Denote the first integral on the RHS of (5.36) by v1, and the second by v2. Replace
x(τ+ kT) and u(τ+ kT) in (5.36) using (5.33) and (5.32) to obtain

v1(t) =

(∫t−kT
0

MTeL
T(t−kT−τ)KTCeAτ dτ

)
xk

+

(∫t−kT
0

MTeL
T(t−kT−τ)KTC

∫τ
0

eA(τ−σ)BKeL(τ−σ)Mdσdτ

)
uk,

(5.37)

and

v2(t) =

(∫t−kT
0

MTeL
T(t−kT−τ)KTDKeL(T−τ)Mdτ

)
uk. (5.38)

Finally, we evaluate v = v1 + v2 at t = (k+ 1)T , which renders

xk+1 = Adxk + Bduk

vk+1 = Cdxk +Dduk,
(5.39)
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where Ad, Bd, Cd and Dd are as claimed. To conclude, compute the Z-transform
of the expressions in (5.39) above, and eliminate X to get

zV(z) = (Cd(zI−Ad)
−1Bd +Dd)U(z). (5.40)

If we introduce now the advance of one sampling period neglected before, the
factor z on the RHS of (5.40) is canceled, rendering Ed(z) = V(z)/U(z) = Cd(zI−
Ad)

−1Bd +Dd. Application of Lemma 2.1.2 gives the result. �

Remark 5.2.4 Matrices Bd, Cd andDd in the above expressions can be easily nu-
merically evaluated using matrix exponential formulas suggested by Van Loan
[1978]. So, we have

Bd = [eAT 0] exp
{[

−A BK

0 L

]
T

} [
0

M

]
,

Cd = [MT 0] exp
{[
LT KTC

0 A

]
T

} [
0

I

]
,

Dd = [MTeLT 0] exp
{[

−LT KTDK

0 L

]
T

} [
0

M

]

+[MT 0] exp


LT KTC 0

0 A BK

0 0 −L

 T

[

0

eLTM

]
.

�

Example 5.2.1 (Sensitivity of gain-margin improvement with GSHFs) The use of
these formulas is illustrated by computing the “frequency gain” of a system from
an example in Yang and Kabamba [1994]. In this paper the authors present a
technique based on GSHFs to achieve arbitrary gain-margin improvement of a
feedback system.

The plant considered in the example is the following,

P(s) =
s− 2

(s− 1)(s+ 2)
.

Since the plant is non-minimum phase, there is a limit to the gain-margin achiev-
able by LTI compensation Khargonekar et al. [1985], which in this case is 4.

Using the technique suggested by Yang and Kabamba, this plant can be stabi-
lized by a FDLTI GSHF (Definition 3.1.1) determined by the matrices

K =
[
0 1

]
, L =

[
0 2

1 −1

]
, M =

[
−12616
312.8194

]
,

and a sampling period of T = 0.05, yielding a gain-margin of 10. However, this
improvement of gain-margin comes at the cost of a very large sensitivity to input
disturbances. Indeed, consider the feedback loop of Figure 5.4, where we have
introduced a plant input disturbance c. Figure 5.5 shows the frequency-gain of
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Figure 5.4: System with plant input disturbance.

ω/ωN

Frequency Gain      
Discrete Sensitivity

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

M
ag

ni
tu

de

Figure 5.5: Hybrid frequency gains.
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the hybrid operator on L2 mapping c to u. For comparison we also plotted the
frequency response of the discrete sensitivity function Sd.

The corresponding L2-induced norms are

‖S‖ = 134.69

‖Sd‖∞ = 1.0785,

which display a great difference. In a sense, this says that the discretized model
does not represent the true behavior of the system. Indeed, these norms show
that taking in account just the sampled behavior in this system gives only a very
conservative lower bound of the actual L2-gain of the hybrid system. As a conse-
quence, a significant part of the system’s dynamics is “hidden” from a sampled
analysis as intersample activity. A large ‖S‖means high sensitivity to L2 plant in-
put disturbances, which is particularly problematic if in addition there exist plant
input saturations. Furthermore, a large ‖S‖will also imply poor robustness prop-
erties to time-varying perturbations Sivashankar and Khargonekar [1993]. �

5.3 Summary

This chapter has considered the hybrid sensitivity and complementary sensi-
tivity operators on L2. We have described a mathematical framework called
“frequency-domain lifting”, which provides a representation of these operators
as infinite dimensional “transfer matrices”. Based on this representation we have
characterized the frequency-gains of these operators as the maximum eigenvalue
of an associated finite dimensional discrete transfer matrix. The L2-induced norm
of the operators is then computed by performing a search of maxima of these
eigenvalues over a finite interval of frequencies. The expressions obtained can be
easily implemented numerically to any desired degree of accuracy in a reliable
fashion.

Similar expressions have been communicated in the literature for the case of
the compact operators, like the complementary sensitivity operator [e.g., Hagi-
wara and Araki, 1995]. Hybrid non-compact operators impose additional dif-
ficulties in the evaluation of frequency-gains and L2-induced norms Yamamoto
and Khargonekar [1993]. Perhaps most interesting in our results is the fact that
also the sensitivity operator, which is non-compact, can be characterized as a fi-
nite dimensional eigenvalue problem feasible of a numerically reliable implemen-
tation.

These formulas have immediate application in the analysis of stability robust-
ness for LTV unstructured perturbations, and H∞ control synthesis problems.
Particularly, since our expressions allow the use of GSHFs, they provide a reli-
able computational tool for the evaluation of performance of a general class of
sampled-data designs.





6
Stability Robustness

Since no mathematical model can completely describe the exact behavior of a
physical system, the consideration of model uncertainty in the analysis and de-
sign of feedback systems is an issue of unarguable theoretical and practical signif-
icance. In this respect, one of the fundamental problems is the analysis of the sta-
bility robustness of the control system, i.e., the property by which the closed-loop
system remains stable under perturbations. This is a well-studied problem for
FDLTI systems, where several useful tools, like H∞ and µ methods, have proven
successful.

The analysis of stability robustness for sampled-data systems is more difficult,
again due to their time-varying characteristics, and has attracted the attention of
a number of researchers in recent years. For example, Thompson et al. [1983]
and Thompson et al. [1986] have used conic sector techniques to obtain sufficient
conditions for robust stability. Similar results have been derived by Hara et al.
[1991] using the L2-induced norm and the Small-gain Theorem. More recently,
Sivashankar and Khargonekar [1993] have shown that the L2-induced norm ac-
tually gives both necessary and sufficient conditions for robust stability when the
class of unstructured perturbations include periodic time-varying perturbations.
However, as illustrated in Dullerud and Glover [1993], the L2-induced norm may
be a very conservative measure of robust stability under LTI perturbations, which
are a more natural class of uncertainties to consider since the plant is normally as-
sumed LTI. Indeed, under the assumption of stable LTI perturbations, Dullerud
and Glover [1993] have shown that the necessary and sufficient condition for ro-
bust stability reduces to a µ type of test. This result has now been generalized
to the case of unstable perturbations by Hagiwara and Araki [1995], who used
Nyquist type of arguments and the frequency-domain framework suggested in
Araki and Ito [1993] and Araki et al. [1993].

The approach followed in Dullerud and Glover [1993] is based on a state-
space representation of the sampled-data system, and uses time-domain lifting
techniques and a generalization of the Z-transform to obtain a representation
of the operators in frequency-domain. As pointed out by Yamamoto and Khar-
gonekar [1996], this detour through state-space to describe input-output opera-
tors might complicate the analysis.

In this chapter, we show how these results can be obtained in a very intu-
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itive and simple way — almost entirely by block-diagram manipulation — if the
problem is set up directly in frequency-domain. In §6.1 we consider stable LTI
multiplicative perturbations on the analog plant. Using the frequency-domain
framework introduced in Chapter 5, we derive a µ-test that corresponds with the
results of Dullerud and Glover. In the particular case of SISO systems, this test
can be reduced to an `1-type condition involving the fundamental complementary
sensitivity function, T0(s), introduced in §4.1. This has an important link with the
results of Chapter 4, since it shows that peaks of T0 will have direct deleterious
effects on the stability robustness properties of the system.

It is interesting to note that under our framework, the problem is easily brought
to the classical basic perturbation model of Figure 6.1 [see also Hagiwara and Araki,
1995]. Moreover — and perhaps unsurprisingly too — we shall see that the inter-
connection matrix G will be Tω, the infinite matrix representation of the sampled-
data complementary sensitivity operator introduced in §5.2. Note that this is in com-
plete analogy with the corresponding LTI case, where the interconnection matrix
is the complementary sensitivity function [e.g., Doyle et al., 1992].

Moreover, we shall see in §6.2 that

�

-

−

∆G

G

Figure 6.1: Basic perturbation model.

this carries over to the problem of ro-
bust stability under a divisive perturba-
tion model. Again in analogy with the
LTI case, this time G is Sω, the infinite
matrix representation of the sampled-data
sensitivity operator. The corresponding
µ-test, though, will be only conjectured,
since the sensitivity operator is non-compact,
a fact that makes the analysis much more

intricate than the multiplicative case. Nevertheless, a necessary condition for ro-
bust stability with the divisive perturbation model is easily obtained in the SISO
case. This shows that peaks in the fundamental sensitivity function S0 will nec-
essarily reduce the stability margin of the hybrid system respect to this type of
perturbations.

6.1 Multiplicative Perturbation

Consider the multivariable sampled-data system depicted in Figure 6.2. The per-
turbed plant is represented by the multiplicative uncertainty model

P̃(s) = (I+W(s)∆(s))P(s) , (6.1)

where ∆(s) is a FDLTI perturbation given by a stable rational function satisfying
‖∆‖∞ < 1; we call such ∆ and admissible perturbation. The weighting function
W(s) is assumed a fixed stable, minimum-phase rational function, and such that
F(s)W(s)P(s) is proper. This type of uncertainty model is useful to represent high
frequency plant uncertainty Doyle and Stein [1981].

Assuming closed loop stability of the nominal hybrid system, i.e., for∆(s) = 0,
we shall determine necessary and sufficient conditions for the perturbed system
to remain stable under the class of admissible perturbations.
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Figure 6.2: System with multiplicative uncertainty.

Suppose that we discretize the system of Figure 6.2 by opening the loop at the
input and output of the discrete controller Cd. Then, we obtain the simplified
discrete diagram of Figure 6.3, where (FP̃H)d is the discretized series of hold,
perturbed plant and anti-aliasing filter. Applying Corollary 2.1.4 to (FP̃H)d yields
the infinite sum representation

(FP̃H)d(e
sT ) =

1

T

∞∑
k=−∞ Fk(s)(I+Wk(s)∆k(s))Pk(s)Hk(s) . (6.2)

Equation (6.2) displays the multi

i�

-

?−
Cd

(FP̃H)d

Figure 6.3: Discretized perturbed system.

frequency structure induced by the
sampling operation. This relation can
be translated directly into the block
diagram of Figure 6.4. Note in this
picture that although the sampler is
not represented explicitly, its action
is structurally embedded in the block
diagram as the parallel of an infinite
number of direct paths where each harmonic component of the signals operates.
We use this representation to derivate an expression where all the perturbations
∆k are blocked together.

Take the k-harmonic direct path in Figure 6.4. Then, we can write

Vk(s) =
1

T
Pk(s)Hk(s)Ud(e

sT ), (6.3)

where Ud is the Z-transform of the output of the controller. To ease notation, we
shall drop the independent variables in the sequel of this derivation, understand-
ing that all signals and transfer functions are functions of s, save for the discrete
ones, like Cd and Ud, which are functions of esT . Now, we have that Ud is given



104 6. Stability Robustness

h

h

h

h h h

h
-

-

?-

--

?-

-

-

-

?-

- - ?

66

??

6

-

� ?

-

-

-

-

-

Fk
1
T
PkHk

∆k

Cd(esT )

...
...

· · · · · ·+
+ + ++

+

+

+

+

+

+ +

...
...

1
T
P−1H−1

∆−1

F−1

1
T
PH F

∆ W

W−1
V−1 Y−1

V Y

Vk Yk
Wk

−

...

...

...
Ud(esT )

Figure 6.4: Harmonic structure of the perturbed system.

by

Ud = −Cd

∞∑
k=−∞ Fk

(
WkYk +

1

T
PkHkUd

)

= −Cd
∑
k

FkWkYk − Cd

(
1

T

∑
k

FkPkHk

)
Ud . (6.4)

Noting that by Corollary 2.1.4 1/T
∑
k FkPkHk is the nominal discretized plant

(FPH)d, from (6.4) we get

Ud = −SdCd
∑
k

FkWkYk , (6.5)

where
Sd(z) = [I+ Cd(z)(FPH)d(z))]

−1 (6.6)

is the nominal discrete Sensitivity Function. Now, replacing Ud from (6.5) and
Yk = ∆kVk into (6.3) yields

Vk =
1

T
PkHkSdCd

∑
m

FmWm∆mVm . (6.7)

In the lifted domain, (6.7) can be written as

(I + TωWω∆ω) v = 0, (6.8)
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where I is the infinite identity matrix (the identity operator in `2) and Tω is the
infinite matrix representation of the complementary sensitivity operator, defined
in (5.7). Wω and ∆ω are infinite-dimensional block diagonal matrices,

Wω , diag[. . . ,Wk(jω),Wk−1(jω), . . .],

and
∆ω , diag[· · · , ∆k(jω), ∆k−1(jω), · · · ],

while v is the lifted vector

v(ω) ,



...
V1(ω)
V0(ω)
V−1(ω)

...

 . (6.9)

Equation (6.8) collects system knowns and perturbations in two separated
blocks, as in the basic perturbation model of Figure 6.5. Thus, we can see clearly
in the form of∆ω how the original time-varying problem with unstructured ana-
log perturbations conduces to a time-invariant, infinite-dimensional, problem
with a very structured class of perturbations. From this setup it is standard to
derive the conditions for the internal stability of the loop of Figure 6.5 as a µ-test.

�

- ∆ω

TωWω

v
−

Figure 6.5: Basic perturbation model for multiplicative uncertainty.

Before proceeding, we need to recall a few definitions relative to the struc-
tured singular value µ required to state the results; we refer for example to Packard
and Doyle [1993] for more details. The structured singular value of a given n×n
complex matrix M is a nonnegative real number defined with respect to a set ∆
of perturbation matrices ∆ in Cn×n of prescribed structure. Denote by σ̄{∆} the
maximum singular value of ∆. Then we define µ∆(M) as

µ∆(M) ,
1

min
∆∈∆

{σ̄{∆} : det(I−M∆) = 0}
,

unless no ∆ ∈ ∆makes (I−M∆) singular, in which case µ∆(M) , 0. The pertur-
bation set ∆ is defined as the set ol perturbations ∆ of the form

∆ = diag[δ1Ir1 , δ2Ir2 , . . . , δSIrS , ∆S+1, . . . , ∆S+F], (6.10)
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where δi ∈ C, ∆S+j ∈ Cmj×mj , for i = 1, 2, . . . , S, and j = 1, 2, . . . , F. With Iri
we denote Cri×ri identity matrices. Note that for dimensional consistency it is
necessary that

∑S
i=1 ri +

∑F
j=1mj = n.

With these definitions, we can now state necessary and sufficient conditions
for robust stability of the hybrid system of Figure 6.2, adapted from the result ob-
tained by Dullerud and Glover [1993]. The result reduces to a µ-problem on the
infinite dimensional matrices of Figure 6.5, and it is expressed as a sequence of
all the finite dimensional µ-problems obtained by truncating the original matri-
ces. Denote by [Tω]n, [Wω]n and [∆ω]n the corresponding truncations keeping
all harmonics between −n and n, for some positive integer n. For each ω inΩN,
[∆ω]n has a block diagonal structure, where each block ∆k(jω) is as in (6.10).
Let ∆n denote the set of all these finite dimensional block diagonal matrix per-
turbations, ∆n , {diag[∆n, . . . , ∆−n] : ∆i ∈ ∆}. Then, we have the following
proposition.

Proposition 6.1.1 (Dullerud and Glover [1993])
For all ∆ such that ‖∆‖∞ < 1 the system of Figure 6.2 is internally stable if and
only if for each integer n > 0 the following inequality is satisfied

max
ω∈ΩN

µ∆n([Tω]n[Wω]n) ≤ 1 . (6.11)

◦

As mentioned before, although we started with unstructured perturbations
on the analog plant, they are mapped into a very structured type of perturba-
tions in the lifted space L2(`2;ΩN). In general, assuming also ∆ω unstructured
Sivashankar and Khargonekar [1993] will lead to a small-gain type of test in terms
of the L2-induced norm

‖TωWω‖ ≤ 1.

This small-gain condition is only sufficient for LTI perturbations, and it may be
quite conservative. This has been analyzed by means of example by Dullerud
and Glover [1993]. Other interesting related remarks are given in Hagiwara and
Araki [1995].

A necessary condition for robust stability may be stated in terms of the fun-
damental complementary sensitivity function of Chapter 4.

Theorem 6.1.2 (Necessary Condition for Robust Stability)
A necessary condition for the the system of Figure 6.2 to remain stable for all ∆
such that ‖∆‖∞ < 1 is that

‖T0(jω)W(jω)‖∞ ≤ 1. (6.12)

Proof: It is necessary for closed loop stability that

S̃d(z) = [I+ Cd(z)(FP̃H)d(z)]
−1 (6.13)
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have no poles in DC. Rearranging yields

S̃d(z) = [I+ Sd(z)Cd(z)(FW∆PH)d(z)]
−1Sd(z). (6.14)

Since the nominal system is stable, then S̃d will have no poles in DC if and only if

det[I+ Sd(e
jωT )Cd(e

jωT )(FW∆PH)d(e
jωT )] 6= 0 for allω. (6.15)

The proof proceeds by contradiction, following that in Chen and Desoer [1982,
Theorem 2]. Denote Q(jω) , T0(jω)W(jω), and suppose that (6.12) is violated.
Then there exists a frequencyω1 such that σ1 , σ̄{Q(jω1)} > 1, where σ̄{·}, recall,
denotes the maximum singular value. Performing a singular value decomposi-
tion of Q(jω1) yields

Q(jω1) = Udiag[σ1 . . .]V
∗,

where U , {uij} and V , {vij} are unitary matrices. Now assume for the moment
that there exists an admissible ∆̌ that also satisfies

∆̌(jω1) =

v11...
vn1

 (−σ1)
−1
[
u∗11 . . . u∗n1

]
= V diag[(−σ1)

−1, 0, . . . , 0]U∗,

(6.16)

and

∆̌(j(ω1 + kωs)) = 0 for k = ±1,±2, . . ., and k 6= −2ω1/ωs. (6.17)

The assumptions onW, and∆, imply that Corollary 2.1.4 may be used to calculate
(FW∆̌PH)d. Using (6.16) and (6.17) yields

(FW∆̌PH)d(e
jω1T ) = −

1

T
F(jω1)W(jω1)V diag[−

1

σ1
, 0, . . . , 0]U∗P(jω1)H(jω1),

(6.18)
and therefore1

det[I+ Sd(e
jω1T )Cd(e

jω1T )(FW∆̌PH)d(e
jω1T )]

= det[I+ SdCd
1

T
FWV diag[(−σ1)

−1, 0, . . . , 0]U∗PH]

= det[I+ V diag[(−σ1)
−1, 0, . . . , 0]U∗

1

T
PHSdCdFW]

= det[I+ V diag[(−σ1)
−1, 0, . . . , 0]U∗Q(jω1)]

= [I+ V diag[−1, 0, . . . , 0]V∗]

= det[V ] det[diag[0, 1, 1, . . . , 1]] det[V∗]
= 0.

1We suppress dependence on the transform variable when convenient, meaning will be clear from
context.
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Hence, (6.15) fails and so the perturbed system is unstable.
It remains to show that ∆̌ satisfying the required properties exists. We do this

following a construction in Chen and Desoer [1982]. Consider

∆̌(s) ,

α1(s)...
αn(s)

(−
1

σ1

)
fq(s)

k ′ z(s)
[
β1(s), . . . , βn(s)

]

where k ′ is a natural number, and

fq(s) ,
ω1s

q(s2 +ω21) +ω1s
, q > 0

αi(s) ,
s

ω1
Im {vi1} + Re {vi1}

βi(s) , −
s

ω1
Im {ui1} + Re {ui1}

z(s) ,
HZOH(s− jω1)HZOH(s+ jω1)

T |HZOH(j2ω1)|
η(s),

η(s) ,

(
−
s

ω1
sin(^HZOH(j2ω1)) + cos(^HZOH(j2ω1))

)
,

where HZOH(s) is the frequency response function of the ZOH, and ^ denotes
the phase of a complex number. It is then straightforward to verify that

(i) ∆̌(jω1) satisfies (6.16) and (6.17), and

(ii) by choosing both k ′ and q large enough, ∆̌ is exponentially stable and, for
allω 6= ±ω1, limω→∞ σ̄{∆̌(jω)}→ 0, i.e., ‖∆̌‖∞ < 1 is satisfied.

�

In relation to the results of Chapter 4, for SISO systems follows that if |T0(jω)|
is very large at any frequency, then the hybrid system will exhibit poor robustness
to uncertainty in the analog plant at that frequency.

The necessary and sufficient condition of Proposition 6.1.1 yields an explicit
expression that also involves T0 in the SISO case. We state this in the following
corollary.

Corollary 6.1.3 (Robust Stability Test — SISO case)
If the system of Figure 6.2 is SISO, then, for all ∆ satisfying ‖∆‖∞ < 1, the system
is internally stable if and only if

∞∑
k=−∞ |T0(j(ω+ kωs))W(j(ω+ kωs))| ≤ 1 for allω inΩN (6.19)

Proof: By Proposition 6.1.1, the system will be robustly stable if and only if all
truncated systems satisfy µ-condition (6.11). Fix an integer n > 0 and ω in ΩN.
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The standard approach to evaluate µ∆n([Tω]n[Wω]n) is through the computa-
tion of upper and lower bounds. Define the sets

Q , {Q ∈ ∆n : Q∗Q = I} (6.20)
D , {D ∈ ∆n : D = D∗ > 0 and D∆nω = ∆nωD for all ∆nω ∈ ∆

n} . (6.21)

Then we have the following inequalities Packard and Doyle [1993]

max
Q∈Q

ρ(Q[Tω]n[Wω]n) ≤ µ∆n([Tω]n[Wω]n) ≤ inf
D∈D

σ̄{D[Tω]n[Wω]nD−1} .

(6.22)
Note that the structure of the uncertainty in this case is diagonal,

∆nω = diag[δn(jω), . . . , δ−n(jω)],

with δi(jω) in C. As the truncated [Tω]n[Wω]n is rank-one, we can work out in
closed form the values of ρ(Q[Tω]n[Wω]n) and σ̄{D[Tω]n[Wω]nD−1} in (6.22).
We show that there exist matrices Q0 and D0 such that upper and lower bounds
in (6.22) coincide, yielding the expression for µ∆n([Tω]n[Wω]n). To lighten nota-
tion we write in the remaining TW for [Tω]n[Wω]n.

We compute first the lower bound, i.e., the spectral radius ρ(QTW). Since
in the SISO case the complementary sensitivity operator is rank-one, so is TW,
and its matrix may then be written as a dyad, i.e., in an outer product form,
TW = g w∗, where the vectors

g =
1

T
Sd Cd


PnHn

Pn−1Hn−1

...
P−nH−n

 and w =


F∗nW

∗
n

F∗n−1W
∗
n−1

...
F∗−nW

∗
−n

 .
Then, QTW is also a rank-one matrix, and its only eigenvalue is λ = w∗Qg, so
ρ(QTW) = |w∗Qg|.

Consider the particular matrix Q0 = diag[Qn,Qn−1, . . . ,Q−n], with

Qi ,


P∗i H

∗
i C
∗
d S
∗
d F
∗
iW
∗
i

|PiHi Cd Sd FiWi|
if PiHi Cd Sd FiWi 6= 0

1 otherwise

Then

ρ(Q0TW) =

n∑
i=−n

|PiHi Cd Sd Fi| Wi, (6.23)

and Q0 is certainly in Q.
We now consider the upper bound σ̄{DTWD−1}. The 2-norm of a rank-one

matrix TW = g w∗ is given by σ̄{TW} = ρ(TW∗TW)1/2 = σ̄{g} σ̄{w}. Consider
σ̄{D0TWD−1

0 } with D0 = diag[Dn, Dn−1, . . . , D−n] and let

Di ,


∣∣∣∣ TFiWi

PiHiCdSd

∣∣∣∣1/2 if PiHiCdSdFiWi 6= 0,

1 otherwise.
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Therefore,

σ̄{D0TWD−1
0 } =

n∑
i=−n

|PiHi Cd Sd FiWi| , (6.24)

with D0 in D.
From (6.22), (6.23), and (6.24), we conclude that

µ∆n(QTW) =

n∑
i=−n

|PiHi Cd Sd FiWi| . (6.25)

Note that (6.25) is valid for an arbitrary integer n > 0 andω inΩN.
The proof is completed by recalling that

T0(s) =
1

T
P(s)H(s)Cd(e

sT )Sd(e
sT )F(s)

and using Proposition 6.1.1. �

Again, as for Theorem 6.1.2, we see from this result that a large value of T0

at any frequency reduces the stability robustness properties of the system at that
frequency. Notice that in this case the condition is an `1-type condition on the
lifted vector representing T0, in contrast to that of Theorem 6.1.2, which is an
`∞-type condition. Hence, for the SISO case, the condition of Theorem 6.1.2 is
straightforwardly implied by condition (6.19), since `1 ⊂ `∞.

Remark 6.1.1 This result may also be obtained dispensing with the µ-framework,
in a similar way to Theorem 6.1.2. An outline of this alternative proof is provided
in Appendix A, §A.5. �

6.2 Divisive Perturbation

We now consider the stability robustness properties of the sampled-data system
of Figure 6.6, i.e., with a divisive type of uncertainty model. We assume that ∆
andW satisfy the conditions stated in §6.1. The perturbed plant is represented by

P̃(s) = (I+W(s)∆(s))−1 P(s) . (6.26)

The derivation of necessary and sufficient conditions for robust stability of
the hybrid system with this class of perturbations is considerably more difficult
than the multiplicative case, and remains as a challenging open problem. In this
section we show that the problem can be also represented by a basic perturbation
model, where the infinite dimensional matrix Sω appears in the interconnection
matrix. A small-gain type sufficient condition follows immediately from this rep-
resentation. We also provide a necessary condition for the SISO case, that imposes
a bound on the values of the fundamental sensitivity function of Chapter 4 on the
jω-axis.
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Figure 6.6: System with divisive uncertainty.

Again, we have for ∆ and W the same assumptions made for the multiplica-
tive uncertainty in the previous subsection. This time, the discretized perturbed
plant is given by

(FP̃H)d(e
sT ) =

1

T

∞∑
k=−∞ Fk(s)(I+Wk(s)∆k(s))

−1Pk(s)Hk(s) . (6.27)

Following similar steps to those for the multiplicative case, we obtain the
block diagram of Figure 6.7 displaying the harmonic structure of the system aris-
ing from the sampling process.
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Figure 6.7: Harmonic structure of the perturbed system with divisive uncertainty.

Based on this picture, we compute an expression analogous to (6.7) for the
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k-harmonic of the input to the uncertainty block, V , getting this time

Vk = −Wk∆kVk +
1

T
PkHkSdCd

∑
m

FmWm∆mVm . (6.28)

The lifted version of (6.28) is then

(I + SωWω∆ω) v = 0 , (6.29)

with the same notation used in the preceding subsection. As could have been
intuitively expected, now the sensitivity operator appears in the formula through
its infinite matrix representation Sω, defined in (5.8). As before, the underlying µ-
problem is evident from (6.29), also represented in the basic perturbation model
of Figure 6.8.

A sufficient condition for stability of the perturbed system is evident from
(6.29). Indeed, if the following inequality is satisfied,

‖SωWω‖ ≤ 1,

then the operator (I+SωWω∆ω) is non-singular, which implies internal stability
of the basic perturbation model.

�

-

SωWω

∆ω

−

v

Figure 6.8: Basic perturbation model for divisive uncertainty.

Remark 6.2.1 (Robust Stability Test under Divisive Perturbations) We conjecture
that a result analogous to Proposition 6.11 will be valid in this case also, i.e., the
system will be robust stable under divisive perturbation if and only if all the
truncated µ-problems corresponding to Figure 6.8 satisfy a stability condition. In
other words, if and only if for all admissible LTI perturbations and each integer
n > 0

max
ω∈ΩN

µ∆n(SnωWn
ω) ≤ 1 . (6.30)

A proof for this result is not obvious to us at present, and it remains as a
topic for future research. We can foresee a greater difficulty in this case since the
sensitivity operator is non-compact, and non-compact operators are not necessar-
ily approximable by a sequence of finite-rank operators. Therefore, special care
should be taken to show that the infinite sequence of µ-problems in (6.30) indeed
converges when n→∞.

Nevertheless, a hint that a proof for this conjecture could be possible is per-
haps suggested by the same fact that allowed us to compute a “closed form” for
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the frequency-gain of this operator in Chapter 5, i.e., the sensitivity operator S is
not an arbitrary non-compact operator, since it can be written as

S = I − T,

where T is always finite-rank. Moreover, notice that a condition like (6.30) would
in principle be valid if we impose additional restrictions on the weighting func-
tion W, e.g., if it is assumed stable and strictly proper. In this case the corre-
sponding infinite matrix Wω represents a compact operator, which also makes
the product SωWω compact. �

A necessary condition for robust stability is easily obtained in the SISO case.
In parallel with the result of Theorem 6.1.2, this condition involves the funda-
mental sensitivity function S0, as we see next.

Lemma 6.2.1
A necessary condition for the the system of Figure 6.6 to remain stable for all ∆
such that ‖∆‖∞ < 1 is that

‖S0(jω)W(jω)‖∞ ≤ 1. (6.31)

Proof: The proof follows the same lines of that of Theorem 6.1.2 after noting that
we can alternatively write the perturbed discrete sensitivity function as

S̃d =
[
1+ Cd(FP̃H)d

]−1
=

[
1+ Cd(FPH)d − Cd

(
F∆WPH

1+W∆ d

)]−1

=

[
1− SdCd

(
F∆WPH

1+W∆ d

)]−1

Sd. (6.32)

That the nonsingularity of the term between brackets in (6.32) implies (6.31) may
be shown by a contrapositive argument similar to that for the proof of Theo-
rem 6.1.2, and is omitted here to avoid repetition. �

In connection with the results of Chapter 4, this lemma shows that if |S0(jω)|
is large at any frequency, then the system will have poor robustness to divisive
uncertainties in the analog plant at that frequency.

6.3 Summary

In this chapter we have considered the stability robustness of a hybrid system to
unstructured LTI perturbations of the analog plant.

Using the frequency-domain lifting introduced in Chapter 5, we have derived
a robust stability test in the form of a structured singular value for the case of mul-
tiplicative perturbations. The expression obtained was first given by Dullerud
and Glover [1993] based on time-domain lifting techniques. Our procedures,
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though, are considerably simplified by the use of the frequency-domain lifting
technique.

For the case of divisive perturbations, our framework allows the problem to
be easily recasted as a basic perturbation model, from which a small-gain type
sufficient condition for robust stability is directly obtained. The derivation of
necessary and sufficient conditions for this type of perturbation model is a much
harder problem than that of multiplicative perturbations, and is left as subject of
ulterior research.

For both types of perturbation models, we have drawn important connections
with the discussion of Chapter 4 by obtaining necessary conditions for robust sta-
bility of the hybrid system in terms of the fundamental sensitivity and comple-
mentary sensitivity functions S0 and T0. A key conclusion of these results is that
large peaks in either S0 or T0 will necessarily degrade the robustness stability
properties of the hybrid system respect to uncertainty in the analog plant.



7
An Application: Design
Implications of Discrete

Zero-placement

Non-minimum phase zeros of a linear time invariant plant impose inherent de-
sign limitations that cannot be overcome by any linear time invariant controller
[see Freudenberg and Looze, 1985, Middleton, 1991]. This fact suggests that more
general compensation schemes, such as periodic linear time-varying control, may
prove useful in controlling NMP systems. Sampled-data control, wherein an ana-
log plant is controlled by a digital computer through the use of periodic sample
and hold, is one class of periodic controllers. Indeed, several authors have noted
that the zeros of a discretized plant (unlike the poles) bear no straightforward re-
lationship to the zeros of the original analog plant [e.g., Kabamba, 1987, Åström
and Wittenmark, 1990]. In particular, use of a GSHF with a linear time invariant
digital controller allows the zeros of the discretized plant to be placed arbitrarily
Kabamba [1987], Åström and Wittenmark [1990], Yan et al. [1994]. Hence it is
tempting to conclude that design limitations due to non-minimum phase zeros
of an analog plant may be circumvented by assigning the zeros of the discretized
plant to be minimum phase Bai and Dasgupta [1990], Er and Anderson [1994].

On the other hand, several authors have pointed out potential disadvantages
to the use of GSHF control. In Åström and Wittenmark [1990, p. 75] the authors
note that “the control signal may become highly irregular”. Kabamba [1987]
notes that systems with GSHF control can sometimes exhibit intersample ripple.
Furthermore, Feuer and Goodwin [1994] present analyses and simulations that
suggest that systems with GSHF controllers are prone to robustness difficulties
in addition to poor intersample behavior. Hence the potential utility of GSHF
control in overcoming linear time invariant design limitations is still a matter of
debate Feuer and Goodwin [1992], Araki [1993].

We have shown in Chapter 4 that design limitations imposed by NMP zeros
of the analog plant remain present when the plant is discretized using a GSHF
hold, even if the discretized plant is minimum phase. In this chapter we shall provide
further interpretations to this fact by analyzing robustness properties of sampled-
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data feedback designs that rely on GSHF zero-placement capabilities.

Let us now consider a common procedure by which a digital compensator is
designed to control an analog plant. Namely, one discretizes the plant at an ap-
propriate sample rate and designs the compensator so that the discretized feed-
back system has acceptable properties. As a consequence, the behavior of the
analog signals in the resulting hybrid feedback system will be acceptable at the
sampling instants. One then simulates the hybrid system to verify that the inter-
sample behavior is also acceptable. If the plant is discretized with a ZOH, and if
an appropriate sample rate and anti-aliasing filter are used, then this is very often
the case.

As noted above, an interesting feature of GSHF control is its ability to locate
the zeros of the discretized plant arbitrarily. Suppose that the analog plant has
a NMP zero within the desired closed loop bandwidth, but that the discretized
plant does not. Suppose also that the discrete closed loop system possesses feed-
back properties that would be unachievable if the discretized plant also had a
problematic NMP zero. It follows as a straightforward corollary to the results of
Chapter 4 that these feedback properties cannot also be present in the intersample
behavior of the hybrid system.

A more intriguing question is whether the use of GSHF control to relocate ze-
ros is responsible for sensitivity and robustness difficulties in the resulting feed-
back system above and beyond those due to the NMP zero of the analog plant.
It was argued in Feuer and Goodwin [1994] that the poor robustness properties
of GSHF control are due to the way in which components of the high frequency
plant response are aliased down into the Nyquist range to form the frequency
response of the discretized plant. In this chapter we shall investigate this phe-
nomenon in detail by developing a framework in which the robustness difficul-
ties associated with zero-shifting may be studied quantitatively.

The remainder of this chapter is organized as follows. §7.1 presents a prelim-
inary result that implies that the use of GSHFs to locate discrete zeros, introduce
serious limitations in the continuous-time response and stabilizability properties
of certain hybrid systems. This section motivates the more general discussion of
Sections 7.2 and 7.3. In §7.2 we state and resolve the first of two Gedanken ex-
periments. The first experiment shows that if one is concerned about the quality
of the intersample response, then GSHF control cannot circumvent design limita-
tions due to an analog NMP zero. In §7.3 we state the second Gedanken experi-
ment; unlike the first, this experiment is concerned only with performance at the
sampling instants. Indeed, the analog plant enters only as a source of modeling
uncertainty in the discretized system. This experiment shows that if the analog
plant has at least one NMP zero with significant phase-lag contribution on the
closed-loop bandwidth of the system, then there is a tradeoff between requiring
(i), high performance of the discrete system, and (ii), stability robustness with
respect to high-frequency analog plant uncertainty.
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7.1 Discrete Zero-placement and ORHP Zeros of GSHFs

This section analyzes some preliminary implications of discrete zero-placement
with GSHFs. Based on a property of real pole-zero parity preservation under dis-
cretization, we shall see that GSHF discrete zero-placement, as used for the strong
stabilization of certain systems, will require a GSHF with zeros in the ORHP. In
view of the results of Chapters 3 and 4, these zeros may bring in stabilizability
difficulties and serious limitations to the continuous-time response of the hybrid
system.

Even in the case of a ZOH, a simple classification of the zeros of a discretized
system is not possible, except in special cases. Åström et al. [1984] have given
asymptotic formulae for slow and fast sampling rates. Hara et al. [1989] exam-
ined parity interlacing properties of real zeros and poles. The key result of their
work is that the parity1 of the number of real zeros between any two real poles is
preserved under discretization — except possibly for cases of pathological sampling
Kalman et al. [1963].

At first glance, it might be expected that since GSHFs are capable of zero as-
signment in the discretized plant [Bai and Dasgupta, 1990, Er and Anderson,
1994, e.g.][], that no similar property holds. The proposition below, however,
shows that there is a generalization of the result of Hara et al. [1989] to the case
of GSHFs.

Consider the strictly proper SISO plant P, and a GSHFH of Figure 7.1. Denote
by (PH)d the discretized plant with sampling period T ,

(PH)d(z) = Z{ST {L
−1{P(s)H(s)}}}, (7.1)

where L {·} and Z{·} denote the Laplace and Z-transforms, respectively, and ST {·}
the sampling operation. We assume that P and H satisfy the conditions for non-
pathological sampling stated in Lemma 2.2.1.
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Figure 7.1: Discrete plant configuration.

Proposition 7.1.1 (Real Pole, Zero Parity Preservation in GSHF Systems)
Suppose that the plant P has simple real poles at s = p1 and s = p2. Then the
parity of the number of real zeros of PH on the interval (p1, p2) is the same as the
parity of the number of real zeros of the discretized plant (PH)d on the interval
(ep1T , ep2T ). ◦

1Parity is even (odd) if there is an even (odd) number of zeros between the two poles.
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Before proving Proposition 7.1.1, we require the following lemma from Mid-
dleton and Freudenberg [1995].

Lemma 7.1.2 (Discretized Plant by Partial Fractions Expansion)
Suppose P has only simple poles, and thus let

P(s) =

n∑
i=1

ri

s− pi
.

Then,

(PH)d(z) =

n∑
i=1

riH(pi)
epiT

z− epiT
.

◦

Proof of Proposition 7.1.1: From Lemma 7.1.2,

lim
z→(ep1T )+

sign (PH)d(z) = sign r1H(p1)

= lim
s→p+

1

signP(s)H(s).

Similarly,
lim

z→(ep2T )−
sign (PH)d(z) = lim

s→p−
2

signP(s)H(s),

from which the result follows. �

Note that for the ZOH case, H has no real zeros, and so we recover the result
of Hara et al. [1989]. Also note that alteration of the zero parity of the discretized
plant — e.g., as required for strong stabilization of some systems — can only be
achieved at the cost of introducing non-minimum phase zeros in the hold.

The implications of a NMP hold function in the sampled-data system are im-
portant. First, it follows from the discussion in Chapter 4 that NMP zeros of the
hold worsen the tradeoffs on design by adding extra limitations to the achievable
analog performance of the system. Second, and perhaps more critically, even the
stabilizability properties of the system could be seriously affected by a NMP hold
if its NMP zero happens to be too close to an unstable pole of the analog plant,
rendering sampling “almost pathological”. This is illustrated by the following
example.

Example 7.1.1 (Simultaneous stabilization by GSHF) In Kabamba [1987, Exam-
ple 2] a FDLTI GSHF is designed to simultaneously stabilize the two systems
given by the transfer functions

P1(s) =
1

s+ 1
and P2(s) =

s− 1.5

s(s− 2)
, (7.2)

in the parallel configuration of Figure 7.2.
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combined system.

Note that the combined system,

P1(s) − P2(s) =
−1.5(s− 1)

s(s+ 1)(s− 2)
, (7.3)

does not satisfy the conditions for strong stabilizability, namely, there is an odd
number of positive real poles (one at s = 2) between two positive real zeros (at
s = 1 and s = +∞); see Figure 7.3. Hence simultaneous stabilization is impossible
[Vidyasagar, 1985, § 5.4, Corollary 12]. Following the procedures suggested by
Kabamba, we design a FDLTI hold with sampling time T = 1 to simultaneously
stabilize the parallel. The matrices K, L, and M corresponding to this hold were
given in the example of Subsection 3.2.3.
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Figure 7.4: Discrete pole-zero map.
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Figure 7.5: H on the real axis.

The discretized combined plant with this hold is

((P1 − P2)H)d(z) =
(z− 0.9433)(z− 0.3641)

(z− 1)(z− e−1)(z− e2)
.

Notice that it is minimum phase, and so strongly stabizable. There is also one
real zero between the real poles z = e−1 and z = 1; see Figure 7.4. Hence, by
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Lemma 7.1.1, the product (P1 − P2)H will have an even number of zeros in the
interval (0, 2), and an odd number of zeros in the interval (−1, 0). By inspecting
(P1 − P2) in (7.3), we conclude that H necessarily has an odd number of zeros in
those intervals. Indeed, as we see in Figure 7.5, H has zeros at s = −0.9967 and
s = 0.0518.

Notice that since the NMP zero of H is very close to the open loop pole of the
continuous plant at the origin, by Lemma 2.2.1 sampling is almost pathological,
and so we should expect the discretized plant to be almost non-stabilizable/non-
detectable. Indeed, this may be checked by computing the singular values of the
Hankel matrix for the discretized system, which are

Σ =
[
23163 0.1178 0.0005

]
.

�

7.2 Gedanken Experiment No. 1: Analog Performance

We have seen in the previous section that discrete zero-placement, as used in
some applications of GSHF for strong stabilization, may bring in extra limitations
to the achievable analog performance of the system. In this section we broaden
this discussion by showing that if the analog plant is NMP, then the analog per-
formance of the system is subject to constraints that are inescapable to GSHF
sampled-data control.

Consider the following scenario. We wish to design a digital compensator
for an analog plant having a problematic NMP zero. Suppose that a GSHF is
used so that the discretized plant is minimum phase, or has NMP zeros only at
less problematic locations. Then one can design a digital controller so that the
discrete sensitivity function satisfies the specification∣∣Sd(ejωT )∣∣ ≤ β1 , 0 ≤ ω ≤ ω1 (7.4)∣∣Sd(ejωT )∣∣ ≤ γ , ω1 < ω ≤ ωN, (7.5)

where β1 < 1 and γ satisfies the lower bound (C.3) imposed by the discrete Bode
sensitivity integral (see Appendix C). On the other hand, the intersample behav-
ior of the hybrid system must satisfy constraints due to the analog NMP zero. We
now present a Gedanken experiment whose result shows that these constraints
manifest themselves as limitations upon the ability of the analog response to ap-
proximate that of the discretized system.

Gedanken Experiment No. 1: Suppose that we wish to design a digital con-
troller for an analog plant. Then the following three questions (among others) are
of interest:

(A1) Is the nominal response of the discretized system satisfactory? Equivalently,
is the response of the sampled-data system satisfactory at the sampling in-
stants?
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(A2) Does the nominal analog response approximate that of the discrete system,
so that a satisfactory discrete response will correspond to satisfactory inter-
sample behavior?

(A3) Is the analog response insensitive to plant uncertainty, disturbances, and sen-
sor noise?

Clearly it is desirable that the answers to all three questions be affirmative. The
proposed experiment is to determine whether affirmative answers to all three of these
questions can be obtained simultaneously. ◦

We shall consider that the answer to (A1) is affirmative if the discrete sensi-
tivity and complementary sensitivity functions are well behaved. Specifically, we
require that Sd(ejωT ) satisfy bounds of the form (7.4)-(7.5). It follows from the
identity

Sd(e
sT ) + Td(e

sT ) = 1 (7.6)

that if the bounds (7.4)-(7.5) are satisfied, then |Td(e
jωT )| is also bounded.

To quantify the answer to (A2), define the fidelity function.

Sf(s) , S
0(s) − Sd(e

sT )

= −T0(s) + Td(e
sT )

(7.7)

If |Sf(e
jωT )| � 1, then at frequency ω the fundamental component of the analog

response to disturbances, noise, and commands will closely approximate that of
the discretized system.

Since the discrete frequency response is periodic inω, it is clearly not possible
(nor desirable) that S0(jω) and T0(jω) closely approximate the discrete responses
at all frequencies. Hence we shall consider that the answer to (A2) is affirmative
if fidelity is achieved over a low frequency range:

|Sf(jω)| ≤ β2 , for 0 ≤ ω ≤ ω2 < ωN. (7.8)

Finally, as discussed in Chapter 4, it is necessary to keep the fundamental
sensitivity and complementary sensitivity functions bounded at all frequencies to
prevent large intersample response to disturbances and noise, as well as to keep
differential sensitivity from being poor. Moreover, from the results in Chapter 6
(particularly Theorem 6.1.2 and Lemma 6.2.1), this is also required to prevent
stability robustness from being poor. Hence an affirmative answer to (A3) will
require that S0(jω) and T0(jω) satisfy upper bounds of the form

|S0(jω)| ≤MS(ω) (7.9)

and
|T0(jω)| ≤MT (ω) (7.10)

at all frequencies.
It follows immediately from Theorem 4.4.1 that the analog NMP zero imposes

a limitation upon our ability to achieve affirmative answers to all of questions
(A1)-(A3).
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Corollary 7.2.1
Suppose that the hybrid feedback system is stable and that (7.4) and (7.8) both
hold. Defineω∗ , min{ω1,ω2}, andΩ∗ = [0,ω∗). If the analog plant has a NMP
zero at ξ, it follows that

sup
ω>ω∗

|S0(jω)| ≥
(

1

β1 + β2

) Θ(ξ,Ω∗)
π−Θ(ξ,Ω∗) ∣∣B−1

p (ξ)
∣∣ π
π−Θ(ξ,Ω∗) , (7.11)

where Bp is the Blaschke product of the unstable poles of the plant (cf. Subsec-
tion 4.4.1), and Θ(ξ,Ω∗) is the weighted length of the interval Ω∗, defined in
Chapter 3, (3.35).

Proof: It follows as a direct application of Corollary 4.4.2, taking into account
bounds (7.4) and (7.8). �

The peak in |S0(jω)| associated with making both β1 and β2 small will tend to
violate the bounds (7.9)-(7.10) unless ω∗ is sufficiently small that the NMP zero
does not contribute significant phase lag at this frequency.

7.3 Gedanken Experiment No. 2: Discrete Response

We argued in the preceding section that GSHF control is ineffective at removing
the design limitations due to analog NMP zeros. Indeed, there exists a tradeoff
between the quality of the response at sampling instants and that of the inter-
sample behavior. Specifically, if |Sd(e

jωT )| is made small over a wide frequency
band relative to the location of the NMP zero, then |S0(jω)| cannot closely ap-
proximate the discrete response over this band without incurring large peaks at
higher frequencies.

In the present section, we shall argue that use of GSHF control to shift zeros
so that the discrete sensitivity function can be made small over a wide frequency
range may lead to unacceptable robustness difficulties even if no requirement is
imposed upon the analog response. The source of these difficulties is the necessity to
maintain stability robustness against the contribution of high frequency aliases to
the discrete plant response.

7.3.1 Formulation of Gedanken Experiment No. 2

Consider the formula (2.9), which shows that the response of the discretized plant
at a frequency ω ∈ ΩN depends upon the response of the analog plant, prefilter,
and hold function at infinitely many frequenciesω+ kωs, k = 0,±1,±2, . . .

To explore this phenomenon further, let us rewrite (2.9) as

(FPH)d(e
sT ) =

1

T
F(s)P(s)H(s) +

1

T
Υ(s), (7.12)

where
Υ(s) ,

∑
k 6=0

Fk(s)Pk(s)Hk(s). (7.13)
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It follows from (7.12)-(7.13) that if for some value of s the analog plant has
a zero, P(s) = 0, but the discretized plant does not, (FPH)d(e

sT ) 6= 0, then nec-
essarily the response of the discretized plant at z = esT must depend upon the
response of the analog plant at one or more of the frequencies s+ jkωs, k 6= 0. As
a corollary, the response of the discretized system will be potentially sensitive to
uncertainty in the analog plant at these frequencies. This fact is significant in that
uncertainty in the plant model generally increases at higher frequencies. Hence
if a strong dependence upon high frequency plant behavior is required to shift a
zero, then one might suspect that the sensitivity and robustness of the resulting
design would be poor. We now propose another Gedanken experiment whose
result should serve to clarify this issue.

Gedanken Experiment No. 2: Suppose that we wish to design a digital con-
troller for an analog plant. Then the following two questions (among others) are
of interest:

(D1) Is the nominal response of the discrete system satisfactory?

(D2) Is the discrete response insensitive to uncertainty in the analog plant?

Clearly, it is desirable that the answers to both questions be affirmative. The pro-
posed experiment is to determine whether affirmative answers to both of these questions
can be obtained simultaneously. ◦

Note that we are now concerned solely with the response of the system at
the sampling instants and are imposing no requirement that the nominal or robust
intersample behavior be satisfactory. The only requirement concerning the analog
system is that the behavior at sampling instants be robust against uncertainty in
the analog plant.

Let us now revisit the problem of achieving robust stability against linear time
invariant uncertainty in the analog plant. Motivated by the discussion surround-
ing (7.12)-(7.13), we shall consider separately uncertainty in the two terms on the
right hand side of (7.12). In particular since uncertainty in the analog plant tends
to increase with frequency, it follows that for ω ∈ ΩN uncertainty in the term
F(jω)P(jω)H(jω) will tend to be dominated by uncertainty in the term Υ(jω)
due to the high frequency aliases.

Consider uncertainty in the discretized plant due to analog plant uncertainty
of the form

P̃(s) = P(s) (1+W(s)∆(s)) , (7.14)

where ∆ is stable and proper, with |∆(jω)| < 1 for all ω, and W is a stable, min-
imum phase weighting function used to represent frequency dependence of the
modeling error. A necessary and sufficient condition for the sampled-data sys-
tem to remain stable under uncertainty of the form (7.14) was derived in Dullerud
and Glover [1993], and was discussed in Chapter 6. This condition concerns an
infinite sequence of µ-tests, but in the case of SISO systems simplifies to the ex-
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pression

sup
ω∈ΩN

∞∑
k=−∞ |T0k (jω)Wk(jω)| ≤ 1, (7.15)

as we stated in Corollary 6.1.3. We have also seen in Chapter 6, Theorem 6.1.2,
that a necessary condition for robust stability was

|T0(jω)W(jω)| ≤ 1 for allω in R. (7.16)

Typically, |W(jω)| becomes unbounded at high frequencies, and thus it is neces-
sary that |T0(jω)| → 0 sufficiently rapidly as ω → ∞. An inspection of the proof
of this result in Chapter 6 reveals that the effects of aliases in (7.12) are ignored
in deriving (7.16). We now develop a stronger necessary condition that does take
aliases into account. Define

w = inf
ω6∈ΩN

|W(jω)|. (7.17)

Then, we have the following.

Corollary 7.3.1
A necessary condition for robust stability of the sampled-data system is that

|T0(jω)W(jω)| +w|Sf(jω)| ≤ 1, for allω inΩN. (7.18)

Proof: It follows immediately from (7.15) and (7.7), since∑
k

|T0k(jω)Wk(jω)| ≥ |T0(jω)W(jω)|

+
w

T

∑
k 6=0

|Fk(jω)Pk(jω)Hk(jω)Sd(e
jωT )Cd(e

jωT )|

≥ |T0(jω)W(jω)| +w|Sf(jω)|.

�

Since relative uncertainty in the analog plant (7.14) typically becomes large at
high frequencies, and since the Nyquist frequency is usually chosen to be around
5 times the desired closed loop bandwidth, it is not unreasonable to assume that
w in (7.17) is greater than 1. Hence (7.18) requires that |Sf(jω)| < 1 over the
Nyquist range. This fact is significant since, as we shall see in the next subsection,
Sf must satisfy a Poisson integral relation.

7.3.2 Interpolation Constraints and an Integral Relation

We now state a set of interpolation constraints and an integral relation that must
be satisfied by the fidelity function, Sf. We first require an additional assumption
that will hold generically.
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Assumption 5
If ξ is a CRHP zero of P or H, then eξT is not a zero of (FPH)d. ◦

Proposition 7.3.2 (Interpolation Constraints for the Fidelity Function)
Suppose that the sampled-data feedback system is stable, and that P, F,H, and Cd
satisfy all assumptions stated in Chapter 2 as well as Assumption 5. Then the
following conditions are satisfied:

(i) Let ζ be a CRHP zero of P. Then

Sf(ζ) = Td(e
ζT ). (7.19)

(ii) Let γ be a CRHP zero of H. Then

Sf(γ) = Td(e
γT ). (7.20)

(iii) Let a be a zero of Cd with a ∈ DC. Define

ak ,
1

T
log(a) + jkωs, with k = 0,±1,±2, . . .. (7.21)

Then
Sf(ak) = 0, for all k. (7.22)

(iv) Let p be a CRHP pole of P. Define

pk , p+ jkωs, with k = ±1,±2, . . .. (7.23)

Then
Sf(p) = 0 and Sf(pk) = 1 (7.24)

(v) Let δ be a CRHP zero of Υ. Then

Sf(δ) = 0. (7.25)

(vi) Sf has no CRHP zeros other than those given in (iii), (iv), and (v).

Proof: From (7.7) and (7.13) we can alternatively write

Sf(s) =
1
TΥ(s)

(FPH)d(esT )
Td(e

sT ). (7.26)

Conditions (i) and (ii) follow then from Assumption 5, and the identity (7.26).
Condition (iii) follows from the identity

Sf(s) =
1

T
Υ(s)Sd(e

sT )Cd(e
sT ). (7.27)

Condition (iv) follows from (7.26). Condition (v) follows from (7.27). Finally,
(7.27) shows that the zeros of Sf are restricted to those of Υ(s), Sd(esT ), and
Cd(e

sT ), and condition (vi) follows. �
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These interpolation constraints fix the values of the fidelity function at some
points of the CRHP. As we have seen in Chapter 4, the Poisson integral may be
used to translate the interpolation constraints into an equivalent integral relation.
The following result shows this.

Theorem 7.3.3 (Poisson Integral for the Fidelity Function)
Let ξ = x+ jy equal one of the NMP zeros of P or H. Then∫∞

0

log |Sf(jω)|Ψ(ξ,ω)dω ≥ π log
∣∣Td(eξT )∣∣ (7.28)

where Ψ(ξ,ω) is the Poisson kernel for the half plane defined in (3.30).

Proof: Note that we can write

Sf(s) = Šf(s)Bp(s)Ba(s)Bρ(s)Bδ(s)e
−sτ∆e−sNcT ,

where Šf satisfies the Poisson integral relation Hoffman [1962], and2

Bp is the Blaschke product of the poles of P in C+,
Ba is the Blaschke product of the poles of Cd(esT ) in C+,
Bρ is the Blaschke product of the poles of (FPH)d(e

sT ) in C+, and
Bδ is the Blaschke product of the zeros of Υ in C+.

This fact, together with the identities |Sf(jω)| = |Šf(jω)| and Sf(ξ) = Td(ξ), yield
the desired results. �

The integral (7.28) imposes a constraint upon values of |Sf(jω)|. Analysis of
design implications is deferred to the next section.

7.3.3 Result of Gedanken Experiment No. 2

Suppose that the analog plant has at least one NMP zero and is subject to large
modeling uncertainty at high frequencies. Using the Poisson integrals for Sd(ejωT )
(see Appendix C), and Sf(jω) given by (7.28), we now show that there exists a
limitation upon the ability of a sampled-data feedback system to satisfy, with af-
firmative answers, questions (D1) and (D2) of this Gedanken experiment. Specif-
ically, we shall show that there exists a tradeoff between requiring (i) high per-
formance in the discrete system and (ii) stability robustness with respect to the
analog plant uncertainty. The severity of this tradeoff is determined by the rel-
ative location of the analog NMP zero, and is independent of whether or not the
discretized plant is minimum phase. Furthermore, the tradeoff exists even if no per-
formance requirements are imposed upon intersample behavior.

We shall state performance requirements in terms of bounds upon the discrete
sensitivity function:

|Sd(e
jωT )| ≤ β, for allω inΩε , [0, εωN) (7.29)

|Sd(e
jωT )| ≤ γ, with εωN < ω ≤ ωN, for ε < 1, (7.30)

2Compare with Subsection 4.4.1 in Chapter 4.
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where β < 1, and γ satisfies the lower bound γ > (1/β)ε/(1−ε) imposed by the
discrete version of the Bode sensitivity integral, (C.3) in Appendix C.

If the discretized plant is minimum phase, then any such specification can be
achieved. Note that the bounds (7.29)-(7.30) imply that |Td(e

jωT )| is also bounded.
We now show that requiring Sd(ejωT ) to satisfy bounds such as (7.29)-(7.30) im-
poses constraints upon the values of Td(esT ) off the unit circle.

Lemma 7.3.4
Assume that Sd is stable and that Sd(ejωT ) satisfies the bounds (7.29)-(7.30). Con-
sider ν = eξT , where ξ ∈ ORHP. Then

|Td(e
ξT )| ≥ FT (ξ, β, γ, ε), (7.31)

where

FT (ξ, β, γ, ε) , 1− β
Θd(ξ,Ωε)

π γ
π−Θd(ξ,Ωε)

π (7.32)

Proof: It follows from Corollary C.1.4 in Appendix C that

|Td(e
ξT ) − 1| ≤ β

Θd(ξ,Ωε)
π γ

π−Θd(ξ,Ωε)
π |Bξ(e

ξT )|, (7.33)

from which the result follows. �

This result shows that if the specification imposed upon |Sd(e
jωT )| is very strin-

gent (i.e., if β � 1) then the lower bound on |Td(e
ξT )| will nearly equal one.

Proximity to one is determined by the relative location of the zero with respect
to the interval Ωε. This point is illustrated for a real zero, ξ = x, in Figure 7.6,
wherein we plot FT (ξ, β, γ, ε) vs. the ratio x/εωN for γ = 2, ε = 0.2, and various
values of β. For each β, the lower bound on

∣∣Td(exT )∣∣ increases monotonically as
the zero location decreases relative to the frequency intervalΩε.
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Figure 7.6: Bound (7.31) on Td.
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Figure 7.7: FS(w, x) vs. x.

We shall suppose that the analog plant is subject to uncertainty of the form
(7.14), where ∆ is arbitrary save for the bound |∆(jω)| < 1, and |W(jω)| → ∞
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as ω → ∞. Let w be given by (7.17). It follows from Theorem 6.1.2 and Corol-
lary 7.3.1 that necessary conditions for robust stability are that

|Sf(jω)| < 1/w , for allω inΩN, (7.34)

and

|T0(jω)| < 1/w , for allω 6∈ ΩN (7.35)

Our next result is an immediate corollary to Theorem 7.3.3.

Corollary 7.3.5
Assume that the feedback system of Figure 2.4 is stable. Let ζ denote a NMP zero
of P. Suppose that Sf satisfies the bound (7.34). Then

sup
ω>ωN

|Sf(jω)| ≥ FS(w, ζ)|Td(eζT )|
π

π−Θ(ζ,ωN) , (7.36)

where

FS(w, ζ) , (w)
Θ(ζ,ωN)
π−Θ(ζ,ωN) . (7.37)

Furthermore,

sup
ω>ωN

|T0(jω)| ≥ FS(w, ζ)|Td(eζT )|
π

π−Θ(ζ,ωN) −
∣∣|Sd(ejωT )| − 1∣∣ (7.38)

Proof: The bound (7.36) follows from (7.28) by imposing (7.34), exponentiating
both sides, and rearranging the result. The bound (7.38) follows from this and
(7.7). �

Consider Figure 7.7, which contains plots of FS(w, ζ) vs. the location of a real
zero, ζ = x, for various values of w. These plots show that, for a fixed value of
w, FS(w, ζ) is large when ζ is at a relatively low frequency with respect to ωN.
In this case |Sf(jω)| will have a large peak outside the Nyquist range unless the
value of |Td(e

ζT )| is sufficiently small. If |Sd(e
jωT )| satisfies bounds as (7.29)-

(7.30), then (7.38) shows that there exists a corresponding peak in |T0(jω)|. The
latter peak will, in turn, imply that (7.35) will be violated, and thus that the sys-
tem will not be robustly stable. These remarks imply that to satisfy the stability
robustness requirements (7.34)-(7.35) it is necessary that |Td(e

ζT )| be small. How-
ever, as Lemma 7.3.4 shows, requiring |Td(e

ζT )| to be small imposes a limitation
upon the response of the discretized system even if the discrete plant is minimum
phase. Specifically, for a given intervalΩε, the value of β cannot be required to be
very small, and this limitation worsens as ε approaches 1. Indeed, the following
is a straightforward corollary of Lemma 7.3.4.
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Corollary 7.3.6
Suppose that ε and γ are fixed and that we require

|Td(e
ξT )| < c < 1 . (7.39)

Then necessarily the value of β in (7.29) must satisfy

β > (1− c)
π

Θd(ξ,Ωε)γ
Θd(ξ,Ωε)−π
Θd(ξ,Ωε) (7.40)

◦

This result shows that if |Td(e
ξT )| is required to be very small to prevent large

peaks in |Sf(jω)| and |T0(jω)|, then there is a lower limit on the level of discrete
sensitivity reduction that may be required by (7.29).

It follows from the above discussion that design limitations due to analog
NMP zeros must be taken into account in the design of the discretized feedback
system even if no performance requirement is imposed upon the intersample
behavior. Neglecting such limitations will lead to poor robustness properties
against uncertainty in the analog plant. We illustrate these results with an ex-
ample in the following subsection.

7.3.4 Example: Robustness of Zero-placement

In this section, we analyze robustness properties of a design application of GSHFs
to loop transfer recovery (LTR). The procedure of LTR, originally developed by
Doyle and Stein [1979], 1981, briefly consists on suitably tuning a parameter in
a dynamic output-feedback compensator to “recover” the properties of a state-
feedback design. This design technique has become very popular in recent years
[e.g., Zhang and Freudenberg, 1990, Fu, 1990, Shi et al., 1994, Turan and Mingori,
1995].

A crucial requirement for satisfactory LTR is that the plant has to be minimum
phase, since this procedure renders a controller that essentially involves an in-
verse of the plant. Design limitations imposed by NMP zeros have been analyzed
by Zhang and Freudenberg [1990] in the continuous-time case. In sampled-data
implementations these limitations are even more severe. Indeed, since the system
operates “open-loop” between samples, analog disturbances can never be com-
pletely rejected (see §4.3 in Chapter 4), and therefore perfect LTR is impossible if
intersample behavior is considered Shi et al. [1993].

Nevertheless, a technique to achieve perfect discrete LTR “irrespective of whether
the underlying continuous-time plant is minimum phase or not” has been sug-
gested by Er and Anderson [1994]. The basic idea of this paper is first to use
a GSHF to relocate the discrete zeros so that the discretized plant is minimum
phase, and then apply a standard discrete-time LTR procedure. Naturally, perfect
LTR at the sampling times is then feasible independently of the zero distribution of
the analog plant. Unfortunately, as we have seen in the previous section, such a
technique is inherently non-robust to uncertainty in the analog plant, even if just
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the sampled behavior is of concern. We show this on the design example provided
by Er and Anderson.

The system structure for GSHF-based LTR is shown in Figure 7.3.4. The plant
considered was stable but non-minimum phase, and is given by

P(s) =
s− 5

(s+ 1)(s+ 3)
.

The target state-feedback design satisfied the following specifications:

• Rise time, tr = 0.1s

• Settling time, ts ≤ 0.5s

• Maximum overshoot,Mp ≤ 15%.

According to these requirements, the sampling time was selected T = 0.04s, and
the closed-loop bandwidthωb = 15.3 rad/s, approximately a 20% of the Nyquist
range. Notice that these choices leave the NMP zero of the plant well inside the
closed-loop bandwidth, which, according to our results, will have a significant
incidence in the sensitivity and robustness properties of the system.
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Figure 7.8: Structure for GSHF-
based LTR.
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Figure 7.9: Analog and discrete step
response with q = 3.

The GSHF proposed was PC type with two steps, and was given by (3.50) on
page 46. The LQR/LQG compensator for the system discretized with this GSHF
is parameterized with the weight R = 1/q2, with q ≥ 0, and yields asymptotic
LTR as q → ∞. Figure 7.9 shows the analog and discrete step responses of the
closed-loop system with q = 3, as suggested by the authors. We see that for this
value of q the specifications are satisfied by the discrete response, although the
continuous-time response shows large oscillations. This can be predicted from
Figure 7.10 by analyzing the plot of the corresponding fidelity function Sf(jω),
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which displays significantly large values over the system’s closed-loop band-
width. Notice that this is even worse for larger values of q, which will give better
discrete recovery of the loop.
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Figure 7.10: Sf(jω) for different val-
ues of recovery q.
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Figure 7.11: System destabilized by
a time delay θ = 0.0023s.

More critically, it follows from the discussion in Subsection 7.3.3 that the sys-
tem is prone to stability problems under plant uncertainty, since Sf(jω) has im-
portant peaks on the Nyquist band. Indeed, suppose that there is a small unmod-
eled time delay θ, with θ ≥ 0, in the analog plant. This may be represented by a
multiplicative perturbation model as in (7.14), with

∆(s) =
1− e−sθ

sθ
(1+ δ), and W(s) =

−θs

(1+ δ)
,

where 0 < δ � 1. Notice that both ∆ and W satisfy the conditions required
in Subsection 7.3.1, so they are admissible. Consider the plots in Figure 7.10 for
q = 3. From (7.34) we see that if

inf
ω6∈ΩN

|W(jω)| >
1

5.52
,

then the condition for stability of the perturbed system will be violated, since

sup
ω∈ΩN

|Sf(jω)| = 5.52

from the plots. Equivalently, since infω6∈ΩN |W(jω)| = θ(1 + δ)ωN, it follows
for this perturbation — assuming δ ≈ 0 — that if the delay θ is greater than
θ0 = T/5.52π ≈ 0.0023s, then condition (7.34) is violated. The system actually
becomes unstable. This may be appreciated in Figure 7.11, where we plotted the
step responses for the system perturbed with a delay θ = θ0.
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7.4 Summary

This chapter has studied robustness and sensitivity properties of a sampled-data
system with a GSHF. Based on the results of previous chapters, we have shown
here that shifting NMP zeros with GSHF control may lead to serious robustness
difficulties in both the analog and discrete performances of the system.

In particular when the plant has NMP zeros, we have presented two instances
in which GSHF zero-placement is generally prejudicial:

(i) If good nominal discrete performance is required, then necessarily the dis-
crete response will be sensitive to uncertainty in the analog plant.

(ii) If good nominal discrete performance and satisfactory intersample behavior
is required, then necessarily the analog response will be sensitive to plant
uncertainty, disturbances and sensor noise.

In addition, we have shown that GSHF zero-placement, as used for robust
stabilization of certain systems, will necessarily require a GSHF with NMP zeros.
From the results in Chapters 3 and 4, these zeros yield extra limitations in analog
performance, and moreover, may render sampling “almost pathological”, which
in turn implies a discretized system with poor stabilizability properties.



8
Conclusions

We have provided a frequency-domain framework to study sampled-data feed-
back control systems. This framework incorporates full information of the continuous-
time response of the system, and has emphasized the description of the hybrid
operators governing the steady-state response to output disturbances and mea-
surement noise. Using this framework,

(i) We have developed a theory of design limitations for SISO sampled-data
systems. This theory allows the quantification of performance limitations
that are inherent to open-loop properties of the plant and hold function.
Briefly, we found that

• Hybrid systems inherit the difficulty imposed upon analog feedback
design by those plant properties such as NMP zeros, unstable poles,
and time-delays. Furthermore, such difficulty is independent of the
type of hold used.

• Hybrid systems are subject to extra design limitations due to potential
NMP zeros of the hold. In particular, if there is a hold zero close to a
plant pole in the ORHP, sampling is “almost pathological”, and then
system’s sensitivity, robustness, and response to disturbances will be
poor.

• Hybrid systems, unlike the analog case, are subject to limits upon the
ability of high compensator gain to achieve disturbance rejection. This
limits can be overcome in some cases by imposing additional con-
straints on the structure of the hold.

(ii) We have derived MIMO closed-form expressions for the frequency-gains
and L2-induced norms of hybrid sensitivity and complementary sensitivity
operators. These expressions characterize the frequency-gain of both oper-
ators as the maximum eigenvalue of an associated finite-dimensional dis-
crete transfer matrix. The induced norm is then computed by performing
a search of maximum over a finite range of frequencies. The results admit
straightforward implementation in a numerically reliable fashion.

(iii) We have shown that certain robust stability tests for sampled-data systems
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may be derived in simpler and more intuitive way with a pure frequency-
domain approach than with alternative state-space based formulations.

(iv) We have analyzed GSHFs and GSHF-based feedback control systems. From
our results we conclude that control schemes relying on GSHF zero-placement
capabilities cannot circumvent fundamental limitations imposed by analog
NMP plant zeros. Furthermore, if the analog plant has a NMP zero within
the desired system’s closed-loop bandwidth, and GSHF zero-shifting is used
to attempt removing the limitations imposed by this zero, then the follow-
ing design tradeoffs arise:

(a) If good nominal discrete performance is required, then necessarily the
discrete response will be sensitive to uncertainty in the analog plant.

(b) If good nominal discrete performance and satisfactory intersample be-
havior is required, then necessarily the analog response will be sensi-
tive to plant uncertainty, disturbances and sensor noise.

From the above discussion, it seems that only a marginal improvement in
performance may be expected from using a GSHF instead of a ZOH. In
any case, it should be noted that the potential advantages of GSHFs may
altogether evaporate at the time of a practical implementation. Indeed, it
is not obvious how to actually construct a LTI GSHF other than as an ap-
proximation by a PC GSHF, and even in this case, the realization will be
considerably more demanding than that of the simpler ZOH.

A number of other issues remain as topics for future research. Perhaps an
obvious first step would be the application of the analysis tools developed in this
thesis to synthesis of discrete controllers. In this direction, the frequency-domain
methods presented may prove useful, offering clear interpretations, and reliable
numerical algorithms.

For example, a potential line of research is connected with the expressions
derived in Chapter 5 for operator frequency-gains and L2-induced norms. In
Corollary 5.2.6 we introduced the discrete function Φd, which was indicated as
a measure of intersample activity, since it serves to quantify the difference in
L2-induced norms between hybrid and discrete sensitivity operators. For exam-
ple, Φd could be useful to perform hybrid H∞ loop shaping, i.e., by considering
the frequency-gain of the hybrid complementary sensitivity operator, and then
“shaping” the responses of Φd and the discrete complementary sensitivity func-
tion. This function has some other intriguing interpretations that might be worth-
wile analyzing further:

(i) Φd may be seen as a “distance” between the spaces spanned by the plant,
hold, and anti-aliasing filter in the lifted domain (cf. Remark 5.2.3). The
minimization of this distance might be considered, for example, to draw
alternative design guidelines for the anti-aliasing filter.

(ii) Φd is linked to the degree of conservativeness of the L2-induced norm as
a measure of hybrid stability robustness against LTI uncertainties [Hagi-
wara and Araki, 1995]. In relation to this, we might consider the problem of
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mapping analog uncertainties to discrete, and devise a procedure to reduce
a hybrid robust stability problem to a simpler discrete one. More concretely,
suppose that ∆ is some admissible uncertainty in the analog plant P,

P̃ = P(1+ ∆).

Then, if F is the anti-aliasing filter, and H the hold, we may write the dis-
cretized perturbed plant as

(FP̃H)d = (FPH)d

(
1+

(FP∆H)d

(FPH)d

)
.

Let us then define the discrete perturbation by ∆d , (FP∆H)d/(FPH)d.
Thus, if ‖∆‖∞ ≤ γ, then it is not difficult to see that

‖∆d‖∞ ≤ γ‖Φd‖∞,
which characterizes a class of uncertainties for an associated discrete-time
robust stability problem. The conditions obtained from this discrete prob-
lem will be conservative, but this may be quantified from the analysis of
Φd.

An extension of our theory of hybrid performace limitations to a multivariable
setting is also a path worth pursuing in the future. This could be approached,
for example, by combining our results with those obtained by Freudenberg and
Looze [1988], and more recently by Gómez and Goodwin [1995], for analog mul-
tivariable linear systems.

In relation to the possible improvement in performance obtained from using
GSHFs, it would be indeed interesting to compare the different optimalH∞ solu-
tions to the sampled-data control problem; as for example those given by Bamieh
and Pearson [1992] and Sun et al. [1993]. Bamieh and Pearson solve the problem
assuming that the hold is a ZOH, whereas Sun et al. do not make this assump-
tion, and thus obtain a more general solution that involves a discrete controller
and a GSHF. The loss of performance arising from the use of the ZOH may well
be quantified by using our formulas for the L2-induced norms, which consider
GSHFs, and are easily programmable.

In a wider perspective for further work, one of the issues that comes to mind
is to examine how pervasive these fundamental design limitations are. For some
time, we have known that NMP zeros and unstable poles of the plant impose de-
sign constraints on analog systems. We have now shown that these limitations
carry over to sampled-data systems. It seems that this would also follow to some
extent to related control schemes such as periodic and multirate, which are sub-
jects of current research. Do these limitations apply to any linear controller? Or
even perhaps to any controller whatsoever?

At present, no answer to these general questions seems to be known, but it is
expected that different analysis techniques would need to be applied.





A
Proofs of Some Results in the

Chapters

A.1 Proofs for Chapter 2

In this section we prove Lemma 2.1.2. A proof for the strict conditions we stated
may be found in Henrici [1977, Theorem 10.10a]1; we shall give here a more com-
pact version under an additional hypotesis.

We start with a few definitions and preliminary results. Given a function G
(the Laplace transform of a function g) we introduce the following sequence of
functions defined over the domain DG.

ΓN(s) ,
1

T

N∑
n=−N

G(s+ jnωs), for N = 0, 1, 2, . . . (A.1)

We shall assume the following, which is required for our proof of Lemma 2.1.2.

Assumption 6
The sequence {ΓN}∞N=0 is uniformly convergent in the strip DG. ◦

The convergence of the sequence {ΓN}∞N=0 established above delineates the
conditions under which the RHS of (2.6) is mathematically meaningful.

Remark A.1.1 The uniform convergence of the series 1
T

∑∞
n=−∞G(s + jnωs) is

also the condition required by the proof of Doetsch [1971]. We suspect that as-
suming that g is a function of BV should imply the uniform convergence of the
series, and then allow a reasonably compact proof of Lemma 2.1.2 without re-
sourcing to the Poisson Summation Formula Henrici [1977]. However, we could
not complete this proof by the time of writing this monograph. This assumption
on g would then be a more restrictive condition, although somehow more in-
sightful if one is interested in a time-domain characterization. That this condition
is in fact sufficient to prove Lemma 2.1.2 follows from Henrici [1977]. �

1Henrici refers to this result as the Polya Formula, and derives it as a corollary of the Poisson
Summation Formula.
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Many of the proofs for results related to Lemma 2.1.2 available in the literature
rely on the introduction of the “function”

δT (t) =

∞∑
k=−∞ δ(t− kT),

defined as an infinite series of impulses, or Dirac’s deltas Pierre and Kolb [1964],
Carroll and W.L. McDaniel [1966], Phillips et al. [1966], Åström and Wittenmark
[1990]. A Dirac’s delta is not well-defined as a function; it is in fact a distribution,
and so special care must be taken regarding the sense in which certain mathemat-
ical manipulations are performed [cf. Zemanian, 1965].

Our approach dispenses with the use of δT , and instead resources to the Dirich-
let Kernel, a classical tool in proving convergence of Fourier series. The Dirichlet
Kernel is defined by

DN(t) =
sin((2N+ 1)t)

sin(t)
,

where N is a positive integer. DN is periodic and its integral on [0, π/2] has a
fixed value independent of N, ∫π/2

0

DN(t)dt =
π

2
.

A key property of the Dirichlet Kernel is related to the following Dirichlet Integral
[e.g., Carslaw, 1950, § 94].

Lemma A.1.1 (Dirichlet Integral.)
If f is a function of BV on the interval [0, π], then

lim
N→∞

∫π
0

f(t)DN(t)dt =
π

2
[f(0+) + f(π−)]

◦

Note thatDN is very much like an approximation to δT , with many similar prop-
erties, but is well-defined as a function (see Figure A.1).

Proof of Lemma 2.1.2 Consider the finite series
∑

|n|≤NG(s + jnωs) for some s
in DG. Then, we have:∑

|n|≤N

G(s+ jnωs) =
∑

|n|≤N

∫∞
0

e−(s+jnωs)t g(t)dt

=
∑

|n|≤N

∞∑
k=0

∫ (k+1)T

kT

e−(s+jnωs)t g(t)dt

=
∑

|n|≤N

∞∑
k=0

∫T
0

e−s(t+kT) e−jnωst g(t+ kT)dt

=

∞∑
k=0

∫T
0

e−s(t+kT) g(t+ kT)

 ∑
|n|≤N

e−jnωst

 dt(A.2)
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Figure A.1: Dirichlet Kernel for N = 8.

Note that the summation inside the integral in (A.2) is precisely the Dirichlet
Kernel introduced before, since∑

|n|≤N

e−jnωst = DN(ωst/2).

Hence, for each kwe obtain a Dirichlet Integral on e−s(t+kT) g(t+ kT),

∑
|n|≤N

G(s+ jnωs) =

∞∑
k=0

∫T
0

e−s(t+kT) g(t+ kT)DN(ωst/2)dt. (A.3)

Take limits on both sides of (A.3) and, since the series on the LHS is uniformly
convergent, we can interchange limit and summation, which yields

lim
N→∞

∑
|n|≤N

G(s+ jnωs) =

∞∑
k=0

lim
N→∞

∫T
0

e−s(t+kT) g(t+ kT)DN(ωst/2)dt.

=
T

2

∞∑
k=0

(
g(kT+) + g((k+ 1)T−)

)
e−skT . (A.4)

Adding and subtracting
∑∞
k=0 g(kT

+)e−skT/2, we obtain T Fd(esT ) on the RHS
of (A.4). Finally, noting that g(0−) = 0, expression (2.6) follows, completing the
proof. �

A.2 Proofs for Chapter 3

This section provides the proof of Lemma 3.2.2, on the asymptotic location of the
zeros of a FDLTI GSHF.

Proof of Lemma 3.2.2 We first prove, by contradiction, that n,m < N−1, where
L ∈ R

N×N. Suppose n ≥ N − 1. Then KLiM = 0 for i = 1, 2, . . . ,N − 1.
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By the Cayley-Hamilton Theorem Chen [1984], KLiM = 0 for all i. However,
since dih/dti

∣∣
t=T

= KLiM, this implies that h is identically zero [Chen, 1984,
Appendix B]. This argument also shows that the coefficient of e−sT in (3.12) is
nonzero. A similar argument shows thatm < N− 1.

Consider next the ratio

F(s) =
K(sI+ L)−1Me−sT

K(sI+ L)−1eLTM
.

Note that F is analytic in a neighborhood of infinity and has an essential singular-
ity at infinity (the latter is due to the presence of e−sT with a nonzero coefficient).
It follows from the Great Picard Theorem [Conway, 1973, p. 302] that in each
neighborhood of infinity F assumes each complex number with one possible ex-
ception, infinitely many times. Because of the term e−sT , this exceptional value
must equal zero. Hence there exists a sequence {γ`}

∞̀
=1 converging to infinity

such that F(γ`) = 1, and thus H(γ`) = 0 for all `.
We now show that if n = m, then the γ`’s necessarily converge to the values

given in (3.19). To do this note that for each integer k,

(sI+ L)−1 =
1

s

((
−L

s

)k+1(
I+

L

s

)−1

+

k∑
i=0

(
−L

s

)i)

Using this identity and the definitions ofm and n yields

H(s) =
1

sm+1

(
Q(s) − R(s) e−sT sm−n

)
,

where

Q(s) = K(−L)m eLTM+
1

s
K(−L)m+1

(
I+

L

s

)−1

eLTM,

and

R(s) = K(−L)nM+
1

s
K(−L)n+1

(
I+

L

s

)−1

M.

For γ` a zero of H, we have Q(γ`) = γm−n
` R(γ`) e

γ`T . Note that for ` sufficiently
large, Q(γ`) and R(γ`) are both nonzero and constant. Taking logarithms and
rearranging shows that there exists k such that

γ` = −
1

T
log

Q(γ`)

R(γ`)
+
m− n

T
logγ` + jkωs.

If n = m, then taking limits yields

γ` → −
1

T
logη+ jkωs.

Noting that zeros must occur in conjugate pairs yields (3.19). �
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A.3 Proofs for Chapter 4

This section provides an sketch of a proof for Lemma 4.1.2 on the steady-state
frequency response of the hybrid system to input disturbances and noise. We
also give here a proof for the complementary sensitivity integral constraint of
Theorem 4.4.11.

A.3.1 Proof of Lemma 4.1.2

We consider only the disturbance response, calculations for the noise response
being entirely analogous. To evaluate the steady-state response to d(t) = ejωt,
we must first evaluate the inverse Laplace transform of Yd, and then discard all
terms due to those poles lying in C−. Inverting the Laplace transform requires
that we evaluate the Bromwich integral Levinson and Redheffer [1970]

yd(t) =
1

2πj

∫γ+j∞
γ−j∞ e

stYd(s) ds , (A.5)

where γ > 0. This integral may be evaluated using the residue theorem.
It follows from (4.1) that Yd has poles due to the disturbance located along the

imaginary axis at s = j(ω+ kωs), k = 0,±1,±2, . . .. By the assumption of closed
loop stability all other poles of Yd lie in the C−. Using (4.1), it may be shown that
these poles have the following properties:

(i) they all lie to the right of some vertical line Re[s] = c < 0,

(ii) there are finitely many poles due to P and no poles due to H, and

(iii) there are finitely many sequences of poles due to Cd(esT ), Sd(esT ), and
F(s+ jkωs), k = 0,±1,±2, . . . lying on vertical lines and spaced at intervals
equal toωs.

Next, it is straightforward to verify that the residues of estYd at the jω-axis
poles are given by

lim
s→j(ω+kωs)

(s− j(ω+ kωs))e
stYd(s) =

{
S0(jω)ejωt if k = 0

−Tk(jω)ej(ω+kωs)t if k 6= 0
. (A.6)

We need not calculate explicitly the residues at the other poles; as we shall show,
they do not contribute to the steady-state response.

Consider the contours of integration Cn, n = 1, 2, 3, . . . depicted in Figure A.2,
and chosen so that (i) C1 encloses only that jω-axis pole lying in ΩN, (ii) the
horizontal line Im[s] = R1 does not contain any OLHP poles of Yd, and (iii)
Rn+1 = Rn +ωs.

Figure A.2 and subsequent calculations are appropriate for the case that ω is
in ΩN (modifications to the general case are straightforward). Our construction
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Re {s}

jIm {s}

Cn

(I)

γc

j(ω+ωs)

jω

j(ω+ωs)

j(ω+ (n− 1)ωs)

(II)

(III)

Rn

(IV)j(ω− nωs)

j(ω−ωs)

ΩN

Figure A.2: Contours of integration.



A.3 Proofs for Chapter 4 143

of the contour of integration guarantees that for n sufficiently large no poles of
Yd will lie on CN. Hence the residue theorem may be applied to yield

1

2πj

{∫
I
estYd(s)ds+

∫
II
estYd(s)ds+

∫
III
estYd(s) ds+

∫
IV
estYd(s)ds

}
= S0(jω)ejωt −

N∑
k=−N
k 6=0

Tk(jω)ej(ω+kωs)t + Ψ(t) ,
(A.7)

where Ψ(t) denotes the contribution of the poles in C−.
We now sketch a proof that as t→∞, Ψ(t)→ 0. First, it is clear that the contri-

bution to Ψ from each pole of P converges to zero. Consider next the contribution
of one of the finitely many sequences of poles described in (iii) above. Let this
sequence be denoted ρk , ρ + jkωs, k = 0,±1,±2, . . ., and Re {ρ} < 0. We shall
assume that ρ is real for notational simplicity, and shall also assume for simplicity
that each ρk is a simple pole. Then, for any fixed value of t, the contribution to Ψ
from this sequence of poles is given by

yρ(t) , eρt lim
K→∞

K∑
k=−K

Res(ρk)ejkωst , (A.8)

where Res(ρk) = lims→ρk(s−ρk)Yd(s). By the Riesz-Fischer Theorem [Riesz and
Sz.-Nagy, 1990, p.70], if it may be shown that the sequence {Res(ρk)} is square-
summable, then the series in (A.8) will converge to a bounded periodic function
of t. Since ρ < 0, it thus follows that yρ(t) → 0 as t → ∞. Since there are only
finitely many sequences of the form (A.8), we then have that Ψ(t)→ 0.

We now show that the sequence {Res(ρk)} is square-summable. From the (4.1),
we have that

Yd(s) = D(s) − P(s)H(s)Cd(e
sT )Sd(e

sT )Vd(e
sT ), (A.9)

where Vd(esT ) is given by (cf. the proof of Lemma 4.1.1)

V(esT ) =
1

T

∞∑
k=−∞ Fk(s)Dk(s).

Hence

Res(ρk) = −P(ρk)H(ρk) lim
s→ρk(s− ρk)Cd(e

sT )Sd(e
sT )Vd(e

sT ) . (A.10)

Because Cd(esT ), Sd(esT ), and Vd(esT ) are each periodic in s along vertical lines,
it may be shown that the limit on the right hand side of (A.10) is independent of
k. Denote the common value of this limit by Lρ. Then (A.8) becomes

yρ(t) = eρtLρ lim
K→∞

K∑
k=−K

P(ρk)H(ρk)e
jkωst . (A.11)
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By Assumption 3, |P(ρk)| converges to a finite constant as k → ∞. Next, using
the definition of H (2.4) and integration by parts write for s in C−

|sH(s)| =

∣∣∣∣∣h(0+) − e−sTh(T−) +

∫T
0

e−stḣ(t)dt

∣∣∣∣∣
≤ |h(0+)| + |h(T−)|e−Re{s}T + e−Re{s}T

∫T
0

|ḣ(t)|dt.

(A.12)

Since h is of BV by Assumption 1, ḣ is integrable on [0, T), and then from (A.12)

|H(ρk)| ≤
c1 + c2e

−ρT

|ρk|
.

It follows that the sequence {P(ρk)H(ρk)} is square summable, thus completing
the proof that Ψ(t)→ 0.

The desired result (4.9) will hold if it may be shown that the last three integrals
in (A.7) converge to zero asN→∞. We now show that the integral (II) converges
to zero; similar calculations apply to (IV). Consider values of s such that s =
x+jRn, c ≤ x ≤ γ, and Rn is sufficiently large that Rn > ω and that Cn encloses all
poles of P. It may be shown that there exists constants M and MP, independent
of n, such that |Cd(e

sT )Sd(e
sT )Vd(e

sT )| ≤ M and |P(s)| ≤ MP for all such s.
Furthermore, it is not difficult to see from similar arguments as those in (A.12)
that for t ≥ T there exists a constantMγ with

|sestH(s)| ≤Mγ, for all swith Re {s} ≤ γ. (A.13)

Using these bounds in (A.8) yields

|estYd(s)| ≤ eγt(Rn −ω)−1 +MMpMγ(Rn −ω)−1 (A.14)

Using this bound in (II) yields that the integral converges to zero as Rn →∞.
It remains to show that the integral (III) converges to zero. This follows by

(i) parameterizing (III) by s = c + Rne
jθ, with π/2 ≤ θ ≤ 3π/2, and defining

σ = s − c; contour (III) is then a semicircle ϕn centered at the origin of the σ-
plane and extended into the left half plane; (ii) showing that Yd is bounded on
ϕn; and (iii) using Jordan’s Lemma [Levinson and Redheffer, 1970, p. 199] to
obtain a bound on the integral ∫

ϕn

|eσTdσ|.

Hence, for t > T , integral (III) converges to zero as Rn →∞. �

A.3.2 Proof of Theorem 4.4.11

This result is analogous to the integral constraint we proved for holds in Chap-
ter 3, Proposition 3.3.3. The proof is in a similar pattern. We need the following
preliminary result.
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Lemma A.3.1
Suppose thatG is an analytic function bounded in the CRHP; suppose thatG(0) =
1. Then

lim
x→0
∫∞
0

log |G(jω)|

x2 +ω2
dω =

∫∞
0

log |G(jω)|

ω2
dω (A.15)

Proof: The result follows from the Lebesgue Dominated Convergence Theorem
[e.g., Riesz and Sz.-Nagy, 1990, p. 37]. To apply this result, it suffices to

• note that | log |G(jω)|/(x2 +ω2)| ≤ | log |G(jω)|/ω2| for all x andω, and

• show that the integral on the right hand side of (A.15) is finite.

The latter follows by noting that

(i) | log |G(jω)|| is bounded on the jω-axis except at zeros of G(jω),

(ii) these zeros, including a possible zero at infinity, are removable singularities
Levinson and Redheffer [1970] and thus do not cause the integral to become
unbounded, and

(iii) the integral approaches a finite limit asω→ 0.

Statement (iii) follows by using L’Hospital’s Rule to show that

lim
ω→0

logG(jω)

ω2
=
G ′(0)2 −G ′′(0)

2
,

where G ′(0) = dG(s)/ds|s=0 and G ′′(0) = d2G(s)/ds|s=0. �

Proof of Theorem 4.4.11 We begin by applying the Poisson integral to the fun-
damental complementary sensitivity function for an arbitrary real x > 0. Sub-
tracting log |T0(0)| from both sides yields

2

π

∫∞
0

log

∣∣∣∣∣T0(jω)

T0(0)

∣∣∣∣∣ x

x2 +ω2
dω = x(τP + τH +NcT) + log |B−1

ζ (x)|

+ log |B−1
γ (x)| +

Np∑
k=1

log |B−1
pk

(x)|

+

Na∑
k=1

log |B−1
ak

(x)| + log

∣∣∣∣∣T0(x)T0(0)

∣∣∣∣∣,
(A.16)

where the terms on the right hand side are as defined in Subsection 4.4.1. Di-
viding both sides by x, taking the limit as x → 0, and applying Lemma A.3.1
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yields

2

π

∫∞
0

log

∣∣∣∣∣T0(jω)

T0(0)

∣∣∣∣∣ 1

x2 +ω2
dω = τP + τH +NcT + lim

x→0
1

x
log |B−1

ζ (x)|

+ lim
x→0

1

x
log |B−1

γ (x)| + lim
x→ω 1x

Np∑
k=1

log |B−1
pk

(x)|

+ lim
x→0

1

x

Na∑
k=1

log |B−1
ak

(x)| + lim
x→0

1

x
log

∣∣∣∣∣T0(x)T0(0)

∣∣∣∣∣.
(A.17)

We now use L’Hospital’s rule and the fact that the zeros and poles (4.58)-(4.63)
must occur in complex conjugate pairs to evaluate the various limits on the right
hand side of (A.17):

(i)

lim
x→0

1

x
log |B−1

ζ (x)| = lim
x→0

1

x

Nζ∑
k=1

log |
ζ̄k + x

ζk − x
|

=

Np∑
k=1

lim
x→0

d

dx

(
1

x
log
[
ζ̄k + x

ζk − x

])

=

Np∑
k=1

2Re(ζk)

|ζx|2

= 2

Np∑
k=1

1

ζk
. (A.18)

(ii) A calculation similar to (i) applies to the fifth term in the RHS of (A.17) if
it may be shown that the possibly infinite sum

∑Np
k=1 1/γk converges. Con-

vergence of this series follows from: (i) the fact that T0(0) 6= 0 ⇒ H(0) 6= 0

and (ii) applying arguments based on properties of zeros of functions ana-
lytic in the CRHP (cf. p. 132 of Hoffman [1962]).

(iii)

lim
x→0

1

x

Na∑
k=1

log |B−1
ak

(x)| = lim
x→0

1

x

Na∑
k=1

log
∞∏

`=−∞
∣∣∣∣∣ āk` + x

ζ` − x

∣∣∣∣∣ . (A.19)

It follows from p. 175 of Conway [1973] that

∞∏
`=−∞

∣∣∣∣∣ āk` + x

ak` − x

∣∣∣∣∣ =
∣∣∣∣∣sinh((āk + x)T2 )

sinh((ak − x)T2 )

∣∣∣∣∣ (A.20)

Substituting (A.20) into (A.19) and applying L’Hospital’s rule yields the de-
sired result.
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(iv) A calculation similar to (iii) applies to the sixth term on the RHS of (A.17),
keeping in mind that the factor ` = 0 is not present in the infinite product
that corresponds to (A.20).

(v) Applying L’Hospital’s rule yields

lim
x→0

1

x
log

∣∣∣∣∣T0(x)T0(0)

∣∣∣∣∣ = lim
x→0

d

dx

(
1

2
log
(
T0(x)

T0(0)

)2)

=
T́0(0)

T0(0)
�

A.4 Proofs for Chapter 5

In this section we prove that the frequency-domain lifting transformation defined
in Chapter 5 is an isometric isomorphism between the spaces L2(−∞,∞) and
L2(`2;ΩN).

Proof of Lemma 5.1.1 Let Y(jω) be in L2. Then we have that

‖Y‖2 =

∫∞
−∞ |Y(jω)|2 dω (A.21)

=

∞∑
k=−∞

∫ (2k+1)ωN

(2k−1)ωN

|Y(jω)|2 dω

=

∞∑
−∞
∫ωN
−ωN

|Y(j(ω+ kωs))|
2dω. (A.22)

As ‖Y‖2 is finite by assumption, the series
∑∫

|Yk(jω)|2 dω is convergent. Then,
by Levi’s Theorem Riesz and Sz.-Nagy [1990], we can interchange summation
and integration in (A.22), and using (5.1), we have that

∞∑
−∞
∫ωN
−ωN

|Yk(jω)|2dω =

∫ωN
−ωN

∞∑
−∞ |Yk(jω)|2dω (A.23)

= ‖y‖2 (A.24)

From (A.21)-(A.24) it follows that there is an isometry between L2(−∞,∞) and
L2(ΩN; `2). To see that the isometry is isomorphic, we have to show that it is
onto, that is, each function in L2(ΩN; `2) is the image of a function in L2(−∞,∞).
Actually, it suffices to show that this is the case for each element in a basis for
L2(ΩN; `2), and so we shall do next.

Let {γk}
∞
k=−∞ be an orthonormal basis for `2, and {ψk(ω)}∞k=−∞ an orthonor-

mal basis for L2(ΩN). It is not difficult to prove that the double sequence

{ψn(ω)γm}∞n,m=−∞
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is an orthonormal base on L2(ΩN; `2). Now, take for exampleψn(ω)γm, for fixed
integers n,m. This element of L2(ΩN; `2) is precisely

...
0

ψn(ω)
0
...



...
m+1

m

m−1

...

, (A.25)

which corresponds to the function

ψ(ω) =

{
ψn(ω) ifω ∈ [−ωN +mωs,ωN +mωs]
0 otherwise . (A.26)

But ψ(ω) is obviously in L2(−∞,∞), since it is a function of finite support and
integrable there. Therefore, every element in L2(ΩN; `2) is the image of an ele-
ment in L2(−∞,∞) and the proof is completed. �

A.5 Proofs for Chapter 6

In this section we include the sketch of an alternative proof for Corollary 6.1.3
that dispenses with the µ-framework. The arguments are similar to those in The-
orem 6.1.2.

Proof of Corollary 6.1.3 We start by noting that the perturbed discrete sensitiv-
ity function can be written as

S̃d =
Sd

1+ (FPW∆H)dSdCd

=
Sd

1+
∑∞
n=−∞ T0kWk∆k (A.27)

We prove both implications in Corollary 6.1.3 by contrapositive arguments.

(⇐) Suppose that there exist an admissible ∆ such that S̃d is unstable. Then, by
continuity arguments there also exist some admissible∆ ′ such that S̃d is marginally
stable, i.e., it has a pole at s = jω0, for someω0. From (A.27) it follows that

∞∑
n=−∞ T

0
k(ω0)Wk(ω0)∆

′
k(ω0) = −1 .

Hence, ∞∑
n=−∞ |T0k(ω0)Wk(ω0)∆

′
k(ω0)| ≥ 1 ,
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but as ‖∆ ′‖∞ < 1, then

∞∑
n=−∞ |T0k(ω0)Wk(ω0)| > 1 .

(⇒) Suppose that there existsω0 inΩN such that

∞∑
n=−∞ |T0k(ω0)Wk(ω0)| = α > 1 .

Then, it is possible to find an admissible perturbation ∆ that interpolates

∆(j(ω0 + kωs)) = −1/αe−jθk ,

where θk , ^T0k(ω0)Wk(ω0). Then S̃d has a pole at z = ejω0T and so the per-
turbed system is not asymptotically stable.

�





B
Order and Type of an Entire

Function

This appendix provides a brief description of the concepts of order and type of
entire functions; for further reference see Markushevich [1965]. We recall that an
entire function, F, is a function defined and analytic for all finite values of the
complex variable s. An entire function that is not a polynomial is called an entire
transcendental function. For such a function F, define the maximum modulus as

M(r) = max
|s|=r

|F(s)|.

It can be seen [e.g., Markushevich, 1965] that, since F is analytic everywhere,M(r)
is a strictly increasing function, and, moreover, limr→∞M(r) = ∞. An entire
function is said to be of finite order if there exists a positive number µ such that as
|s| = r→∞, we have that1

F(s) = O(er
µ

). (B.1)

Clearly, if (B.1) is satisfied for some µ, it will also be satisfied for any µ ′ > µ. The
infimum of the numbers satisfying (B.1) is defined as the order, ρ, of the entire
function F. We shall be interested in entire functions of exponential type, i.e., of
finite order 1 for which there exists a positive constant K such that as |s| = r→∞,

F(s) = O(eKr). (B.2)

The lower bound σ of numbers K for which (B.2) is true is called the type of the
entire function. We say then that F is of exponential type σ.

1Here we use the notation F(s) = O(er
µ

), which means that M(r) < ker
µ

for some constant k
when r is near to some given limit.





C
Discrete Sensitivity Integrals

Discrete sensitivity functions satisfy analytic constraints in the form of Bode and
Poisson integral relations analogous to those satisfied by their continuous-time
counterparts. The results in this section are adapted from Sung and Hara [1988],
to which we refer for further details.

Let di, i = 1, . . . ,Nd denote the poles of (FPH)dCd lying in D
C
. Then we have

the following.

Proposition C.1.1 (Bode Discrete Sensitivity Integral)
Assume that Sd is stable and that (FPH)dCd is strictly proper. Then∫ωN

0

log |Sd(e
jωT )|dω = ωN

Nd∑
i=1

log |di|. (C.1)

◦

For a fixed sampling period, this integral implies a non-trivial sensitivity trade-
off even if no bandwidth constraint is imposed. The next corollary is a straight-
forward consequence of Proposition C.1.1.

Corollary C.1.2
Assume the conditions of Proposition C.1.1. Suppose in addition that

|Sd(e
jωT )| ≤ β forω in [0,ω0], withω0 < ωN. (C.2)

Then necessarily

sup
ω0<ω<ωN

|Sd(e
jωT )| ≥

(
1

β

) ω0
ωN−ω0

∣∣∣∣∣
Nd∏
i=1

di

∣∣∣∣∣
ωN

ωN−ω0

. (C.3)

◦

Denote by ρi, i = 1, . . . ,Nρ the poles of (FPH)d in D
C
, and denote by Bρ the

associated Blaschke product

Bd(z) ,
Nd∏
i=1

z− di

1− d̄iz
.
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Define also the Poisson kernel Ψd(rejθ,ω),

Ψd(re
jθ,ω) ,

T
2 (r2 − 1)

1− 2r cos(ωT + θ) + r2
+

T
2 (r2 − 1)

1− 2r cos(ωT − θ) + r2
. (C.4)

Then Sd satisfy the following Poisson integral relation.

Proposition C.1.3 (Poisson Discrete Sensitivity Integral)
Assume that Sd is stable. Let ν = rejθ lie in D

C
. Then∫ωN

0

log |Sd(e
jωT )|Ψd(ν,ω)dω ≥ π log |Bρ

−1(ν)| + π log |Sd(ν)|. (C.5)

◦

Note that equality may be achieved in (C.5) by incorporating terms due to unsta-
ble poles of the compensator into the Blaschke product Bρ.

We shall require the weighted length
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Figure C.1: Weighted lengths of inter-
vals.

of an interval by the Poisson kernel
(C.4) (cf. the corresponding for the Pois-
son kernel for the half plane, in Chap-
ter 3, (3.35)). Consider an intervalΩ =
[0,ω0), where ω0 ≤ ωN, and a point
ξ = x+jy in the open right half plane.
The image of the intervalΩ under the
mapping z = esT is an arc,Ωd = (1, ejω0T ),
of the unit circle, and the image of ξ is
a point eξT in D

C
. Define the length of

Ωd, as weighted by eξT , to be

Θd(ξ,Ω) ,
∫ω0
0

Ψd(e
ξT ,ω)dω .

(C.6)
In the case that ξ is real, we then have that

Θd(ξ,Ω) = −^
∞∏

k=−∞
ξ− j(ω0 − kωs)

ξ+ j(ω0 + kωs)
(C.7)

= −^
sinh

(
(ξ− jω0)

T
2

)
sinh

(
(ξ+ jω0)

T
2

) ; (C.8)

i.e., the weighted length of the interval Ω equals the negative of the sum of the
phase lags contributed by the Blaschke product (ξ − s)/(ξ + s) at each of the
points ω0 + kωs, k = 0,±1,±2, . . . , that are mapped to the upper end point of
the interval. It is straightforward to verify that the length of the discrete arc Ωd
weighted by the point eξT is greater than that of the corresponding analog interval
Ω = [0,ω0) as weighted by the point ξ (cf. (3.36)). As an example, see Figure C.1,
which contains plots of Θ(ξ,Ω) and Θd(ξ,Ω) for the point ξ = 1/T and values of
ω0 ranging from 0 toωN. Similar remarks apply to the case of a complex ξ.

The following result is derived immediately from Proposition C.1.3.
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Corollary C.1.4
Suppose that ∣∣Sd(ejωT )∣∣ ≤ α, for allω inΩ = [0,ω0), (C.9)

whereω0 ≤ ωN, and let ν = eξT , where ξ lies in C+. Then

sup
ω∈[ω0,ωN)

∣∣Sd(ejωT )∣∣ ≥ (1/α)
Θd(ξ,Ω)
π−Θd(ξ,Ω)

∣∣B−1
ρ (ν)

∣∣ π
π−Θd(ξ,Ω) |Sd(ν)|

π
π−Θd(ξ,Ω)

(C.10)
◦

If ν is a NMP zero of the discretized plant, then Sd(ν) = 1 and |Sd(e
jωT )|

is guaranteed to have a peak greater than one. Since Θd(ξ,ω0) ≥ Θ(ξ,ω0) it
follows that the infimum of this peak is guaranteed to be greater than that given
by (C.8) in the analog case.
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Notation

For purposes of reference, we include here a brief list of special symbols used in
this thesis.

R,C The sets of real and complex numbers.

R
+
0 The set of real non-negative numbers; [0,∞).

R
n,Cn The sets of n-dimensional real and complex vectors.

C
+,C+,C−,C− The open and closed right halves of the complex plane,

the open and closed left halves of the complex plane.

M̄,MT,M∗ The conjugate, transpose, and conjugate transpose of a
matrixM.

|v| The Euclidian norm of a vector v in Rn; |v| = (v∗v)1/2.

D,D The open and closed unit disks in C; D , {z ∈ C : |z| < 1}

and D , {z ∈ C : |z| ≤ 1}.

XC, X⊥ The complement and orthogonal complement of a space
X.

Lnp(R+
0 ) The space of Lebesgue measurable functions f : R+

0 → R
n

that satisfy
∫∞
0

|f(t)|p dt <∞ for a finite positive number
p.

Ln∞(R+
0 ) The space of Lebesgue measurable functions f : R+

0 →
R
n; that satisfy ess supt∈R |f(t)| <∞.

Lnpe(R
+
0 ) The extended space Lnp(R+

0 ); i.e., the space of functions
f : R+

0 → R
n that satisfy

∫a
0

|f(t)|p dt < ∞ for any finite
real number a.

Ln2 The space of square Lebesgue integrable functions f : R→
C
n;
∫a
0

|f(t)|2 dt <∞.

`np The space of sequences u = {uk}
∞
k=−∞, with uk in Cn,

satisfying ‖u‖`2 ,
(∑∞

k=−∞ |uk|
p
)1/p

<∞.

T,ωs The sampling period and the sampling frequency; ωs =
2π/T .



166 Notation

ΩN The Nyquist range of frequencies; {ω : ω ∈ [−ωs/2,ωs/2]}.

L2(ΩN; `2) The space of functions f : ΩN → `2 that satisfy
∫
ΩN
‖f(ω)‖2`2 dω <∞.

Z{·},L{·} The Z and Laplace transform operators.

ST {·} The sampling operator with period T .

Fk(·) F(·+ jkωs).

(F)d The discretization of the function F; (F)d = Z{ST {L
−1{F}}}.

σF The abscissa of absolute and uniform convergence of the
Laplace transform F = L {f}.

DF The domain {s = x+ jy,with x > σF and y inΩN}.

S0, T0, Tk The fundamental sensitivity, fundamental complemen-
tary sensitivity, and harmonic hybrid responses.
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A-D interface, 4, 13
actuator saturations, 27, 66, 99
admissible perturbation, 102
aliasing, 26, 77
alignment, 93
analog vs. sampled-data, 53, 59, 80
analog performance, 120–122
analog plant, see plant
anti-aliasing filter, 18, 76

and hold device, 66n
approximable operator, 85, 87
approximate pole-zero cancellation,

76
approximate pole-zero cancellation,

72, 118, 120

band-limited signals, 5, 81
baseband, see Nyquist range
basic perturbation model, 102, 105
Bezout Identity, 57
Blaschke Products, 42, 69, 126, 154
Bode Integral

analog, 6
discrete, 153
for the fundamental sensitivity,

77
bounded variation, 13, 15, 138
bounds

for robust stability, 121
on L2 induced operator norms,

93
on GSHF frequency responses,

42
on intersample behavior, 92
on the discrete sensitivity, 120
on the fundamental complemen-

tary sensitivity, 74
on the fundamental sensitivity,

70

on the harmonic response func-
tions, 76

Bromwich Integral, 141

Cauchy & Poisson, 16n
Cauchy-Schwarz Inequality, 25, 92
closed-loop stability, 20
compact operator, 85, 87
compact set, 85
complementary sensitivity

discrete function, 19
complementary sensitivity

analog function, 55
hybrid fundamental function, 52

and robust stability, 108, 110
and velocity constant, 80
lower bounds, 74
Middleton Integral, 77–80
Poisson Integral, 73–75

hybrid operator on L2, 85–93
frequency gain, 88

conic sector techniques, 5, 81, 101
controller

design
classic procedures, 4, 116

digital implementation, 3
discrete, 4
high-gain, see high-gain feedback
LQR/LQG, 131
non-minimum phase zeros, 60,

69
unstable poles, 60, 62

costs and benefits of sampled-data feed-
back, 80

D-A interface, 4, 13
descriptor system techniques, 5, 82
design tradeoffs

analog, 6, 55
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discrete, 6, 132
GSHF, 41
hybrid, 70–72, 78–80, 132

from GSHF NMP zeros, 71
from plant NMP zeros, 70
from plant unstable poles, 71

differential sensitivity, 55
differential sensitivity, 54
Dirac’s Delta, 138
Dirichlet Integral, 138
Dirichlet Kernel, 138
discrete design, 4
discrete response, 122–129
discrete sensitivity functions, 19
discretized plant, 19

by partial fractions expansion, 118
disturbance

rejection, 61–68
steady-state response, 52

divisive perturbation model, 110–113

emulation, 4
entire function, 25, 28, 45, 151
essential singularity, 140
exponential stability, 20

fidelity, 92, 121
fidelity function, 121

integral constraints, 126
interpolation constraints, 124

filter, see anti-aliasing filter
finite-rank operators, 85, 86
Fourier transform, 16n
FR-operators, 82
frequency gain of a hybrid operator,

82
frequency-domain lifting, 82–85

isomorphism, 84
operation, 83
operator, 84

fundamental
hybrid complementary sensitiv-

ity, 52
lower bounds, 74
Middleton Integral, 77–80
Poisson Integral, 73–75

hybrid sensitivity, 52
Bode Integral, 77
lower bounds, 70
Poisson Integral, 70–72
zeros, 60

fundamental response, 49
integral constraints, 68–80
interpolation constraints, 55–58

gain-margin improvement via GSHF,
97

Gedanken experiment
analog performance, 120–122
discrete response, 122–129

generalized hold function, see GSHF
Great Picard Theorem, 140
GSHF, 13, 23–47

a la Kabamba, see FDLTI GSHF
and analog performance, 120–122
and discrete response, 122–129
DC-gain, 26
design tradeoffs, 41, 45, 46, 132
disturbance rejection properties,

64
FDLTI, 29, 32
frequency response function, 14,

24–30
boundary values, 27–28
bounds on, 42
Middleton Integral, 42–45
Parseval Equality, 26
peaks in, 27, 41, 42, 46
Poisson Integral, 40–42

gain-margin improvement, 97
input-output operator, 27
loop transfer recovery, 131
loop transfer recovery, 46, 129
non-minimum phase, 24, 31, 71,

78, 118
norms, 25–27
output feedback, 67
piecewise constant, 29, 31, 46
simultaneous stabilization, 36, 118–

120
symmetry, 35
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transmission blocking properties,
14, 33

undesirable side-effects, 23, 115,
131

wonderful capabilities, 23, 115
zero placement, 46, 115–132

design tradeoffs, 132
zeros, 14, 31–38, 45, 60, 69, 71

Hadamard Factorization Theorem, 34
Hankel singular values, 120
harmonic oscillator, 67
harmonics, 49

and L2-induced norms, 90
hybrid response function, 52

interpolation constraints, 58
lower bounds, 76
Poisson Integral, 75–77

Heine-Borel Theorem, 85
high-gain feedback, 53–54
H∞-control of hybrid systems, 5
H∞-methods, 101
H∞-norm, 84
hold device, see GSHF
hybrid, see sampled-data
hybrid sensitivity functions, 52

and L2 norms, 90
integral constraints, 68–80
interpolation constraints, 55–61

impulse modulation formula, 17
Initial Value Theorem, 34
inner-outer factorization, 73
input disturbance, 64
input saturations, 27, 66, 99
instability due to plant variations, 131
integral relations, 68–80, 126
interpolation constraints, 55–61, 125
intersample behavior, 4, 68, 80, 92
isometry, 147
isometry between L2 and L2(ΩN; `2),

84, 147

Jordan’s Lemma, 144
jump discontinuities, 13, 16

L’Hopital’s Rule, 43

L’Hospital’s Rule, 145–147
Laplace transform, 15

inversion, 141
Laplace transform of a sampled sig-

nal, 16
Lebesgue Dominated Convergence,

43n, 145
Levi Theorem, 147
lifting techniques

and robust stability, 101
lifting operation, 83
lifting techniques, 5, 81–85
limitations in sampled-data systems,

80, 132
linear time-invariant perturbations, 101
linear systems with jumps, 5, 82
loop transfer recovery, 46, 129–131
Lp, 11

extended spaces, 11
induced operator norms, 12

lp signal spaces, 12
LQR/LQG compensator, 131
L2, 12, 83

induced operator norms, 81, 84,
85

and hybrid sensitivity functions,
90

and stability robustness, 99
hybrid complementary sensi-

tivity, 88
hybrid sensitivity, 89
lower bounds, 93
numerical implementation, 93–

99
input-output stability, 20

L2(ΩN; `2), 84, 147

matrix exponential formulas, 97
Middleton Integral

for GSHF, 42–45
for the fundamental complemen-

tary sensitivity, 77–80
intrpretations, 78–80

modified Z-transform, 4n
µ, 101, 105
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multiplicative perturbation model, 102–
110

multirate sampling, 5

noise steady-state response, 52
non-minimum phase

GSHF, 31
non-minimum phase

GSHF, 24, 71, 78, 118
plant, 70, 78, 118, 130, 132

non-pathological sampling, 20, 33
non-robustness of zero placement, 131
Nyquist range, 55
Nyquist range, 13, 54

order of an entire function, 25n, 151
output feedback by GSHF, 67

Paley & Wiener, 25
Paley-Wiener spaces, 28
Parseval’s Formula, 26
peaks

in GSHF frequency responses, 27,
41, 42, 46

in the harmonic response func-
tions, 76

in the fidelity function, 131
in the fundamental complemen-

tary sensitivity response, 74
and robust stability, 114

in the fundamental sensitivity re-
sponse, 71, 72, 122

and robust stability, 114
in the harmonic response func-

tions
and L2-induced norms, 92

periodic controllers, 5
periodic disturbances, 63, 64, 66
periodic systems, 50, 51n
periodic time-varying perturbations,

101
perturbation

linear time-invariant, 101, 131
periodic time-varying, 101

plant, 18
non-minimum phase zeros, 60,

69, 70, 78, 118, 130, 132

unstable poles, 59, 61, 64, 69
plant uncertainty, 102, 110, 127, 131

sensitivity, 54
Poisson & Cauchy, 16n
Poisson Integral

analog, 6, 55
discrete sensitivity, 154
for GSHF, 40–42
for harmonic response functions,

75–77
for the fidelity function, 126
for the fundamental complemen-

tary sensitivity, 73–75
for the fundamental sensitivity,

70–72
interpretations, 70, 73–75

Poisson Kernel, 154
for the half plane, 41, 70

Poisson Summation Formula, 16, 137n
pole-zero parity preservation, 118
poles

and disturbance rejection, 61
interpolation constraints, 59

Polya Formula, 137n
prefilter, see anti-aliasing filter

Riccati Equations, 6, 82
Riesz-Fischer Theorem, 143
robust stability, 81, 101–113

and fundamental complementary
sensitivity, 108, 110

necessary and sufficient condi-
tions, 106, 108

necessary conditions, 106, 124
small-gain condition, 106
via Nyquist criterion, 101

robustness of zero-placement, 129–
131

sampled-data, 3
vs. analog, 53, 59, 80
vs. discrete, 99
basic feedback system, 3, 17
frameworks, 6
frequency gains, 82
frequency response, 50–55
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harmonic structure, 103
H∞-control, 5, 81
infinite-dimensional transfer ma-

trices, 84, 86
input-output stability, 20
L2-induced operator norms, 85–

99
robust stability, 81, 101–113
sensitivity operators, 85–93
tracking, 64, 80, 81
transfer function, 49n

sampler, 4, 13
unbounded operator, 13

sampling formula, 15–17, 137–139
domain of validity, 17

sampling frequency, 13
sampling period, 13
saturations, see actuator saturations
sensitivity

analog function, 55
differential, 54–55
discrete function, 19
hybrid fundamental function, 52

Bode Integral, 77
lower bounds, 70
Poisson Integral, 70–72

hybrid operator on L2, 85–93
frequency gain, 89

to plant uncertainty, 54, 131
simultaneous stabilization, 36
small-gain condition for robust sta-

bility, 106
stability, see closed-loop stability
stability robustness, see robust stabil-

ity
steady-state

disturbance rejection, 61–68
frequency response, 52, 85
ramp tracking, 80

strong stabilization, 117, 119
structured singular value, see µ

time-domain lifting, 83
type of an entire function, 25n, 151

uncertainty

divisive, 110
multiplicative, 102
sensitivity, 54

weighted length of an interval, 41,
70, 154

weighting function, 102, 110

Youla Parametrization, 57

Z-transform, 15
zero placement, see GSHF zero place-

ment
zero-pole parity preservation, 118
zeros

and Poisson Integral, 70
interpolation constraints, 60
of a discretized plant, 117
of a GSHF, 31–38, 45, 60
of the fundamental sensitivity, 60
phase lag, 41, 70, 154

ZOH, 24, 33
better than GSHF, 27, 33, 46, 67–

68
disturbance rejection properties,

64, 68


