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Abstract—Preview Control for Dual-Stage Actuators (DSA)
consists in allowing movement of the slow actuator while
maintaining the system output at the reference point. This
strategy is possible only if the fast actuator is able to compensate
the movement of the slow one. The advantages of this control
scheme are related to an improvement on the settling time of
the output, a consequence of the fact that the slow actuator is
allowed to move ahead of the reference transition time. This
paper will discuss fundamental limitations that constrain the

trajectories of the primary actuator to a feasible set, i.e., a set
whose trajectories the secondary actuator is able to effectively
compensate. From this initial discussion optimal trajectories
will be devised via quadratic programming. Experimental
results show the effectiveness of the proposed design.

I. INTRODUCTION

The concept of Dual-Stage Actuators seems to have arisen

independently in two seminal works in the field of robotic

manipulators: the first work to use the name of Macro/Micro

Manipulators was by Sharon, et. al. [1] as early as 1983,

while a similar concept was proposed by Kanai, et. al. [2] in

the same year. But it was only after the dual-stage concept

was picked up by the Hard Disk Drive (HDD) industry, in the

early 1990’s, that a large development in the area was seen

[3]. In fact, until today the label “track seeking” is used to

mention movement from one reference point (or HDD track)

to another, and “track following” to mention the accuracy in

which a given reference is followed under the influence of

disturbances. Motivated by the pressing necessity of market-

driven improvements for faster and denser hard disks, the

HDD industry saw in DSA a strong ally to the solution of

disturbance rejection and settling time performance. It was

the problem of track following that was of greatest interest

in those years because there are complicated broad band

disturbance and noise in HDD servo systems, requiring ad-

vanced control technology to achieve nanoscale positioning

accuracy. The work in [4], for example, presents H2 and

LQG methods for combining both actuators. Immediately
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after followed H∞ methods such as the one in [5], and

later on mixed H2/H∞ robust strategies such as [6]. Up to

date this area remains an active topic of research with [7]

proposing an automatically tunned controller. As time went

on and advances progressed steadily, the dual-stage concept

also moved to other applications such as advanced machining

tools [8], [9], wafer alignment on microlithography [10],

scanning probe microscopy [11], optical drives [12] and large

scale rotary actuators [13].

Such interest in Dual-Stage Actuators (DSA) is of no

surprise since they were specifically designed to improve

the inherent limitations of single-stage actuators. The dual-

stage structure is comprised of a long-range actuator in

what is called the “first stage,” connected in parallel with a

fast dynamics actuator, called the “second stage.” The fast-

dynamics (or micro) actuator affects the output by providing

small additive movements to the first (or macro) stage. By

coupling the slow long-range actuator with a fast short-

range one, it is expected that the overall system performance

is improved because the defects of one actuator may be

compensated by the merits of the other.

While the track following task was promptly improved

by DSA, it took some time till the research community

expressed interest in the track seeking problem. At first,

different techniques originally designed for a single stage

actuator were implemented to the DSA. In [14], a form of

Composite Nonlinear Feedback (CNF) is presented following

the original ideas of [15]. Later on, a pioneer work was

given by [16] where the actuators were finally combined in a

form of control specifically designed for DSA: the primary

actuator is designed to overshoot a limited and controlled

amount, this overshoot is compensated by the secondary

actuator providing faster rise times and, consequently, faster

settling times. Soon after it was suggested that a similar

idea could be applied before the output transition time and

came to be known as Preview Control. This strategy relies

on future information in order to improve the performance

of the system [17]. It is especially suited for dual-stage

systems because it allows the primary actuator to move ahead

of the output transition time [18]. During this movement,

the secondary actuator compensates the error generated by

the primary by moving towards the opposite direction. The

overall output is thus secured at the reference while both

actuators are in motion. The first work that considered some

form of pre-actuation came on [19] which projected optimal

trajectories in the Time/Energy sense. This work, however,

did not consider the hard constraint given by the saturation
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of the secondary actuator. Such limitation was partially

treated in [20], where a practical controller was proposed

and implemented. This approach is still not complete in

the sense that it considered only the limited range of the

secondary actuator, and not its dynamic limitations, i.e., it

assumed the secondary actuator to be infinitely fast. The

current paper shall dispose this assumption and consider a

realistic model of the secondary actuator. Given this scenario,

the main contribution of this paper is the development of

optimal trajectories for DSA during pre-actuation in order

to improve the track seeking performance of the system.

The trajectories here devised will also respect the constraints

imposed by track following, i.e., the dynamic limitations of

the secondary actuator.

The paper is organized as follows: Section II describes in

detail the fundamental concepts of dual-stage actuators and

preview control; the guidelines for the design of feasible

trajectories are given in Section III; a form of calculating

these trajectories according to the guidelines is presented

Section IV with the aid of quadratic programming; Section

V exposes the implementation of the proposed design in the

experimental set up of a DSA; and Section VI concludes the

paper.

II. PRELIMINARIES

Comments on Dual Stage Actuators (DSA) and on the

ideas that comprise the Preview Control strategy will be

presented in this section so that the paper may be appreciated

by readers from different backgrounds.

A. Dual-Stage Actuators

As the name suggests, DSA are comprised of two different

actuators which perform the same motion but specialize in

different tasks: the primary actuator is usually of large range

- hence, it is also called the macro, or coarse actuator -

but of moderate speed; the secondary actuator is very fast

but constrained by a small range - hence, also called the

micro, or fine actuator. Ideally one would prefer to have a fast

actuator that possesses sufficiently large range (what is meant

by sufficiently large, obviously, depends on the application),

but a trade off between size and speed is inevitable. In order

to solve this problem DSA attempt to get the best of two

worlds: an overall actuator that possesses a large range and

fast dynamics.

Commonly, the structure that is able to accommodate these

specifications involves a traditional form of actuation on the

primary stage, such as linear motors, voice-coil motors, etc.,

which are able to provide for the large range. The second

stage, on the other hand, is comprised of a piezoelectric

actuator because they are are notoriously light and fast.

Such structure may be represented by a double integrator

as the primary actuator working in parallel with a mass-

spring-damper as the secondary one. Note that usually a pre-

compensator is put in place so that nonlinearities such as the

friction on the linear motor and the hysteresis of the piezo

actuator are sufficiently attenuated, justifying these simplified

models [16]. The DSA model is then described as,

Σ1 : ẋ1 = A1x1 +B1u1, x1(0) = 0, |u1| ≤ ū1
Σ2 : ẋ2 = A2x2 +B2u2, x2(0) = 0, |u2| ≤ ū2
y = y1 + y2 = C1x1 + C2x2,

(1)

where x1 = [y1 ẏ1]
T is associated with the primary actuator

and x2 = [y2 ẏ2]
T with the secondary one, and ūi is the

control saturation level for ui. Furthermore,

A1 =

[

0 1
0 0

]

, B1 =

[

0
b1

]

, C1 =
[

1 0
]

,

A2 =

[

0 1
a1 a2

]

, B2 =

[

0
b2

]

, C2 =
[

1 0
]

.

(2)

Notice that there is no interaction between actuators apart

from their individual contribution to the system output. The

no-interaction assumption is valid when the actuators have

a large difference in mass (so that the secondary actuator

does not affect the primary), and in bandwidth (so that the

motion of the primary actuator is easily compensated by

the secondary). Hence the obvious choice of piezoelectric

actuators.

As described by (1), the overall system is Dual-Input

Single-Output (DISO), which provides the control designer

with (too much) freedom because there are several combi-

nations of trajectories in the form y1 + y2 that lead to the

same output trajectory y. One form of taking advantage of

this freedom is discussed in what follows under the name of

Preview Control.

B. Preview Control

The Preview Control concept exploits the redundancy of

actuators in order to reduce the transition time from one

reference level to another. From the output equation of

system (1) one notices that it is not necessary that the primary

actuator output y1 tracks the reference. In fact, it only needs
to be close enough to the reference so that the secondary

actuator may reach it, i.e.,

y1 ≈ r0 → y1 + y2 = r0. (3)

t = τ

y(t)

y1(t)

y2(t)

t

r0

r1

S

Fig. 1. Schematic representation of the Preview Control strategy. During
t ≤ τ the primary actuator (thick line) may move from r0 in the direction
of r1 as long as it does not leave the region where the secondary actuator
(thin line) is able to reach the reference achieving y = y1 + y2 = r0.
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Which means that around the reference the primary actuator

has some freedom of movement. The designer may use this

freedom to allow this actuator to move ahead of time, speed-

ing up the process, provided, of course, that the information

of the future reference level r1 and transition instant t = τ
are available. This scenario is exemplified in Fig. 1 where

the actuators are depicted in what is called the “pre-actuation

interval” (t ≤ τ ).
During this pre-actuation interval the trajectory of y1 will

deviate from the reference r0, generating an error that must

be compensated by the secondary actuator as described in

(3). Obviously, this error cannot be unbounded. This is

suggested in Fig. 1 where the region S depicts the set where

the primary actuator must lie so that this error may be

compensated. The problem addressed in this paper relates

to this set S. How may one define “around the reference” in

terms of S? What is the shape of S? And, more importantly,
how does one guarantee that x1 ∈ S during Preview Control?

III. FEASIBLE TRAJECTORIES

The Preview Control strategy uses the primary actuator to

improve the performance of the system and the secondary

one to guarantee the tracking of r0. From Fig. 1 it is clear

that the secondary actuator must track the difference between

y1 and r0, which is nothing but a “mirrored” version of the

y1 trajectory, as depicted in figure:

y2 = r0 − y1 → y = y1 + y2 = r0. (4)

Therefore, when in motion the primary actuator must respect

the limitations of the secondary actuator.

Consider the secondary actuator model described as:

ǫ1ÿ2 = y2 + ǫ2ẏ2 + βu2 (5)

where ǫ1 := 1/a1, ǫ2 := a2/a1 and β := b2/a1. In our

previous works we have assumed the secondary stage is

infinitely fast, that is, ǫ1 = 0 and ǫ2 = 0 [20]. Then, the

model (5) may be reduced to a static one: y2 = −βu2,
with u2 bounded by ū2. In this senario, when designing a

trajectory z(t) for the primary actuator to follow, it is only

necessary that z(t) satisfies,

|z(t)| ≤ βū2.

Hence, in this previous formulation |r0 − y1(t)| ≤ δ for

δ := βū2, which defines the set S in a static manner.

In the present work we consider a practical case with

nontrivial ǫ1 and ǫ2. The motivation for this is the fact

that a bounded input will generate bounded states, which in

turn implies that the secondary actuator may not track any

trajectory within its range. The constants ǫ1 and ǫ2 must be

considered such that limits on ż(t) and z̈(t) may be imposed,
and the dynamic limitations of the secondary actuator may

be satisfied. This is achieved in the lemma below.

Lemma 3.1: Given the dual-stage system in (1) with con-

stants a1, a2 < 0 and b2 > 0, and a desired trajectory z(t),
the controller

u2 = κ(y2, ẏ2, z, ż, z̈) = (−z − ǫ2ż + ǫ1z̈)/β + γ(z, y2)
(6)

with ǫ1 := 1/a1, ǫ2 := a2/a1, β := b2/a1, and,

γ(y2, ẏ2, z, ż) = [h1 h2]

[

y2 − z
ẏ2 − ż

]

(7)

for h1, h2 > 0 achieves,

limt→∞ |y2(t)− z(t)| = 0 if |κ(y2, ẏ2, z, ż, z̈)| ≤ ū2.
(8)

In particular, if y2(0)− z(0) = 0 and ẏ2(0)− ż(0) = 0, then

y2(t) = z(t), ∀t ≥ 0.

Proof: The proof follows from a direct substitution of (6)

in Σ2, which, disconsidering γ(·), results in,

ǫ1ÿ2 = y2 + ǫ2ẏ2 + βsat(u2)
= (y2 − z) + ǫ2(ẏ2 − ż) + ǫ1z̈

(9)

One may now define the trajectory error as et(t) := y2(t)−
z(t),

ët = a1et + a2ėt

By noticing that a1, a2 < 0 it is obvious that e(t) → 0
as t → ∞. Moreover, given the zero initial conditions

et(0) = 0 and ėt(0) = 0, then, y2(t) = z(t), ∀t ≥ 0.
Furthermore, the term γ(z, y2) compensates deviations from
the desired trajectory due to uncertainty or disturbances,

adding robustness to the system. That is, tracking is achieved.

Q.E.D.

The Lemma above states that for a given trajectory z(t)
to be trackable by the secondary actuator it must satisfy

condition (8). But, from (4) one notices that z(t) = r0 −
y1(t), i.e., it is the primary actuator that defines the trajectory
z(t). Hence, it is the primary actuator that must satisfy the

condition given above. This is formally expressed in the next

Lemma.

Lemma 3.2: Consider the dual-stage system described by

equations (1), let r0 be the reference level to be tracked

during pre-actuation, let y1(t), ẏ1(t) and ÿ1(t) satisfy

|y1(t)− r0 + ǫ2ẏ1(t)− ǫ1ÿ1(t)| ≤ βū2, (10)

and let u2(t) be given by

u2(t) = (y1 − r0 + ǫ2ẏ1 − ǫ1ÿ1)/β. (11)

Then,

lim
t→∞

|y1(t) + y2(t)− r0| = lim
t→∞

|y(t)− r0| = 0. (12)

In particular, if y(0) = r0 and ẏ(0) = 0, then y(t) =
r0, ∀t ≥ 0.

Proof: Since y = y1+ y2 and ẏ = ẏ1+ ẏ2, it follows that,
for the DSA in (1) with the secondary actuator under control

law (11),
ÿ = ÿ1 + (y2 + ǫ2ẏ2 + βu2)/ǫ1,

= a1(y1 + y2 − r0) + a2(ẏ1 + ẏ2),
= a1(y − r0) + a2ẏ.

(13)

Which satisfies (12). Furthermore, from the assumption on

the initial conditions, it is clear that y(t) = r0, ∀t ≥ 0.
Q.E.D.
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Remark 3.1: Note that as γ(·) is a small term which

compensates deviations from the desired trajectory, it can

be neglected in calculating κ(·). As a result, the condition in
(8) reduces to |z + ǫ2ż − ǫ1z̈| ≤ βū2, which further implies
(10). Moreover, in the subsequent analysis, we can leave the

γ(·) term out of the calculation for convenience.

If the conditions given in Lemma 3.2 are satisfied, the

system output will be maintained at the reference r0 during

pre-actuation (t ≤ τ ). It is now possible to design Preview

Control trajectories that are trackable by the secondary

actuator.

IV. QUADRATIC PROGRAMMING SOLUTION

We may now turn our attention into finding a solution

for the trajectories of y1(t), 0 < t ≤ τ , that satisfies the

conditions given in Lemma 3.2. During Preview Control it

is required that the primary actuator: 1) respects constraint

(10) so that the total output y stays at the reference r0;
and 2) improves the performance of the system by being

closer to and moving towards r1 at the switching time

t = τ . Neither of these tasks is easily solved. In practice,

different trajectories may be designed via a trial-and-error

approach where a compromise between tasks 1) and 2) is

achieved. With the results given in the last section however,

something better can be achieved by framing these problems

in a Quadratic Programming (QP) form. In order to do so,

it is first necessary to discretize the system. Henceforth,

the following notation will be used to describe the primary

actuator in discrete form:

ξ(k + 1) = Adξ(k) +Bdu1(k), (14)

where ξ(k) ∈ R
2 are the discrete equivalent of the primary

actuator states and u1(k) ∈ R is its input. The matrices

Ad and Bd are obtained from matrices A1 and B1 in (1)

via some discretization method with sampling time T and

condition (10) takes the following discrete form:

|a1ξ1(k) + a2ξ2(k)− b1u1(k)| ≤ b2ū2, (15)

where it was assumed without loss of generality that r0 = 0.
The solution sought should come in the form of discrete

inputs to be applied to the primary actuator,

u1 = [û1(1) û1(2) . . . û1(N)]
T

, (16)

In order to obtain u1, consider the following cost function,

V :=
1

2
(ξ(N)− xs)

TP (ξ(N)− xs) +

N−1
∑

k=0

Λk (17)

where,

Λk :=
1

2
(ξ(k)TQξ(k) + u1(k)

TRu1(k)) (18)

P, Q ≥ 0 and R > 0 are free weight matrices, N is the

so-called prediction horizon (must be such that TN = τ )
and xs is the desired steady state response at sample N . The

discrete variables ξ(k) and u1(k) are the prediction of the

states of the primary actuator during pre-actuation and the

variables of interest, respectively. With this cost function and

an appropriate choice of the matrices P , Q, R and xs, it is
possible to design a trajectory that minimizes the distance

|r1 − y1| and maximizes the speed in which y1 approaches

r1 at the final instant of the trajectory (t = τ ).
Recall that the problem of minimizing the cost function

(17) is equivalent to finding the vector u1(x) ∈ R
N given

by,

u1 = arg min
Lu1≤Z

1

2
u1

THu1 + u1
TF (ξ − xs). (19)

where, H = ΓTQΓ + R is the so-called Hessian of the

quadratic program and L and Z describe the constrains that

must be respected. The matrices are defined as follows,

F = ΓTQΩ,

Γ :=













Bd 0 . . . 0 0
AdBd Bd . . . 0 0
...

...
. . .

...
...

AN−1

d Bd AN−2

d Bd . . .
. . . Bd













,
(20)

with,

Q := diag{CTQC, . . . , CTQC,P},
R := diag{R, . . . , R}.

Ω :=
[

Ad A2

d . . . AN
d

]

T

.

(21)

Via matrices L and Z it is possible to add the necessary

constraints on the input |u1| ≤ ū1 and constraint (10). This

is formally stated in the following Theorem.

Theorem 4.1: Consider system (1) with the secondary

actuator control law u2 as in (11). Let the primary actuator

follow a trajectory given by the solution of (19) through

(21) during pre-actuation, and define the matrices L and Z
as follows,

L =









IN
Ψ
−IN
−Ψ









, Z =









u1

max

b2u
2
max

u1

max

b2u
2
max









(22)

where IN is an N ×N identity matrix,

Ψ =















ψ 0 0 . . . 0
0 ψ 0 . . . 0
0 0 ψ . . . 0
...

...
...

. . .
...

0 0 0 . . . ψ















Γ− b1













0 1 0 . . . 0

0 0 1 . . .
...

...
...

...
. . . 1

0 0 0 . . . 0













,

(23)

and,
ψ := [a1 a2] ,

ui
max :=

[

ūi . . . ūi
]

T

.
(24)

Then, given y(0) = r0 and ẏ(0) = 0,

y(t) = r0, 0 ≤ t ≤ τ.

That is, the tracking of r0 is achieved during pre-actuation.

Proof: From Lemma 3.2 it follows that if inequality (10)

is satisfied, then y(t) = r0 during pre-actuation. In order to
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satisfy (10) note that the multiplication of the first row of Ψ
by u1 will result in,

ψBdû1(0)− b1û1(1) ≤ b2ū2
a1ξ1(1) + a2ξ2(1) + ψξ(0)− b1û1(1) ≤ b2ū2.

(25)

Since ξ(0) = 0, it follows that

a1ξ1(1) + a2ξ2(1)− b1û1(1) ≤ b2ū2,

wich satisfies condition (15) for k = 0. By induction it is

straightforward to assert that all points in the trajectory are

thus satisfied. Furthermore, the constraints on the control

effort are obviously satisfied from INu1 ≤ u1

max
, resulting

in a feasible trajectory both for the primary and secondary

actuator. Q.E.D.

Remark 4.1: From the solution (16) a reference trajectory

x̂1 = [ŷ1 ˙̂y1]
T may be computed and tracked via some

classical controller such as a simple PD:

u1(k) = û1(k) +W (x1(k)− x̂1(k)).

The combined use of (16) with a PD controller adds some

robustness to the system since small deviations of y1 from

ẑ may be compensated.

V. IMPLEMENTATION

The techniques so far presented will be implemented on

an experimental set up of a Dual-Stage Actuator providing

results that validate what was proposed.

The system in hand is comprised by a linear motor (LM)

as the first stage and a piezoelectric actuator (piezo) as the

second one. While the LM has a travel range of 0.5 m and

a 1 µm resolution glass scale encoder, the piezo actuator’s

range is limited in ±15 µm and has an integrated capacitive

position sensor with 0.2 nm resolution. The capacitive sensor

is used to measure the incremental displacement provided by

the piezo to the LM. The DSA in hand is fully described by

equation (1), in this particular case the system constants are

given by:

a1 = −10
6, b1 = 1.7× 107 ū1 = 1

a2 = −1810, b2 = 3× 106 ū2 = 5
(26)

A. The Secondary Actuator Control Law

The secondary actuator controller is given in (6) and

will be maintained both during and after pre-actuation. The

difference being that an extra term (γ(·)) will be added for

improved performance so the error may converge to zero

faster. The applied control law becomes,

u2 = 1

b2
((y1 − r0)a1 + ẏ1a2 − ÿ1 + γ(·)),

γ(x1, x2, r) = H

[

y2 − (y1 − r)
ẏ2 − ẏ1

]

,

(27)

with H = [h1 h2] a linear gain that may be designed via

classical methods of control systems’ theory. In this case,

H = [83.85 0.036]× 10−2. (28)

B. The Primary Actuator Control Law

The primary actuator will be subject to two different

controllers, one during the Preview Control interval, and

another one after it.

For 0 < t ≤ τ the controller presented in Section III and

calculated in Section IV is used. This is now a “responsible”

form of Preview Control that achieves a faster performance

without compromising the trackability of r0. For its design it
was used T = 0.1 ms, N = 200, R = 1.5× 104, Q = 10−3

and

P =

[

103 0
0 10−1

]

.

When t > τ the preview control is over and the system

output y must now track r1 instead r0. While the secon-

dary actuator controller may remain unchanged, the primary

control law must switch to some form of fast tracking

control. There are several forms of advanced controllers for

fast tracking servomechanisms, in this study the traditional

Proximate Time-Optimal Servomechanism (PTOS) will be

used. This strategy is an improved approximation of the

Time-Optimal Control (TOC) in the sense that it does not

suffer from chattering and, hence, is a practical controller.

The PTOS control law is given by:

u1(t) = k2(−fptos(e1)− ẏ1),

with,

fptos(e) =

{

(k1/k2)e1, for |e1| ≤ yl,

sgn(e)(
√

2b1αū1|e1| − ū1/k2), for |e1| > yl.

A stability condition requires that 0 < α < 1, and the fol-

lowing constraints guarantee the continuity of the controller,

yl =
ū1
k1
, k2 =

√

2k1
b1α

.

This controller has several interesting properties whose

detailed descriptions are outside the scope of this paper.

The interested reader is referred to [21]. Here, its ability

to overshoot a controlled amount is explored. As proposed

in [16] one may allow this controller to overshoot without

surpassing the limitation of the secondary actuator. Since

this overshoot is compensated by the second stage, the total

output rise time is faster. This will be clear during the

discussion on the obtained results. The controller is tuned

as follows,

α = 0.7, k1 = 2.09, k2 = 0.019. (29)

Notice, however, that only α and k1 are free to be tuned

as the designer wishes.

C. Experimental Results

The traditional form of DSA control is shown in Fig. 2.

The output transition instant is given at t = τ = 0.02 s. This
figure shows the advantage of allowing the primary actuator

to overshoot by providing a faster rise time. As soon as this

actuator is around r1 the secondary one reaches the reference
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Fig. 2. Traditional form of DSA high performance control. The primary
actuator (thin line) overshoots a desired amount, the secondary actuator
(dashed line) compensates for the overshoot and the settling time of the
total input (thick line) is reduced [16].
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Fig. 3. Proposed controller with the Preview Control strategy. An
improvement of 30 % is achieved due to Preview Control. Curves are the
same as in Fig 1. All the plots come from experimental results.

and y = r1 within a small tolerance (in this case ±2 µm).
The resulting settling time is 13 ms.

The next plot, shown in Fig. 3, shows the Preview Control

strategy working with the preview trajectory designed ac-

cording to Theorem 3.2. Note that, unexpectedly, the primary

actuator moves away from the future reference r1 in the first
moments of pre-actuation. This is so that it may have more

time and room inside S to accelerate towards r1 when the

switching instant t = τ comes. The resulting improvement is
of about 30 % since the settling time with Preview Control

is 10 ms.

VI. CONCLUSION

This paper has advanced the study on the Preview Control

strategy for Dual-Stage Systems (DSA). It was of particular

interest the limitations that the secondary actuator imposes

to the trajectory during pre-actuation. In order to identify

these limitations a set S was defined where the primary

actuator should stay so that the error generated by it might be

compensated by the secondary. In addition, an optimal form

of Preview Control trajectory design was proposed providing

guarantees that the primary actuator will lie inside S during

the required time interval. Experimental results have both

validated the proposed approach and promoted the benefits

of Preview Control.
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