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Abstract— Dual-stage actuators (DSAs) with piezoelectric
(PZT) microactuators can provide faster track seeking and
more accurate track following in hard disk drives (HDDs)
than conventional single-stage actuators. However, one of the
control challenges of the DSA systems is the PZT actuator
saturation. To avoid saturating the PZT actuator, most of the
existing methods either carefully design the PZT controllers
with small gains or limit the amplitudes of the reference
commands. This typically leads to performance conservation
because the fast dynamics of the PZT is not fully utilized. Unlike
the existing methods, this paper studies a switching controller
that optimizes a quadratic performance cost function involving
the PZT saturation model explicitly. The controller can not only
guarantee the system stability in the presence of saturation but
also improve the tracking speed by efficiently allocating the
control efforts. Simulation results show the effectiveness of the
switching controller with faster disturbance rejection.

I. INTRODUCTION

In recent years, dual-stage actuators (DSAs) with piezo-

electric (PZT) microactuators have been adopted in com-

mercial high-performance hard disk drives (HDDs) to meet

the ever increasing demands for high-capacity and fast data

rate. The mechanism of the DSA structure [1] is simple and

of low cost, which makes it feasible in mass production.

However, the control design of the DSA systems imposes

more challenges than conventional single-stage voice coil

motor (VCM) systems mainly because of the PZT actuation

redundancy versus single controlled output [the so-called

position error signal (PES)]. In other words, for a given

desired trajectory, alternative inputs to the two actuators are

not unique. Thus, a proper control strategy is required for

control allocation in response to external inputs. Otherwise,

the two actuators may fight each other and deteriorate the

performance instead. One of the control strategies that are

popularly used is the decoupled master-slave control [2],

where the PZT actuator is aimed at following the position

error of the VCM actuator. The other is the PQ design

method [3], where the VCM actuator is allocated to response

to low frequency components of the system input while the

PZT actuator to high frequency components due to its faster

dynamics. Moreover, according to the classification of the

control tasks in HDDs, control design for track following

and settling can be also found in [3]–[5]. In [6], a decoupled

track-seeking controller using a three-step design approach is
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developed to enable high-speed one-track seeking and short-

span track-seeking for a dual-stage servo system. Further,

short and long-span seeking controls are incorporated in a

single control scheme with fast settling time [7], [8].

Although the PZT microactuator has a faster dynamics in

response to external inputs, its drawback is the very limited

stroke relative to the VCM actuator. In the point of view of

control system, this can be regarded as an actuator saturation

problem. It is shown that if the controller cannot handle

the PZT saturation properly, the system output will have

significant oscillations or even lead to potential instability

[9]. Therefore, to avoid saturating the PZT actuator, most of

the existing controllers attempts to limit the PZT controller

gain such that the PZT actuator works in its linear region

only. In such methods, the PZT saturation model is not

taken into account in the control design process and thus

leading to performance conservations such as reduced servo

bandwidth of the PZT actuator. In [9], the authors developed

a modified decoupled master slave dual-stage control scheme

by simply using a nonlinear PZT model with saturation

nonlinearity in its observer and showed its improvement on

the stability against the saturation. In this paper, we will

discuss a switching control scheme [10], [11] for the PZT

actuator which can not only guarantee the system stability

in the presence of saturation but also improve the tracking

performance by efficiently allocating the control efforts.

In our design, we explicitly model the PZT actuator as

a saturated actuator whose control problem is then casted

as a linear quadratic control problem with input saturation.

The solution of the problem eventually leads to a switching

controller. Unlike the anti-windup compensator [12] that uses

ad-hoc methods to detune the controller with little theoretical

guarantee on stability, the switching control scheme can not

only guarantee the stability in the presence of saturation,

but also optimize a quadratic performance function through

properly over-saturating the controller that leads to desired

fast convergence of the tracking error.

II. SYSTEM MODEL AND CONTROL STRUCTURE

Fig. 1 shows a typical DSA with a push-pull PZT microac-

tuator in hard disk drives. It consists of a VCM actuator

as the primary stage and a PZT actuator as the secondary

stage. The PZT is located between the suspension and the

E-block, which is moved by the VCM. The two actuators

are respectively driven through a PZT amplifier and a VCM

driver. The VCM driver has a voltage input limit of ±3.5

V. The PZT actuator has a stroke limit of ±0.5 µm and

the PZT amplifier has a voltage input limit of ±1.5 V.
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Fig. 1. A hard disk drive using dual-stage actuator with piezoelectric

microactuator.

Under the assumption that the coupling effects between

the two actuators are negligible, the DSA plant model of

the DSA can be regarded as a decoupled dual-input and

single-output system. Moreover, we assume notch filters have

been cascaded to the VCM and PZT actuators to actively

damp their resonances, respectively (see our work in [8]

for details). As such, a control-oriented model of the DSA

system can be described by Fig. 2, where the state-space

equations of VCM and PZT actuator is given by







Σ1 : ẋ1 = A1x1 + B1σ(u1), x1(0) = 0
Σ2 : ẋ2 = A2x2 + B2σ(u2), x2(0) = 0

y = y1 + y2 = C1x1 + C2x2

(1)

where the state x1 = [y1 ẏ1]
T , x2 = [y2 ẏ2]

T ,

A1 =

[

0 1
0 0

]

, B1 =

[

0
b1

]

, C1 =
[

1 0
]

,

A2 =

[

0 1
a1 a2

]

, B2 =

[

0
b2

]

, C2 =
[

1 0
]

,

and the saturation function σ(ui) (i = 1, 2) is defined as

σ(ui) = sgn(ui)min{ūi, |ui|} (2)

where ūi is the saturation level of the ith control input. The

DSA model parameters in (2)-(2) are given by

b1 = 1.7× 108, a1 = −109, a2 = −3.1 × 104,

b2 = 4.3× 108, ū1 = 3 V, ū2 = 1.25 V.

As mentioned earlier, the control strategies for the coor-

dination of the two actuators are not unique as the DSA

system is a dual-input single-output system. Here, we use

the decoupled master-slave control structure because it offers

the benefit that the overall stability of the DSA loop can be

guaranteed by independently stabilized VCM loop and PZT

loop. This control structure is shown in Fig. 3, where the

system input is the disturbance d. The control objective to

y

G1

Σ
+

u1

G2

u2 y2

y1

+

1u±

2u±

Fig. 2. A control-oriented model of the DSA system. G1: VCM model,

G2 : PZT model.
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Fig. 3. Block diagram of DSA control system. d: disturbance input; ye:

the overall position error signal; y1e: the VCM position error signal.

regulate the position error signal ye swiftly and as small as

possible.

From Fig. 3, it is easy to find that the VCM position error

y1e equals to

y1e = y2 − ye

= d − y1 (3)

and when combined with the VCM feedback controller C1,

we have

y1e =
1

1 + G1C1

d. (4)

We can see that the VCM loop is decoupled from the PZT

loop and C1 can be designed using any conventional methods

and is thus not detailed here because it is not the primary goal

of this paper. Typically, due to the relatively slow dynamic

characteristics of the VCM, we can only expect |y1e| ≤ ε,

(ε > 0) for any persistent bounded disturbance input. It

follows that the PZT control effort u2 should be designed to

compensate for the residual VCM position error, i.e., driving

y2 = y1e. If this can be achieved, it immediately implies that

ye = y2 − y1e = 0.

To formulate the control problem of the PZT actuator,

define w1 = ye and ẇ1 = w2 = ẏ2 − ẏ1e, then

ẇ2 = a1w1 + a2w2 + b2(σ(u2) − f)), (5)

where f = (ÿ1e − a2ẏ1e − a1y1e)/b2. We observe that the

coupling signal f(t) is dominated by the VCM position error

dynamics. Intuitively, it is only when the VCM drives f(t)
to converge to a small region within the PZT’s control limit

that the PZT can make some meaningful control effort. In

view of this, we assume that the VCM control loop is well

designed such that |f(t)| ≤ f0, ∀t ≥ 0 and f0 < ū2. Under

this circumstance, we can introduce a feedforward input in

u2 as follows:

u2 = u + f (6)
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such that f(t) is compensated. Then, we can formulate the

PZT control design as a regulation control problem with

input saturation and the system model (5) can be rewritten

as follows:

ẋ = Ax + Bσ(u), x(0) = x0 (7)

where x = [w1 w2]
′, A = A2, B = B2, and σ(·) with

saturation level equal to 1. In the next section, we will discuss

a switching control design for the PZT control input u.

III. SWITCHING CONTROL DESIGN

In this section, we first introduce the fundamental theory of

a linear quadratic saturation control design. Next, a switching

controller is developed based on the saturation control design

method, which offers performance improvement. Finally, we

present the design result of the switching controller with

application to the PZT actuator.

A. Saturation Control Design

Consider the system in (7), we first introduce the following

quadratic cost function

J(x0, u) =

∫

∞

0

(xT Qx + rσ(u)2)dt (8)

for some Q = QT > 0 and r > 0 with (A, B) being

controllable. Ideally, we aim to seek an optimal linear state

feedback

u = Kx (9)

for each given initial state x0 such that J(x0, u) is mini-

mized. It is well-known that if the control is not saturated,

the optimal solution to K is given by

K = −r−1BT P0 (10)

where P0 = P T
0 > 0 is the solution to the following Ricatti

equation

AT P0 + P0A + Q − r−1P0BBT P0 = 0 (11)

Moreover, the minimal cost is given by xT
0 P0x0.

However, in the presence of saturation, the optimal K is

difficult to give. To overcome this difficulty, we parameterize

the controller by using an optimal sector bound [10]. More

specifically, define the level of over-saturation ρ ≥ 0 such

that the control input u is restricted to be

|u| ≤ 1 + ρ (12)

It is easy to verify that for any u constrained by (12), σ(u)
lies in the following sector bound

σ(u) = ρ1u + δ(u) (13)

|δ(u)| ≤ ρ2u, ∀|u| ≤ 1 + ρ (14)

where

ρ1 =
2 + ρ

2(1 + ρ)
, ρ2 =

ρ

2(1 + ρ)
(15)

Here, ρ1 is the optimal value so that δ(u) has the smallest

sector to bound the nonlinearity cause by the saturation.

Now, we give some analysis on the design of a control gain

K to minimize the worst-case cost for all δ(·) satisfying the

sector bound (14). For a given ρ > 0, consider the Lyapunov

function candidate

V (x) = xT Pρx, Pρ = P T
ρ > 0 (16)

and define

Ωρ = AT Pρ + PρA + Q − r−1PρBBT Pρ, (17)

u∗ = −r−1BT Pρx (18)

Given any initial state x0 and any δ(·) satisfying (14), it is

easy to verify that

J(x0, u, T ) =

∫ T

0

(xT Qx + rσ(u)2)dt

= V (x0) − V (x(T ))

+

∫ T

0

(
d

dt
V (x) + xT Qx + rσ(u)2)dt

≤ V (x0) +

∫ T

0

g(x, u, δ(u))dt

where

g(x, u, δ(u)) = xT Ωρx + r(ρ1u + δ(u) − u∗)2 (19)

This implies that if g(x, u, δ(u)) ≤ 0 for all x ∈ R
n and

δ(·) satisfying (14), then

J(x0, u) ≤ V (x0) (20)

From the analysis above, we formulate the following relaxed

optimal control problem:

P1: For a given ρ ≥ 0, design Pρ and u to minimize

V (x0) subject to g(x, u, δ(u)) ≤ 0 for all x ∈ R
n and δ(·)

satisfying (14). Moreover, determine the largest invariant set

Xρ characterized by an ellipsoid of the form

Xρ = {x : xT Pρx ≤ µ2
ρ}, µρ > 0 (21)

such that if x0 ∈ Xρ, x(t) ∈ Xρ and |u(t)| ≤ 1 + ρ for all

t ≥ 0, we have J(x0, u) ≤ V (x0).
The solution to the above problem is given by the follow-

ing Theorem:

Theorem 1 [10]: Consider the system in (7) and the cost

function in (8). For a given level of over-saturation ρ ≥ 0,

suppose the equation

AT Pρ + PρA + Q − r−1(1 − ρ2
0)PρBBT Pρ = 0 (22)

where

ρ0 =
ρ2

ρ1

=
ρ

2 + ρ
(23)

has a solution Pρ = P T
ρ > 0. Then the optimal feedback

control law Kρ for the relaxed optimal control problem P1

is given by

Kρ = −ρ−1

1 r−1BT Pρ (24)

and the associated invariant set Xρ is bounded by

µρ =
r

(1 − ρ0)
√

BT PρB
. (25)
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Remark 1: If ρ = 0, the Riccati equation (22) and the

control law (24) recover the results in (11) and (10) for

optimal control without saturation. The associated invariant

set is given by

X0 = {x : xTP0x ≤ µ2
0}, µ0 =

r
√

BT P0B
(26)

Remark 2: Taking ρ → ∞ (or equivalently, ρ0 → 1) and

solving for Pρ in (22) gives the largest invariant set as

X∞ = {x : xT Pρx < µ2
∞
}

µ∞ =
r

(1 − ρ0)
√

BT PρB
, ρ0 → 1 (27)

Note that the solvability of Pρ for any ρ > 0 is guaranteed

by the controllability of (A, B) and positive definiteness of

Q.

Remark 3: Despite that the invariant set enlarges when

ρ increases, it can be seen that the upper bound of the

performance cost in (20) is as well larger. This implies that

the saturated controller can bring a good benefit when ρ is

not close to 0 and not too large. Generally, ρ can be selected

as the minimal one satisfying x0 ∈ Xρ.

1) Property of the control law: The proposed controller in

Theorem 1 has two nice properties, i.e., the nesting property

of Xρ and monotonicity of Pρ. More specifically, define

Sρ = (1 − ρ0)Pρ (28)

We can rewrite the Riccati equation in (22) as

AT Sρ +SρA+(1−ρ0)Q−r−1(1+ρ0)SρBBT Sρ = 0 (29)

and the invariant set can be expressed as

Xρ = {x : xT Sρx ≤
r2

BT SρB
} (30)

Lemma 1 [10]: The solution Sρ to (29) is monotonically

decreasing in ρ > 0, i.e., for a sufficiently small ǫ > 0,

Sρ > Sρ+ǫ, if 0 ≤ ρ < ρ + ǫ. Consequently, Xρ are nested

in the following sense:

Xρ ⊂ Xρ+ǫ, ∀0 ≤ ρ < ρ + ǫ (31)

Moreover, the solution Pρ to the Riccata equation in (22) is

monotonically increasing in ρ > 0. That is,

Pρ < Pρ+ǫ, ∀0 ≤ ρ < ρ + ǫ. (32)

B. Switching Control

Thanks to the nesting property of Xρ and monotonicity

of Pρ, we can apply Theorem 1 to design a sequence

of control gains Ki, based on which a nested switching

control can be developed to improve the performance. More

specifically, choose a sequence of over-saturation bounds

0 = ρ0 < ρ1 < · · · < ρN and solve the corresponding

Lyapunov matrices Pi, invariant sets Xi and controller gains

Ki, i = 0, 1, · · ·, N . We then construct the nested switching

control law by selecting the control gain Ki when x ∈ Xi

and x /∈ Xi−1 (unless i = 0). The following result shows the

advantage of the nested switching control in the performance

improvement.

Lemma 2: Suppose the switching controller above is

applied to the system in (7) with x0 ∈ XN , Let ti be the time

instance Ki is switched on, i = 0, 1, · · ·, N , particularly,

tN = 0. Then the cost of the switching control is bounded

by

J(x0, u) ≤ xT
0 PNx0 −

N−1
∑

i=0

xT (ti)(Pi+1 − Pi)x(ti)

< xT
0 PNx0. (33)

Proof : According to the proof of Theorem 1 [10], we have

xT Qx + rσ(Kix)2 ≤ −
d

dt
Vi(x) = −

d

dt
(xT Pix) (34)

along the trajectory of x(t), where t ∈ [ti+1, ti). Following

the monotonicity of Pi and integrating the inequality above

yields (33).

From the theorem above, we can clearly see the advantage

of the switching control by means of the negative term in

(33) that decreases the cost gradually. In what follows, we

will discuss the application of this switching control scheme

to the design of the PZT controller for improved tracking

performance.

C. Controller Design for PZT Actuator

Our main purpose here is to use the switching controller

for the PZT to expedite the convergence of the position

error (ye) at the presence of the output disturbance d.

Particularly, we suppose that the disturbance is a shock

wave with an amplitude larger than the PZT’s stroke. This

scenario generally occurs when the HDDs are used in mobile

environment. If the servo controller cannot compensate for

the shock disturbance quickly within a small time frame, the

read/write head has to wait for a few more revolutions until

the head is regulated to the desired sector. This obviously

decreases the data throughput. To improve this situation, it

is intuitive to inject the maximum control input to the PZT

actuator (by applying a large control gain Ki, i > 0) to

achieve the fastest acceleration at the initial stage. Then the

control input should be gradually decreased (by applying

a relatively small control gain K0) to achieve appropriate

robustness when the position error approaches zero. Such a

control strategy would impose some conditions on Q, r and

ρi. The switching controller design results for the PZT are

given as follows.

First, we design the control gain K0 (i.e., ρ0 = 0). Under

this circumstance, the position error ye is close to zero and

the control input u is not saturated. It is straightforward to

verify that the closed-loop system is a linear system and can

be expressed as

ẋ = (A − BBT P0)x (35)

Clearly, we can select Q and r (hence corresponding to a

unique solution of P0) such that the dominated poles of A−
BBT P0 leads to desired characteristics. More specifically,

we first set r = 1 without loss of generality since the

performance cost can be normalized as J/r. Then, let the
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desired poles for the closed-loop system matrix A−BBT P̄0

be (−ζ±j
√

1 − ζ2)ω, where ζ represents the damping ratio

and ω the natural frequency. We then parameterize Q as

Q =

[

q1 0
0 q2

]

(36)

with

q1 =
1

b2
2

(ω4 − a2
1) (37)

q2 =
1

b2
2

(4ζ2ω2 − 2ω2 − 2a1 − a2
2). (38)

Clearly, to guarantee Q > 0 requires ω and ζ satisfying the

conditions

ω >
√

|a1| (39)

1 ≥ ζ2 >
(2a1 + a2

2)

4ω2
+ 0.5. (40)

Substituting Q and r = 1 into (22) solves Pρ as

Pρ =

[

p1 p2

p2 p3

]

(41)

with

p1 = b2(1 − ρ2
0)p2p3 − a2p2 − a1p3 (42)

p2 =
a1 +

√

(1 − ρ2
0)ω

4 − ρ2
0a

2
1

b2
2(1 − ρ2

0)
(43)

p3 =
a2 +

√

a2
2 + b2

2(1 − ρ2
0)(2p2 + q2)

b2
2(1 − ρ2

0)
(44)

Accordingly, the resulting control gain with respect to a given

ρ is obtained by

Kρ = −
b2

ρ1

[p2 p3] (45)

To this end, it is easy to verify that the closed-loop system

characteristic polynomial for ρ = 0 is given by

∆0(s) = |sI − A − BK0|

= s2 + (b2
2p3 − a2)s + (b2

2p2 − a1)

= s2 + 2ζωs + ω2 (46)

which yields the poles as specified initially.

Based on the above analytic results, we choose ω =
2π6000, ζ = 0.8, which leads to the following controller:

K0 = −[0.9796 0.0001],

P0 =

[

2.9262× 10−4 2.2781× 10−9

2.2781× 10−9 1.5521× 10−13

]

,

µ0 = 3.4845× 10−5.

Second, we design the saturated controllers K1 by choos-

ing ρ = 5. It follows that

K1 = −[1.8278 0.0001],

P1 =

[

3.0335× 10−4 2.4795× 10−9

2.4795× 10−9 1.8370× 10−13

]

,

µ1 = 3.6066× 10−4.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

A
m

p
lit

u
d
e
 [

µ
m

]

Time [ms]

Fig. 4. Shock disturbance signal.

Finally, combining the above two controllers leads to the

switching controller as follows:

- u = 0 when [ye ẏe]P1[ye ẏe]
T > µ2

1;

- Controller gain K1 is switched on when

[ye ẏe]P1[ye ẏe]
T ≤ µ2

1 and [ye ẏe]P0[ye ẏe]
T >

µ2
0;

- Controller gain K0 is switched on when

[ye ẏe]P0[ye ẏe]
T ≤ µ2

0.

Note that the control algorithm ensures that there is only one

controller active at any time instance.

IV. SIMULATION RESULTS

Simulation is carried out to verify the switching controller.

The VCM actuator is simply controlled using a lead-lag

controller as follows:

C1(s) =
0.2s2 + 5236s + 3.298× 106

s2 + 24551s + 1.223× 108
. (47)

We assume that the disturbance signal is with Fig. 4 and the

displacement of y2 can be observed. Then, the simulation

results for the designed switching controller are shown in

Figs. 5 and 6. We can see that position error of the DSA

converges to zero much faster than that of the VCM (see Fig.

6). To clearly see the benefit of the switching scheme, we

compare the performance with the non-switching case (i.e.,

with only the controller K1). The result is shown in Fig. 7,

which indicates a relatively slow settling time instance at 0.5
ms achieved by the non-switching controller as compared to

the switching case at 0.35 ms shown in Fig. 6. Thus, we can

see that although the controller K1 guarantees the stability

of the system in the presence of saturation, it cannot improve

the performance without switching to K0 that is specifically

designed to work around the origin. On the other side, we

simulate the result using a proportional controller for the

PZT actuator. This is a conventional method [9] by simply

ignoring the saturation in the design. Fig. 8 shows that in our

specific case when the PZT is saturated, the position error

of the DSA achieved by the conventional controller contains

significant oscillations and thus results in tedious settling

time. Therefore, we conclude that the switching controller

can offer the benefit of guaranteed stability through K1 and

fast convergence through K0.

V. CONCLUSIONS

This paper developed a switching controller for the PZT

actuator in DSA systems for HDDs. The advantage of the
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Fig. 5. Displacement signals with switching controller.
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Fig. 6. Position error signals with switching controller.

switching control scheme lies in that the actuator saturation

nonlinearity is explicitly considered in the design process

such that the closed-loop system stability can be guaranteed

in the presence of saturation, meanwhile faster convergence

is offered through switching the controllers that optimize a

quadratic cost function. The simulation results have shown

that the new control scheme can provide faster and more

accurate disturbance rejection capability. In future work, we

will implement this promising controller on a real experi-

mental platform to evaluate its practical performance.
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Fig. 7. Position error signals with non-switching controller. The settling
time of the DSA position error is much slower than the switching controller

as shown in Fig. 6.
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