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Abstract
The purpose of this note is to show that the analytic
center, originally proposed for identification in a bounded
error setting, is a Maximum Likelihood Estimator for a
class of probability distributions.

1. Introduction
Consider a discrete-time system

y=®0 +v, (1.1)
with
Y1 ¢§ U1
y= y? , &= %2 and v = 1).2
Yn o7 Un

where y; € R is the system output, ¢; € R™ the measur-
able regressor, # € R™ the unknown parameter vector to
be identified and v; € R the noise.

The purpose of parametric system identification is to
find an estimate # of the unknown parameter vector 8 from
available input-output measurements y and ®. Through-
out the paper, the noise is assumed to be unknown but
bounded by

lui] <€ (1.2)

for some known e > 0andz=1,2,..
bership set

.,n. Then, the mem-

0= P

=1

—e<yi—¢/60<¢} (1.3)

is the set of all parameter estimates that are consistent
with the equation (1.1}, the input-output data and the as-
sumed noise bound (1.2). Several papers studied specific
estimates in the membership-set enjoying certain optimal-
ity properties. For example, a well-known estimate is the
Chebyshev 6, center of the set Q"

0. = arg I mxn ) max (6 - nll.

Another well-known estimate is the projection estimate
0,, also denoted as the constrained least squares estimate,

0, = arg1 mm Z

—¢T6)? _argmaxz € —
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—¢T6)?).

n [1], [2] and [3] an analytic center approach was
proposed for set membership identification; see also [4]
for a definition of analytic center. In this approach, a
specific estimator, the analytic center that is within the
membership-set minimizing the logarithmic-average out-
put error or, equivalently, maximizing the complementary
logarithmic-average output error
¢70)%)

8, = arg max [T, (% — (yi —
dean

n
= argmax Y _ In(e? — (y; — ¢76)?)
veQ™ i

is proposed. Moreover, it was shown in [1] that the
computation of a sequence of analytic centers at times
1 =1,2,...,n can be made sequential. In particular, the
total cost, in terms of Newton iterations, to compute a
sequence of analytic centers up to n, is linear in n. This
is a very attractive feature for on-line identification.

2. Analytic Center and Maximum
Likelihood Estimators

The analytic center minimizes the logarithmic-
average output error in a deterministic sense. In this sec-
tion, we show that the analytic center is also a Maximum
Likelihood Estimator (see [5] for definition) for a class of
probability density functions. To this end, we consider a
class of probability density functions g(v;) with support
bounded in the interval [—e, €]

a(v:) = { b =2

for some real r > 0, where b(r) is a normalizing constant.
Then, we have

lvs| < €
|vs] > €

(2.1)

Theorem 2.1 Consider the system (1.1). Suppose that
the noise v; is a sequence of identically independently
distributed random wvariables independent of the regres-
sor ® with the density function q(v;) belonging to the
set (2.1) for some r > 0. Then, the analytic center
is a Mazimum Likelihood Estimator. More precisely, let
q(y1,Y2, - - -, Yn|0) be the joint probability density function
of the random variables y1,y2,...,Yn for given 6. Then,

Oa = arg Ama‘),(n q(y17y29 ces ,ynlé)-
icR
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We now state some remarks about the set (2.1) and
the theorem:

o The set (2.1) includes parabolic density functions
for which r = 1. We also notice that several stan-
dard density functions can be represented or approx-
imated by members of the above class. For example,
in the case r = 0, ¢(v;) coincides with the uniform
distribution in the interval [—¢,€]. The triangle dis-
tribution can be approximated by members of the
set (2.1). In addition, truncated Gaussian distri-
butions with zero mean can also be approximated.
For example, let v; be a random variable with zero
mean Gaussian distribution truncated in the inter-
val |v;] < ao for some o > 0. Then, its distribution

is given by
b __‘fé_ —(a0)?
q(v;) = _Zb(e 27 —e 27 ) |ul<ao
0 jvi] > ao
—a? 2 »2
==, a2l
=] B2 (T 7% -1) |u|<ao
0 jvi] > ao

2 w2
where by is a normalizing constant. Since e ~2+ —
2 2 . .
1=~ & — 77, the first order approximation of g(v;)
becomes

2 o2
q(v;) = { bo(% — 257) |vi| <o
0

|vi| > ao
_ b€ =) o) < e
- { 0 I’Uil > €

where b(r) = b2/(20?%), ¢ = ao and r = 1. There-
fore, the first order approximation of the truncated
Gaussian is in the set (2.1) for some b(r),e and r.
Clearly, if the first order approximation is not suf-
ficient, we can easily construct a second order or,
more generally, a higher order approximation. It
can be shown that higher order approximations of
the zero mean truncated Gaussian density functions
are also members of the set (2.1). In Figure 1, we
show a uniform, a triangle and two zero mean trun-
cated Gaussian density functions and their approxi-
mations by some elements in the set (2.1). The top
picture shows the uniform distribution in the inter-
val [—1, 1] (dash-dot line) and the distribution (solid
line) of the element in the set (2.1) with r = 0. The
second picture shows the triangle distribution in the
interval [—1,1} (dash-dot line) and its approxima-
tion (solid line) by an element in the set (2.1) with
r = 2.6. The third one is the zero mean truncated
Gaussian (dash-dot line) of @ = 1 and ¢ = 1 and
its first order approximation (solid line) by an ele-
ment in the set (2.1) with » =1, ¢ = a0 = 1 and

b(1) = 0.7501. The bottom one shows the zero mean
truncated Gaussian (dash-dot line) of @ = 3 and
o = 1/3 and its higher order approximation (solid
line) by an element in the set (2.1} with r = 4 and
b(4) = 1.2305.

¢ If the noise v; is a sequence of identically indepen-
dently distributed zero mean Gaussian, the Least
Squares estimate is obviously the Maximum Like-
lihood Estimator. If the noise v; is a sequence
of identically independently distributed zero mean
truncated Gaussian, however, the Least Squares es-
timate is no longer the Maximum Likelihood Es-
timator. On the other hand, as discussed above,
the analytic center approximately coincides with the
Maximum Likelihood Estimator when the noise v; is
a sequence of identically independently distributed
truncated Gaussian distributions with zero mean.
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