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Abstract

In this paper, we study the problem of reconstructing a continuous-time (CT) model from an identified discrete-time (DT) model for a
continuous-time stochastic process. We present a new necessary and sufficient condition for the existence of the solution. We also show that
the solution is unique if it exists. Our results are useful in modeling multivariable processes as well. These results are then used to develop
an algorithm where the intermediate discrete-time model estimation is not necessary. The performance of our algorithm is illustrated using
numerical simulations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In practice, continuous-time (CT) systems are identified us-
ing sampled signals. Hence it is quite popular to identify an
intermediate discrete-time (DT) model from the sampled data
(Söderström, 1991) and transform the estimated DT model to
an equivalent CT model (Söderström, 1991). This approach is
often referred to as the indirect approach in literature. Another
avenue for CT model identification is to use a direct approach,
where no intermediate DT model is estimated. A direct ap-
proach is often preferred to the indirect approach because of
several reasons: (i) at a fast sampling rate, the poles and the ze-
ros of the associated DT system cluster close to the point 1+ i0
in the complex plane, leading to a numerically ill-conditioned
identification problem; (ii) there is no guarantee that a solution
exists for DT to CT model conversion problem; and (iii) it is
not known how the reconstructed CT model depends on the
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realization of the DT model. These issues have been discussed
in Larsson, Mossberg, and Söderström (2006) and Söderström
(1991), and references therein.

Direct algorithms for CT autoregressive model identification
have been an active research topic in recent years (Larsson &
Söderström, 2002; Söderström & Mossberg, 2000). The popu-
lar algorithms use delta operators (Feuer & Goodwin, 1996).
This approach is computationally efficient and avoids nonlin-
ear transformation. However, the extension of this technique
to continuous-time ARMA (CARMA) models is nontrivial.
An alternative analytic interpolation framework is proposed
in Mahata and Fu (2006), but it is not clear how to extend
this algorithm for multivariable processes. In this paper, the
indirect approach is examined in detail. We first focus on the
DT to CT model transformation step. We present a neces-
sary and sufficient condition for the solvability of the model
transformation problem. The solution is shown to be unique,
provided it exists. Unlike the previous results (El-Khoury &
Crisalle, 1992; Söderström, 1990), our result is valid for multi-
variable processes of any order. Using the analysis we present
several ways of indirect modeling approach with guaranteed
solution. Next, we propose an alternative computationally effi-
cient approach where the intermediate DT model identification
step is not needed. At most it is required to solve a con-
vex problem which can be solved globally and efficiently in
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polynomial time. In addition, for the single-variate case the
proposed algorithm can achieve the Cramér–Rao bound, with
a significantly low computational burden.

2. Preliminaries

Consider a CT stationary stochastic process y(t) ∈ Rm, t �0,
given in terms of the linear stochastic differential equation

dz(t) = Az(t) dt + B de(t), y(t) = Cz(t), (1)

where z(t) ∈ Rn, m�n. The process e(t) ∈ Rm, is a Wiener
process with unit incremental covariance matrix. The problem
under consideration is to model y(t) from a sampled version
y(kh), k ∈ {0, 1, . . . , N − 1}.

Since a proper rational model leads to unbounded variance
of y(t), we consider only strictly proper models (1). The sam-
pled signal admits a DT state space representation (Söderström,
2002, p. 86)

zd(kh + h) = eAhzd(kh) + w(kh),

y(kh) = Czd(kh), (2)

where w(kh) is a fictitious DT zero-mean white noise with

E{w(k1h)w′(k2h)} = Rd�k1,k2 .

Furthermore, Rd is given by

Rd =
∫ h

0
eAtBB ′eA′t dt . (3)

Model (2) is the DT equivalent to the underlying CT model (1)
in the sense that the second order statistics of the DT model
is consistent with the CT process at the sampling instants. The
CT state z(t) and the DT state zd(kh) have the same covariance
matrix. Indeed, if P is the covariance matrix of z(t) then it
must satisfy the CT Lyapunov equation

AP + PA′ + BB′ = 0. (4)

It can be shown (Söderström, 1991) that P also satisfies the
DT Lyapunov equation

Rd = P − FPF′, F = eAh. (5)

The spectrum of the CT process can be written as

�c(s) = C(sI − A)−1BB ′(−sI − A′)−1C′

= − C(sI − A)−1{AP + PA′}(−sI − A′)−1C′

= K ′(−sI − A′)−1C′ + C(sI − A)−1K , (6)

where K=PC′. The observed DT process spectrum is given by

�d(z) = C(zI − F)−1Rd(z
−1I − F ′)−1C′

= C(zI − F)−1{P − FPF ′}(z−1I − F ′)−1C′

= L(z) + L′(z−1), (7)

L(z) = D + C(zI − F)−1H , (8)

where H=FPC′ and D+D′=CPC′ (Söderström, 2002, p. 96).
The function L(z) will be referred to as the half-spectrum of
the observed DT process. In the indirect approach to CARMA
modeling we identify the equivalent DT model first (Larsson,
2005), and then transform the identified DT model to an equiv-
alent CT model. Given the estimates F̂ , Ĉ and R̂d, the key steps
for the DT to CT model transformation algorithm (Söderström,
1991) are the following:

Algorithm 1. (1) Estimate A as, see Golub and Van Loan
(1989, p. 556),

Â = 1

h
log(F̂ ) := 1

h

∞∑
k=1

(−1)k−1 F̂ k

k
. (9)

(2) Estimate P by solving the DT Lyapunov equation; see (5)

P̂ − F̂ P̂ F̂ ′ = R̂d.

(3) The CT transfer function G(s) := C(sI − A)−1B is
estimated by solving a spectral factorization problem

Ĝ(s)Ĝ′(−s) = �̂c(s)

:= Ĉ(sI − Â)−1P̂ Ĉ′ + ĈP̂ (−sI − Â′)−1Ĉ′. (10)

Assumption 1 (Larsson, 2005; Söderström, 1991). For any
eigenvalue � = �r + i�i of A it holds that −�/�i < h < �/�i .
In addition, the spectrum of F̂ lies in the interior of the open
unit disc, and none of the eigenvalues of F̂ lies on the interval
(−1, 0].

Assumption 1 ensures that Â is a consistent estimate of A.
The spectral factorization problem (10) has no solution when
�̂c(s) fails to be positive definite on the imaginary axis. It turns
out that the zeros of the system (2) cannot be arbitrary for the
factorization problem in (10) to admit a solution (El-Khoury
& Crisalle, 1992; Larsson, 2005; Söderström, 1990; Wahlberg,
1988; Weller, Moran, Ninness, & Pollington, 2001). Also for
a given F̂ , Ĉ and R̂d and a nonsingular T , we know T F̂T −1,
ĈT −1 and T R̂dT

′ gives an alternative realization. But the con-
verse is not true, i.e. we can find many other realizations of the
DT spectrum estimate for which there exist no such transfor-
mation T . The following lemma can be used to characterize all
possible realizations of the DT spectrum.

Lemma 1. Given Mi ∈ R(m+n)×(m+n), i ∈ {1, 2}, Define

�i (z) :=
[
(zI − F ′)−1C′

I

]′
Mi

[
(z−1I − F ′)−1C′

I

]
. (11)

Then �1(z) = �2(z), ∀z if and only if there exists Q = Q′ ∈
Rn×n such that

M1 = M2 + H(F, Q, C),

H(F, Q, C) :=
[
Q − FQF ′ −FQC′

−CQF ′ −CQC′

]
. (12)

Proof. See Hassibi, Sayed, and Kailath (1999). �
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Note that Lemma 1 does not require �i (z) in (11) to be
a valid spectrum. Also it is not necessary to have Mi > 0
to ensure �i (z) > 0 on |z| = 1. The necessary and suffi-
cient condition to ensure �i (z) > 0 on |z| = 1 is given by
Kalman–Yakubovitch–Popov lemma (Rantzer, 1996).

Corollary 1. Suppose we are given R̂d ∈ Rn×n and the asso-
ciated spectrum estimate

�̂d(z) := Ĉ(zI − F̂ )−1R̂d(z
−1I − F̂ ′)−1Ĉ′. (13)

Then

�̂d(z) = �̄d(z) := Ĉ(zI − F̂ )−1R̄d(z
−1I − F̂ ′)−1Ĉ′ ∀z,

for some R̄d �= R̂d if and only if there exists Q = Q′ ∈ Rn×n

satisfying QĈ′ = 0 such that

R̄d = R̂d + Q − F̂QF̂ ′. (14)

Proof. By Lemma 1, �̂d(z) = �̄d(z), ∀z, if and only if there
exists Q = Q′ ∈ Rn×n such that[
R̄d 0

0 0

]
=

[
R̂d 0

0 0

]
+ H(F̂ , Q, Ĉ).

That is Q must be such that (14) holds, and

F̂QĈ′ = 0, ĈQĈ′ = 0.

By Assumption 1, F̂ is nonsingular (F̂ has no eigenvalue at the
origin). Hence QĈ′ = 0. �

From the above observations a question about the uniqueness
arises naturally: if two different R̂d leading to the same DT
spectrum are used in Algorithm 1, will they lead to the same
CT spectrum?

3. Existence and uniqueness

In this section we give existence and uniqueness results for
the DT to CT model transformation algorithm, Algorithm 1.
Our first result gives a necessary and sufficient condition for
the solvability of Ĝ(s) in (10).

Theorem 1. Let C⊥ ∈ Rn×(n−m) be a full column-rank matrix
such that ĈC⊥ = 0. Then the spectral factorization problem
(10) admits a solution if and only if

ÂC⊥�C′⊥ + C⊥�C′⊥Â′ > ÂP̂ + P̂ Â′, (15)

for some � = �′ ∈ R(n−m)×(n−m).

Proof. By Kalman–Yakubovitz–Popov lemma (Rantzer, 1996),
�̂c(s) in (10) admits a stable minimum-phase spectral factor if
and only if[
ÂS + SÂ′ (S + P̂ )Ĉ′

Ĉ(S + P̂ ) 0

]
> 0,

for some S = S′ ∈ Rn×n, which is equivalent to

ÂS + SÂ′ > 0, Ĉ(S + P̂ ) = 0. (16)

Let the rank of S+P̂ be r . The second condition in (16) implies
that r < n. Since S + P̂ is symmetric, it admits an eigenvalue
decomposition

S + P̂ = U�U ′, U ∈ Rn×r , � ∈ Rr×r , (17)

where � is a diagonal matrix having the r nonzero eigenval-
ues of S + P̂ as its diagonal entries, while the corresponding
eigenvectors constitute the columns of U . Note that �−1 exists
and U ′U = I . Hence the second condition in (16) gives

Ĉ(S + P̂ )U�−1 = ĈU�U ′U�−1 = ĈU = 0.

Thus, there exists �1 ∈ R(n−m)×r such that U = C⊥�1. Using
this in (17) gives

S + P̂ = C⊥�C′⊥, � = �1��′
1. (18)

Since � is a diagonal matrix, we have � = �′. Combining the
first condition in (16) and (18) we get (15). �

Theorem 1 gives a feasibility test over � instead of over S

(in KYP lemma) and hence reduces the search dimension from
n to n − m.

Next we address the uniqueness issue.

Theorem 2. Let R1, R2 ∈ Rn×n, R1 �= R2, be such that

�̂d(z) = Ĉ(zI − F̂ )−1Ri(z
−1I − F̂ ′)−1Ĉ′,

for i = 1, 2. Let P1, P2 ∈ Rn×n satisfy

Ri = Pi − F̂PiF̂
′, i = 1, 2. (19)

Denote the reconstructed CT spectrum by

�ci (s) = Ĉ(sI − Â)−1PiĈ
′ + ĈPi(−sI − Â′)−1Ĉ′.

Then �c1(s) = �c2(s), ∀s.

Proof. By Corollary 1 there exists Q = Q′ ∈ Rn×n such that

QĈ′ = 0, R1 − R2 = Q − F̂QF̂ ′.

Combining with (19) we have

P1 − P2 − Q = F̂ (P1 − P2 − Q)F̂ ′.

Since the spectrum of F̂ lies in the interior of the open unit
disc, we must have P1 − P2 = Q. Consequently,

�c1(s) − �c2(s)

= Ĉ(sI − Â)−1QĈ′ + ĈQ(−sI − Â′)−1Ĉ′ = 0,

for all s, and the theorem follows. �

4. DT to CT transformation

4.1. Transforming the innovations model

Standard indirect CARMA model identification algorithms
estimate the innovations model, where one obtains the unique
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minimum-phase ARMA transfer function

Ĝd(z) = Ĉ(zI − F̂ )−1Ĵ (20)

and the DT spectrum is estimated as

�̂d(z) = Ĝd(z)Ĝ
′
d(z

−1).

This requires computing F̂ , Ĉ and the associated unique full
column rank Ĵ ∈ Rn×m. In this case R̂d = Ĵ Ĵ ′. Algorithm 1 can
be used to reconstruct the corresponding CT model provided
(15) holds for some �=�′ ∈ R(n−m)×(n−m). Otherwise, instead
of step 2 in Algorithm 1, we solve the semidefinite program
(Vandenberghe & Boyd, 1996)

min
P̄ ,�

‖R̂d − P̄ − F̂ P̄ F̂ ′‖2
F

s.t. ÂC⊥�C′⊥ + C⊥�C′⊥Â′ > ÂP̄ + P̄ Â′,

� = �′,

(here ‖ · ‖F denotes the Frobenius norm) and set P̂ as the
argument minimizer with respect to P̄ .

4.2. Transformation of the half-spectrum

The innovations model (20) is computed using the prediction
error method (PEM), which is computationally expensive and
the underlying optimization problem is not tractable in general.
However, Theorem 2 suggests that it is not necessary to work
with the innovations model, we can work with a different R̂d.
An alternative way is to use the representation (7) and (8), and
compute estimates F̂ , Ĥ , Ĉ and D̂ using a subspace algorithm
(Mari, Stoica, & McKelvey, 2000; Van Overschee & De Moor,
1993).

Theorem 3. Define

L̂(z) := D̂ + Ĉ[zI − F̂ ]−1Ĥ . (21)

Let Â be defined in (9), and C⊥ ∈ Rn×(n−m) be a full column-
rank matrix such that ĈC⊥ = 0. Then the solution to the CT
spectral density reconstruction problem for the DT function

�̂d(z) = L̂(z) + L̂′(z−1) (22)

exists if and only if

Ĥ = F̂QĈ′, D̂ + D̂′ = ĈQĈ′, (23)

Q − F̂QF̂ ′ > 0. (24)

ÂC⊥�C′⊥ + C⊥�C′⊥Â′ > ÂQ + QÂ′, (25)

for some Q = Q′ ∈ Rn×n and � = �′ ∈ R(n−m)×(n−m). When
the above holds, the reconstructed CT spectrum is given by

�̂c(s) = Ĉ(sI − Â)−1QĈ′ + ĈQ(−sI − Â′)−1Ĉ′. (26)

Proof. The positive real lemma (Anderson, 1967) implies that
(23) and (24) are the necessary and sufficient conditions for

�̂d(z) to be strictly proper and �̂d(z) > 0, ∀|z| = 1. Using (22)
and (23), we have

�̂d(z) =
[
(zI − F̂ ′)−1Ĉ′

I

]′
M

[
(z−1I − F̂ ′)−1Ĉ′

I

]
,

M =
[
Q − F̂QF̂ ′ 0

0 0

]
+ H(F̂ , −Q, Ĉ),

see (12). Therefore, by Lemma 1 we have

�̂d(z) = Ĉ(zI − F̂ )−1{Q − F̂QF̂ ′}(z−1I − F̂ ′)−1Ĉ′.

In particular, R̂d = Q − F̂QF̂ ′ is an estimate of Rd. Conse-
quently, by Theorem 2, the reconstructed CT spectral density
function is given by (26). Now by Theorem 1, �̂c(i�) > 0, ∀�,
if and only if (25) holds for some �=�′ ∈ R(n−m)×(n−m). �

Given the estimates F̂ , Ĉ, Ĥ and D̂, there may not exist any
Q and � satisfying (23)–(25). In that case we need to solve a
semidefinite program

min
�,Q

∥∥∥∥
[

Ĥ

D̂ + D̂′

]
−

[
F̂

Ĉ

]
QĈ′

∥∥∥∥
2

F

s.t. Q − F̂QF̂ ′ > 0, Q = Q′, � = �′,

ÂC⊥�C′⊥ + C⊥�C′⊥Â′ > ÂQ + QÂ′.

Note that the proof of Theorem 1 does not depend on the choice
of C⊥. However, for a numerically sound implementation one
may prefer a C⊥ with mutually orthogonal columns.

5. Parameterizing the CT spectrum

In the previous sections we explored the possibilities of iden-
tifying the DT equivalent spectrum and focused on the transfor-
mation from the identified DT spectrum to the associated CT
spectrum. However, if we use the parameterization (6) the in-
termediate DT model estimation step can be skipped. It is well
known for k�0

rk := E{y(t + kh)y′(t)} = CeAhkPC′ = CFkK . (27)

Hence we can use a standard step in subspace identification
algorithms. We can compute the estimates Ĉ, F̂ and K̂ from
the singular value decomposition of the block Hankel matrix
⎡
⎢⎢⎢⎢⎣

r̂0 r̂1 · · · r̂q

r̂1 r̂2 · · · r̂q+1

...
...

. . .
...

r̂q r̂q+1 · · · r̂2q

⎤
⎥⎥⎥⎥⎦ ,

where r̂k is an estimate of rk computed from the data. The
associated CT spectrum estimate is positive if and only if

K̂ + SĈ′ = 0, ÂS + SÂ′ > 0, (28)

for some S = S′. This follows from KYP lemma and a calcula-
tion similar to (16). If condition (28) does not hold for any S,
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then it is required to modify K̂ and Ĉ. The idea is to solve

min
K̄,C̄,S

‖[K̂ − K̄ Ĉ − C̄]‖2
F

s.t. K̄ + SC̄′ = 0, ÂS + SÂ′ > 0, S = S′.

It is of interest to extend the canonical correlation type algo-
rithms (Bauer, 2005) for the CT case for estimating K , F and
C with optimal statistical accuracy.

5.1. The single variate case

For single variate case the optimal statistical accuracy can be
achieved using weighted subspace fitting (Viberg & Ottersten,
1991) in the framework of approximate maximum likelihood
estimation. We work in the observer canonical form (Kailath,
1980, p. 107):

|zI − F | = zn + 	1z
n−1 + · · · + 	n, �0 = [	1 · · · 	n]′,

C = [1 0 · · · 0], F = F(�0). (29)

Define

F(�0) =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−	n −	n−1 · · · −	1

⎤
⎥⎥⎥⎥⎦ ,

Oq(�0) =

⎡
⎢⎢⎢⎢⎣

C

CF(�0)

...

CFq(�0)

⎤
⎥⎥⎥⎥⎦ .

Note that we need not estimate C. Now (27) gives

rq := [r0 r1 · · · rq ] = Oq(�0)K .

Then the approximate maximum-likelihood estimates (Stoica,
Friedlander, & Söderström, 1987) are given by

[�̂′
K̂ ′] = arg min

[�′ 
′]
�(�, 
), (30)

�(�, 
) = {r̂q − Oq(�)
}′�−1{r̂q − Oq(�)
}, (31)

where r̂q is the estimate of rq , and � =E{r̂q − rq}{r̂q − rq}′. It
turns out for N → ∞ that (Söderström & Stoica, 1989, p. 571).

[�]ij = 1

N

N∑
k=−N

[
1 − |k|

N

]
(rkrk+i−j + rk−j−1rk+i+1). (32)

In practice one estimates � from the data using (32). Now for
any given �,


̂(�) := arg min



{r̂q − Oq(�)
}′�−1{r̂q − Oq(�)
}

= [O ′
q(�)�−1Oq(�)]−1O ′

q(�)�−1r̂q . (33)

In addition from the theory of weighted least squares
(Söderström & Stoica, 1989) it is known that

�1(�) := �(�, 
̂(�)) = r̂′
qZ(�)r̂q ,

Z(�) = �−1 − �−1Oq(�)[O ′
q(�)�−1Oq(�)]−1O ′

q(�)�−1. (34)

Therefore, we have

�̂ = arg min
�

�1(�), K̂ = 
̂(�̂).

We can express (34) in a more convenient form. Let M(�) ∈
R(q+1−n)×(q+1) be a full row rank matrix such that

M(�)Oq(�) = 0, (35)

it follows that Z(�) = M ′(�)[M(�)�M ′(�)]−1M(�):

�1(�) = r̂′
qM ′(�)[M(�)�M ′(�)]−1M(�)r̂q . (36)

Using Caley–Hamilton theorem we can show for � =
[	̄1 · · · 	̄n]′,

M(�) =

⎡
⎢⎢⎢⎢⎣

	̄n · · · 	̄1 1 0 · · · 0

0 	̄n · · · 	̄1 1 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 	̄n · · · 	̄1 1

⎤
⎥⎥⎥⎥⎦ , (37)

satisfies (35). Now by definition of M(�) it follows that
M(�)r̂q = ˆ̄r + R̂�, where R̂ and ˆ̄r are estimates of

R =

⎡
⎢⎢⎢⎢⎣

r0 r1 · · · rn−1

r1 r2 · · · rn

...
...

. . .
...

rq−n rq−n+1 · · · rq−1

⎤
⎥⎥⎥⎥⎦ , r̄ =

⎡
⎢⎢⎢⎢⎣

rn

rn+1

...

rq

⎤
⎥⎥⎥⎥⎦ ,

respectively. Hence (36) gives

�̂ = arg min
�

[ˆ̄r + R̂�]′[M(�)�M ′(�)]−1[ˆ̄r + R̂�]. (38)

Solving (38) is a hard problem. However, note that

�̂iv = arg min
�

[ˆ̄r + R̂�]′W [ˆ̄r + R̂�], (39)

for any user defined positive definite W is the extended in-
strumental variable estimate of � (Söderström & Stoica, 1989).
Hence, we can use an iterative procedure where an arbitrary
positive definite matrix W is used to first compute �̂iv , which
is then used to estimate the optimal weight

Ŵ∗ = [M(�̂iv)�M ′(�̂iv)]−1.

Subsequently, we compute a refined instrumental variable esti-
mate

�̌ = arg min
�

[ˆ̄r + R̂�]′Ŵ∗[ˆ̄r + R̂�].

It is shown in Stoica, Söderström, and Friedlander (1985) that
�̌ achieves the Cramér–Rao bound for large N . In addition,
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the analysis in Viberg and Ottersten (1991) can be extended to
show �̌ and �̂ have the same asymptotic distribution. Similarly,
K̂ and

Ǩ = 
̂(�̌)

have the same asymptotic distribution. Hence, �̌ and Ǩ achieve
the Cramér–Rao bound. From �̌ one can construct F̂ in a
straightforward manner, see (29).

6. Numerical simulation results

Algorithm in Section 5 is tested in a numerical simulation
study. We consider a scalar process with a spectrum

�c(s) = c(s)c(−s)

a(s)a(−s)
,

a(s) = s3 + 0.3s2 + 9s + 0.9, c(s) = s2 + 0.5s + 6.

The correlation function of the chosen process has an oscilla-
tory behavior and a large time constant. To obtain a reliable es-
timate of such a process, it is generally required to have a large
observation time window. Here we work with a data length of
500 s, sampled at a frequency of 2.5 Hz. This choice of sampling
frequency is driven by two factors. The sampling frequency is
bounded below by the constraint posed in Assumption 1. On
the other hand, it is well known that a large sampling frequency
gives rise to numerical problems, see the discussion in the Sec-
tion 7. We estimate the correlation function up to 5 s from the
data (q = 12), and use it in our estimation routine. If the data
length is very large compared to the observation time, the esti-
mation accuracy should improve with increasing q. But when
the data length is finite, due to the poor accuracy for the corre-
lation estimates for the larger time lags, the estimation accuracy
deteriorates when q is increased beyond a particular value.

The estimation results obtained from 100 Monte-Carlo simu-
lations are shown in Fig. 1(a), where the true spectrum is com-
pared with estimated mean value ± standard deviation. As can
be seen in Fig. 1(a), the estimated spectrum is slightly biased
but is accurate. We have used the biased estimate of the correla-
tion function (which is the popularly used maximum-likelihood
estimate)

r̂� = 1

N

N∑
t=1

y(t + �h)y(t).

However, if we use the unbiased estimate

r̄� = 1

N − �

N∑
t=1

y(t + �h)y(t)

then the estimates are unbiased, but the mean square estimation
error is slightly larger.

We give the parametric estimation results in Table 1. Here
we consider the estimates of the coefficients of the polynomials
a(s) and c(s), with ak being the coefficient of s3−k in a(s), and
ck denoting the coefficient of s3−k in c(s).
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Fig. 1. Comparison of the mean of the estimated spectrum (dashed line) and
the true spectrum (solid line). The mean ± standard deviation of the estimated
spectrum is shown in dotted lines: (a) proposed approach; (b) prediction error
method.

Table 1
Parameter estimation performance

Parameter True vale Mean Std. deviation

a1 0.3 0.3078 0.0404
a2 9.0 9.0112 0.0995
a3 0.9 0.9294 0.2153
c1 1.0 0.9851 0.0254
c2 0.5 0.5304 0.1150
c3 6.0 5.9679 0.2033

The estimation performance of the modified PEM based ap-
proach in Section 4.1 is shown in Fig. 1(b). A comparison
of Figs. 1(a) and (b) indicates that the performance of the
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proposed approach is comparable with the PEM estimate. In
about 25% of our simulations the PEM estimate of the DT
spectrum did not have a CT counterpart. For these cases it is
necessary to use the modification proposed in Section 4.1.

7. Conclusions

In this paper we have addressed the problem of reconstruct-
ing a CT model from a given DT model. A necessary and suf-
ficient condition for the existence of the solution is given. It is
also shown that the solution is unique if it exists. Based on our
findings, we have presented several ways for reliable indirect
identification. In addition, we have proposed a new approach
where the intermediate DT model estimation step is not neces-
sary. This method is statistically accurate and computationally
efficient. It is, however, necessary to estimate F and we esti-
mate A using (9) causing numerical problems with fast sam-
pling of covariances. It is therefore of interest to explore the
possibilities of estimating A directly.
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