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Abstract— This paper studies the formation control problem
for a leader-follower network in 3D. The objective is to control
the agents to form a globally rigid formation, for which the
sensing graph is directed and switching while the communica-
tion graph is undirected and switching. Under such a setup,
a barycentric coordinate based approach is proposed for the
design of formation control laws ensuring global convergence.
A necessary and sufficient graphical condition is obtained
to guarantee that the followers converge to form a globally
rigid formation together with the leaders. By this approach,
the formation of the whole group, namely, the orientation,
translation and formation scale, can be reconfigured by the
leaders.

I. INTRODUCTION

Formation control is one of the most actively studied topics
in multi-agent systems, whose objective is to control a group
of autonomous robots to achieve prescribed constraints on
their states. Based on different types of sensed and controlled
variables, [1] categorizes the existing literature on formation
control into three kinds:

• Position-based control: Each agent can sense its own
position with respect to a global coordinate system, and
control its position to achieve the desired formation,
which is prescribed by the desired position with respect
to the global coordinate system.

• Displacement-based control: Each agent can sense rel-
ative positions of its neighboring agents with respect
to the global coordinate system, and is controlled to
achieve the desired formation, which is specified by
the desired displacements with respect to the global
coordinate system.

• Distance-based control: Each agent can sense relative
positions of its neighboring agents with respect to its
own local coordinate system, and is driven to achieve
the desired formation, which is specified by the desired
inter-agent distances.
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Recently, a new formation control approach based
on barycentric coordinates is introduced in [2]–[4]. The
barycentric coordinate is a geometric notion characteriz-
ing the relative position of a point with respect to other
points [5] in absence of the global coordinate system. For
barycentric-coordinate-based control, each agent can sense
relative positions of its neighboring agents with respect to
its own local coordinate system, and is controlled to achieve
the desired formation, which is specified by the desired
barycentric coordinates of every agent with respect to its
neighboring agents. In comparison, barycentric-coordinate-
based control requires less advanced sensing capability than
position-based control and displacement-based control, and
needs less interactions than distance-based control (Fig. 1).
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Fig. 1. Sensing capability vs. interactions.

Along the approach based on barycentric coordinates, [2]
and [3] solve the formation control problem in 2D with
complex barycentric coordinates, while [4] addresses the
formation control problem in d-dimensional spaces with
real barycentric coordinates. These works all consider fixed
topologies. However, the information flow may be influenced
by unpredictable changes, so considering switching interac-
tion topologies is more attractive.

We initiate the study for formation control over switching
topologies for a leader-follower network in our previous
work [6], but an assumption is needed that the followers
lie in the convex hull spanned by the leaders in the target
configuration. In this paper, we aim to remove this con-
vex assumption by allowing the interaction weights to be
negative, which, however, leads to much more challenges
in control synthesis and convergence analysis. To overcome
the difficulties, a communication graph is introduced and
an auxiliary state information is exchanged, with which a
fully distributed control law is proposed. A necessary and
sufficient graphical condition is then obtained to ensure
that a leader-follower network globally converges to form
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a globally rigid formation.
Notation: R denotes the set of real numbers. 1n represents

the n-dimensional vector of ones and In represents the
identity matrix of order n. The symbol ⊗ denotes the
Kronecker product.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

A directed graph G = (V , E) consists of a non-empty finite
set V of elements called nodes and an edge set E ⊆ V × V
of ordered pairs of nodes called edges. For each node i ∈ V ,
let N+

i := {j ∈ V : (j, i) ∈ E} denote the set of its in-
neighbors, and let N−

i := {j ∈ V : (i, j) ∈ E} denote the
set of its out-neighbors.

For a directed graph, the Laplacian matrix L ∈ R
n×n is

defined as follows:

L(i, j) =















−wij if i 6= j and j ∈ N+
i

0 if i 6= j and j 6∈ N+
i

∑

k∈N
+

i

wik if i = j

where wij 6= 0 is called the weight on edge (j, i).
For a graph G, a node v is said to be reachable from

another node u if there exists a path from u to v. Moreover,
a node v is said to be 4-reachable from a set R if there
exists a path from a node in R to v after removing any three
nodes except v.

A time-varying graph G(t) = (V , E(t)) represents a graph
whose edge set changes over time. For a time-varying graph
G(t), a node v is called uniformly jointly 4-reachable from
R ⊂ V if there exists T > 0 such that for all t, v is 4-
reachable from R in the union graph G([t, t + T )), whose
edge set is the union of the edge set of G(t) over the
time interval [t, t + T ). An example is given in Fig. 2, for
which node 5 is uniformly jointly 4-reachable from the set
{1, 2, 3, 4} since we can take T = 2 and for any t the union
graph G([t, t+ T )) = G1 ∪ G2.
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Fig. 2. A time-varying graph G(t).

A configuration in R
3 of a set of n nodes is defined by

their coordinates in the Euclidean space R
3, denoted as p =

[pT
1, . . . , p

T
n]

T ∈ R
3n, where each pi ∈ R

3 for 1 ≤ i ≤ n. A
framework in R

3 is a graph G equipped with a configuration
p, denoted as F = (G, p). A framework (G, p) is said to
be generic if the coordinates p1, . . . , pn do not satisfy any
nontrivial algebraic equation with integer coefficients [7].

For a square matrix E ∈ R
n×n, the associated graph

G(E) consists of n nodes v1, . . . , vn where an edge leads

from vj to vi (i 6= j) if and only if the (i, j)-th entry of E
is nonzero.

B. Problem statement

We consider a leader-follower network consisting of N =
m+ n agents in 3D with m leaders labeled 1, . . . ,m and n
followers labeled m+1, . . . , N . Define a target configuration
p = [pT

a, p
T
b]

T where pa = [pT
1, . . . , p

T
m]T ∈ R

3m for the
leaders and pb = [pT

m+1, . . . , p
T
N ]T ∈ R

3n for the followers.
Let zi ∈ R

3 be the position vector of agent i. The motion
of each agent is governed by the following dynamics

żi(t) = ui(t), i = 1, . . . , N, (1)

where ui(t) ∈ R
3 is the control input.

We assume that the leaders are already in a globally rigid
formation and we only focus on controlling the followers.
The leaders are governed by

żi(t) = vr(t), i = 1, . . . ,m, (2)

where vr(t) is the synchronized velocity known to all the
followers. We say that the leaders are already in a globally
rigid formation if the positions of the leaders satisfy

zi(t)−

∫ t

t0

vr(τ)dτ = A(t0)pi + c(t0), for i = 1, . . . ,m,

where A(t0) ∈ R
3×3 is a unitary matrix representing a

rotation, and c(t0) ∈ R
3 is a constant vector representing

a translation, which means that the formation shape of the
leaders is obtained from pa via a rigid-body transformation.

Remark 2.1: If vr(t) is only known to a subset of the
followers, the ideas developed in [6] can be adopted and
extended. For simplicity, we consider in this paper that vr(t)
is known to all followers.

Next we give the precise definition for formation control.
Definition 2.1: A globally rigid formation p = [pT

a, p
T
b]

T is
said to be uniformly asymptotically reached if for any δ > 0
and for any ε > 0 there exists T > 0 such that for any
t0 and for any zi(t0) satisfying ‖zi(t0) − Api − c‖ ≤ δ,
i = 1, . . . , N ,

(∀t ≥ t0 + T )(∀i)

∥

∥

∥

∥

zi(t)− Api − c−

∫ t

t0

vr(τ )dτ

∥

∥

∥

∥

≤ ε, (3)

where A and c are determined by the leaders.
Suppose that every agent can measure relative positions of

its neighbors. We use a time-varying graph Ḡ(t) = (V , Ē(t))
to represent the sensing graph, where V = Va ∪ Vb with
Va = {1, . . . ,m} and Vb = {m+1, . . . , N}. In other words,
(j, i) ∈ Ē(t) if agent i can measure the relative position of
agent j at time t. Let N̄+

i (t) be the set of in-neighbors of
agent i in Ḡ(t) and N̄−

i (t) be the set of its out-neighbors.
Moreover, each agent is assumed to communicate with

its communication neighbors that are not necessarily its
sensing neighbors. We use another time-varying graph H(t)
to represent the communication graph, for which an edge
(j, i) indicates that agent j can communicate to agent i. We
make the following assumption for the communication graph.

Assumption 2.1: The communication graph H(t) is bidi-
rectional. Moreover, the communication graph H(t) contains
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the sensing graph Ḡ(t) as a subgraph at any time t.
To make the problem solvable, we also assume the fol-

lowing.
Assumption 2.2: The target configuration p = [pT

a, p
T
b]

T is
generic.

To avoid infinite switching within a finite time interval,
we assume the following.

Assumption 2.3: The interval between any two switching
instants satisfies a dwell time condition. That is to say, there
exists τD > 0 such that

ti+1 − ti ≥ τD for all i = 0, 1, . . .

if Ḡ(t) switches at t0, t1, t2, . . . .
Thus, the formation control problem is summarized as

follows.
Suppose that the leaders are already in a globally rigid for-

mation pa. Given Assumptions 2.1-2.3 and relative position
measurements zj − zi for j ∈ N+

i , design a fully distributed
control law ui for each follower i and find the corresponding
necessary and sufficient graphical condition such that (3) is
satisfied.

III. DISTRIBUTED CONTROL LAW

In this section, we propose our fully distributed control
law for the followers.

First we introduce a neighbor-selecting rule for the follow-
ers. That is to say, the followers may not interact with all
the neighbors in the sensing graph Ḡ(t). They choose their
neighbors to interact with according to certain rules and then
form the interaction graph G(t) = (V , E(t)). Let N+

i (t) be
the set of in-neighbors of agent i in G(t) and N−

i (t) be the
set of out-neighbors.

Neighbor-selecting rule: If |N̄+
i (t)| < 4, then N+

i (t) =
∅. Otherwise, N+

i (t) = N̄+
i (t).

Remark 3.1: If the number of follower i’s neighbors is
less than 4, then there is no barycentric coordinate repre-
sentation in the three-dimensional space. This is why we
introduce this neighbor-selecting rule.

An example is given in Fig. 3 to demonstrate the neighbor-
selecting rule.

11 22 33

44 55 66

77 88

(a) (b)

Fig. 3. (a) Sensing graph Ḡ. (b) Interaction graph G.

We propose the following linear switching control law for
each follower i = m+ 1, . . . , N ,



















ζ̇i = −
1

2
ζi −

∑

j∈N
+

i
(t)

kij(t)(zj − zi)

ui = vr(t)−
∑

j∈N
+

i
(t)

kij(t)ζi +
∑

j∈N
−

i
(t)

kji(t)ζj
(4)

where ζi is an auxiliary state (ζ1 = · · · = ζm = 0) and
kij(t) ∈ R/{0} is a weight associated to edge (j, i) in the
interaction graph G(t), which will be designed later.

In (4), for each follower i, zj − zi (j ∈ N+
i ) is acquired

by sensors and kjiζj (j ∈ N−
i ) is transmitted through

communication. To apply ζj properly in the control law, it
is required that all the followers share a common sense of
orientation in their frames.

According to Assumption 2.3, G(t) is piecewise constant
and thus kij(t)’s are piecewise constant. Now we give the
principle for each follower i to design kij(t) based on the
target configuration p. That is, for agent i, kij(t)’s are chosen
to be the barycentric coordinates about its neighbors in the
target configuration, which means that each follower i selects
kij(t) satisfying

∑

j∈N
+

i
(t)

kij(t)(pj − pi) = 0. (5)

Note that computing kij(t)’s from (5) is distributed for each
agent i with pi and pj , j ∈ N+

i (t). We denote by L(t) the
Laplacian of G(t) with these weights kij(t)’s.

IV. STABILITY ANALYSIS

Define z and ζ the aggregated vectors of all zi’s and ζi’s,
respectively. By (2) and (4), the overall closed-loop system
can be described as
[

ż

ζ̇

]

=

([

0 −H(t)
L(t) −U

]

⊗ I3

)[

z
ζ

]

+

[

1N

0

]

⊗vr, (6)

where

H(t) =

[

0 0
0 LT

ff (t)

]

, U =

[

0 0
0 1

2
In

]

.

Lff(t) is the sub-matrix of L(t) with the following form

L(t) =

[

0m×m 0m×n

Llf (t) Lff (t)

]

. (7)

According to the design of kij(t)’s, L(t) satisfies

(L(t)⊗ I3)p = 0 and L(t)1N = 0. (8)

Let R be a subset of V and let LR be the sub-matrix of L
with the rows and columns corresponding to nodes in V−R
crossed out. The following lemma provides the relationship
between the determinant of LR and the connectivity of G.

Lemma 4.1 ( [4]): Consider a graph G = (V , E) with V =
Va∪Vb and a generic configuration p = [pT

a, p
T
b]

T. For almost
all1 L satisfying (L⊗ I3)p = 0, det(LVb

) 6= 0 if and only if
every node in Vb is 4-reachable from Va.

In what follows, we present our main theorem.
Theorem 4.1: Suppose the leaders are in a globally rigid

formation pa. Then under control law (4), a globally rigid
formation [pT

a, p
T
b]

T can be uniformly asymptotically reached

1Here “for almost all L” means “for almost all weights used to construct
L”. And “for almost all” parameter values is to be understood as “for all
parameter values except for those in some proper algebraic variety in the
parameter space”. The proper algebraic variety for which a property is not
true is the zero set of some nontrivial polynomial with real coefficients in
the parameters. A proper algebraic variety has Lebesgue measure zero [8].
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if and only if every follower is uniformly jointly 4-reachable
from Va in the interaction graph G(t).

The proof of Theorem 4.1 needs two lemmas. Before
introducing the lemmas, we let C∆ be a set {ti} of points
in [0,∞) for which there exists a ∆ such that for any
ti, tj ∈ C∆ with ti 6= tj , one has |ti − tj | ≥ ∆. Thus,
C∆ comprises points spaced at least ∆ apart.

Denote by Γ the set of real functions v(·) on [0,∞) such
that for each v(·) ∈ Γ there corresponds some ∆ and some
C∆ such that
(1) v(t) and v̇(t) are continuous and bounded on [0,∞)/C∆.
(2) v(t) and v̇(t) have finite limits as t ↓ ti and t ↑ ti, ti ∈

C∆.
The following lemma is taken from [9].

Lemma 4.2 ( [9]): Let V (·) : R+ → R
n×r be a regulated

matrix function (i.e., one-sided limits exist for all t ∈ R+),
and satisfy for some positive δ and α1, and all t ∈ R+,

∫ t+δ

t

‖V (τ)‖2dτ < α1. (9)

Suppose also that the entries of V (·) lie in Γ. Let M be a
real constant n × n matrix with M +M T = −In and B a
real constant n× r matrix with rank r. Then

ẋ =

[

0 −V BT

BV T M

]

x (10)

is exponentially stable if and only if for some positive δ and
α3, and all t ∈ R+,

∫ t+δ

t

V (τ)V (τ)Tdτ ≥ α3I. (11)

The next result shows the relationship between
G(LT(t)L(t)) and G(L(t)).

Lemma 4.3: For almost all L(t) satisfying (L(t) ⊗
I3)p = 0, the associated graph G(L(t)) is a subgraph of
G(LT(t)L(t)) at any time t.
Proof: We omit t for L(t) and kij(t) for simplicity unless
it is necessary.

First, for each i we show that if |N+
i | 6= 0, then for

almost all L satisfying (L ⊗ I3)p = 0, it holds that kii :=
−
∑

j∈N
+

i
kij 6= 0.

Notice that kii 6= 0 ⇔
∑

j∈N
+

i
kij 6= 0. Without loss of

generality, we say follower i has |N+
i | = l neighbors (l 6=

0) labelled i1, i2, . . . , il. Then there are two cases: namely,
|N+

i | = 4 and |N+
i | > 4.

For the case that |N+
i | = 4, suppose on the contrary that

kii = 0. From
∑

j∈N
+

i
kij(pj−pi) = 0 and

∑

j∈N
+

i
kij = 0

we obtain that kii1(pi1 − pi4) + kii2(pi2 − pi4) + kii3(pi3 −
pi4) = 0, which means pi1 , pi2 , pi3 and pi4 stay on the same
plane, a contradiction to generic p. Thus, kii 6= 0.

For the case that |N+
i | > 4, we consider the following

neighbor sets and each of them only contains 4 neighbors of
i, i.e., {ia, ia+1, ia+2, ia+3}, a = 1, 2, . . . , l − 3. For each
a, we choose kaiij to satisfy

∑a+3
j=a k

a
iij
(pij − pi) = 0 with

kaii := −
∑a+3

j=a k
a
iij
. From previous analysis it is obtained

that kaii 6= 0. Then we consider a liner combination for all a,
i.e., kiij = α1k

1
iij

+· · ·+αl−3k
l−3
iij

, j = 1, . . . , l, which leads

to kii = α1k
1
ii+· · ·+αl−3k

l−3
ii . So we can find α1, . . . , αl−3

such that kii 6= 0 and kiij 6= 0, j = 1, . . . , l. Thus, we find
a L satisfying (L ⊗ I3)p = 0 and kii 6= 0 if |N+

i | 6= 0.
Applying the fact that either a polynomial is zero or it is
not zero almost everywhere, it follows that for almost all L
satisfying (L⊗ I3)p = 0, kii 6= 0 if |N+

i | 6= 0.
Second, we prove that if (j, i) ∈ E , then for almost all L

satisfying (L⊗ I3)p = 0, LTL(i, j) 6= 0.
If (j, i) ∈ E , we know kii 6= 0 and kij 6= 0. Notice that

L
T
L(i, j) = L(:, i)T

L(:, j) = k1ik1j+· · ·+kiikij+· · ·+kNikNj .

It is known that kiikij 6= 0. Note that kiikij is picked by
agent i and thus we can infer that if (j, i) ∈ E , for almost
all L satisfying (L⊗ I3)p = 0, LTL(i, j) 6= 0.

Third, we have shown that for almost all L satisfying (L⊗
I3)p = 0, (j, i) ∈ E ⇒ LTL(i, j) 6= 0. With the fact that
(j, i) ∈ E ⇔ L(i, j) 6= 0, it can be directly obtained that
L(i, j) 6= 0 ⇒ LTL(i, j) 6= 0, which implies that for almost
all L satisfying (L⊗ I3)p = 0, the associated graph G(L) is
a subgraph of G(LTL). �

Proof of Theorem 4.1: (⇐) Let y = z−1N⊗
∫ t

t0
vr(τ)dτ

and (6) changes to
[

ẏ

ζ̇

]

=

([

0 −H(t)
L(t) −U

]

⊗ I3

)[

y
ζ

]

, (12)

or equivalently








ẏa
ẏb
ζ̇a

ζ̇b









=













0 0 0 0
0 0 0 −LT

ff (t)
0 0 0 0

Llf (t) Lff (t) 0 − 1
2
In






⊗ I3













ya
yb
ζa
ζb







where the subscript a represents the states for the leaders and
b for the followers, which are used throughout the paper.

Next we show that
{

z∗(t) = (IN ⊗ A)p+ 1N ⊗ (c+
∫ t

t0
vr(τ )dτ )

ζ∗ = 0

is an equilibrium solution of system (6), which is equal to
show that

{

y∗ = (IN ⊗ A)p+ 1N ⊗ c
ζ∗ = 0

(13)

is an equilibrium point of system (12), and this can be seen
from (L(t) ⊗ I3)[(IN ⊗ A)p + 1N ⊗ c] = (L(t) ⊗ A)p =
(IN ⊗A)(L(t) ⊗ I3)p = 0.

Notice that the leaders already move in a globally rigid
formation. Considering the followers and applying the coor-
dinate transformation eb = yb − y∗b , we obtain

[

ėb
ζ̇b

]

=

([

0 −LT
ff (t)

Lff (t) − 1
2
In

]

⊗ I3

)[

eb
ζb

]

. (14)

In addition, we see that (14) is derived by substituting

x =

[

eb
ζb

]

,M = −
1

2
In ⊗ I3, B = In ⊗ I3 and V = L

T
ff ⊗ I3

into (10) in Lemma 4.2.
Suppose G(t) switches at t = t0, t1, t2, . . . . Recall that

by our dwell time assumption, ti+1 − ti ≥ τD for all i =
0, 1, 2 . . . . Moreover, we are always able to find a τm > τD
large enough such that ti+1−ti ≤ τm for all i = 0, 1, 2, . . . .
If for some interval [ti, ti+1) there is no such a τm, we can
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partition [ti, ti+1) artificially.

Suppose now every follower is uniformly jointly 4-
reachable from Va. Then by definition there exits T > 0
such that for all t in the union graph G([t, t + T )) every
follower is 4-reachable from Va. It is known that Lff (t) is
piecewise constant, so Lff(t) is regulated. Let

δ = T + 2τm.

Notice that kij(t)’s are finite due to finite nodes and edges,
then we derive ‖Lff(t)‖2 is uniform upper-bounded, which
implies that there must exist some positive α1 and for all t,
∫ t+δ

t
‖LT

ff(τ)‖
2dτ < α1. Hence, according to Lemma 4.2,

to prove the sufficiency of Theorem 4.1, it remains to prove
that for some positive α3, and for all t,

E :=

∫ t+δ

t

Lff (τ)
TLff (τ)dτ ≥ α3I. (15)

For any t, without loss of generality, let t ∈
(tm, tm+1], and t+ δ ∈ [tn, tn+1), and define

D := LT(tm+1)L(tm+1) + · · ·+ LT(tn−1)L(tn−1).

Recall the fact that either a polynomial is zero or it is not
zero almost everywhere. Then we can infer that for almost
all L(t),

LT(tk)L(tk)(i, j) 6= 0, k = m+1, . . . , n−1 ⇒ D(i, j) 6= 0,

which means that the associated graph

G(D) = G(LT(tm+1)L(tm+1))∪ · · · ∪G(LT(tn−1)L(tn−1)).

Since tm+1 − t ≤ τm and t+ δ − tn ≤ τm, we know tn −
tm+1 ≥ T. That is to say, in G([tm+1, tn)) every follower is
4-reachable from Va. Notice that

G([tm+1, tn)) = G(L(tm+1)) ∪ · · · ∪ G(L(tn−1)).

By Lemma 4.3, the associated graph G(L(t)) is a subgraph
of G(LT(t)L(t)). This indicates that in G(D) every follower
is 4-reachable from Va. Moreover, note that (D ⊗ I3)p =
0 and D1N = 0. So D can be regarded as a Laplacian matrix
which has the following structure

[

∗ ∗
∗ Dff

]

where

Dff = LT
ff (tm+1)Lff (tm+1) + · · ·+LT

ff(tn−1)Lff(tn−1)

due to the special structure of L(t). Then it follows from
Lemma 4.1 that det (Dff ) 6= 0. Also with the fact that Dff is
positive semi-definite, we know that Dff is positive definite.

Next step we consider

E =LT
ff(tm)Lff (tm)(tm+1 − t)

+ LT
ff (tm+1)Lff (tm+1)(tm+2 − tm+1) + · · ·

+ LT
ff (tn−1)Lff (tn−1)(tn − tn−1)

+ LT
ff (tn)Lff (tn)(t+ δ − tn).

Since Dff is symmetric and positive definite, for any vector
x 6= 0 it holds that xTDffx > 0, from which we can get

that for any vector x 6= 0, xTEx > 0. Thus, E is also
symmetric and positive definite, from which we can infer
that the smallest eigenvalue of E is positive for any t. Thus,
to prove (15) holds, it is required to show that the smallest
eigenvalue of E is uniform lower bounded.

Note that Lff (t) is finite. And the number of switches
during [t, t+δ) is not more than ⌈ δ

τD
⌉. This means that D is

finite. And notice that for E, τD ≤ ti+1−ti ≤ τm for all i =
0, 1, 2, . . . , and 0 ≤ tm+1 − t ≤ τm, 0 ≤ t+ δ − tn ≤ τm.
Then we know that there exists α3 > 0 such that for all t,

∫ t+δ

t

LT
ff(τ)Lff (τ)dτ ≥ α3I.

Hence, a globally rigid formation [pT
a, p

T
b]

T can be uniformly
asymptotically reached.

(⇒) We prove the necessity in a contrapositive way. As-
sume that there exists a follower, say i, that is not uniformly
jointly 4-reachable from Va. That is, for any T > 0 there
exists t∗ ≥ 0 such that in the union graph G([t∗, t∗ + T )), i
is not 4-reachable from Va.

Note that G(
∫ t∗+T

t∗
L(τ)dτ) is a subgraph of G([t∗, t∗ +

T )), which means that in G(
∫ t∗+T

t∗
L(τ)dτ), i is not 4-

reachable from Va. It is known that
∫ t∗+T

t∗
L(τ)dτ is a

Laplacian matrix corresponding to G(
∫ t∗+T

t∗
L(τ)dτ), then

by Lemma 4.1 we know det
(

∫ t∗+T

t∗
Lff(τ)dτ

)

= 0. Let

C(t) =

([

0 −LT
ff (t)

Lff (t) − 1
2
In

]

⊗ I3

)

and consider the interval [t∗, t∗ + T ), then we attain from
(14) that

[

eb(t
∗ + T )

ζb(t
∗ + T )

]

= exp

[

∫ t∗+T

t∗
C(τ )dτ

]

[

eb(t
∗)

ζb(t
∗)

]

.

Since we have shown that det
(

∫ t∗+T

t∗
Lff (τ)dτ

)

= 0, there
exists a ẽb 6= 0 satisfying

(

∫ t∗+T

t∗
Lff (τ )dτ ⊗ I3

)

ẽb = 0

such that
[

eb(t
∗)

ζb(t
∗)

]

=

[

ẽb
0

]

⇒

[

eb(t
∗ + T )

ζb(t
∗ + T )

]

=

[

ẽb
0

]

.

So we choose δ and ε such that ε = 1
2δ. Then for all

T > 0, there exists t0 = t∗ and a follower i satisfying
ẽi 6= 0. Choose zi(t0) = Api + c + kẽi where k > 0 is a
scale factor such that 1

2δ < k‖ẽi‖ ≤ δ. Then we have found
zi(t0) satisfying ‖zi(t0)−Api − c‖ ≤ δ,

(∃t = t0 + T )(∃i)

∥

∥

∥

∥

zi(t)− Api − c−

∫ t

t0

vr(τ )dτ

∥

∥

∥

∥

>
1

2
δ = ε.

Therefore, the globally rigid formation p cannot be uniformly
asymptotically reached. �

Remark 4.1: The formation of the whole group, namely,
the orientation, translation and formation scale, can be

6267



reconfigured by the leaders. To see this, denote a target
configuration p̄ such that for all i, j ∈ V and i 6= j,

‖p̄i − p̄j‖ = γ‖pi − pj‖,

where γ is a scale factor. The barycentric coordinates remain
unchanged, i.e.,
∑

j∈N
+

i
(t)

kij(t)(pj − pi) = 0 ⇒
∑

j∈N
+

i
(t)

kij(t)(p̄j − p̄i) = 0.

Thus, by the same process of proof we can get that the
desired formation is reached.

V. SIMULATION

In this section, we present some simulations to illustrate
our result.

We consider 4 leaders and 6 followers in the simulation.
Suppose the target configuration p is given in Fig. 4 with
the leader set Va = {1, 2, 3, 4} and the follower set Vb =
{5, . . . , 10}.
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Fig. 4. The target configuration.

Suppose that the interaction graph G(t) is shown in Fig. 5,
and it can be checked that every follower is uniformly jointly
4-reachable from Va in G(t) by taking T = 3.
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t

G1
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G3

G(t)

G1 G2 G3

1 11
222 333 444
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66
67
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888 999 101010

Fig. 5. A periodic switching graph G(t) that switches among three different
topologies.

We carry out simulations using the control law (4) for
the followers. A simulation result is shown in Fig. 6, which
shows that a globally rigid formation is uniformly asymp-
totically reached. Another simulation result is presented in
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Fig. 6. The followers are uniformly asymptotically merged with the leaders.

Fig. 7, from which we see that orientation, translation and
formation scale can be reconfigured by the leaders.
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Fig. 7. The formation shape is guided by the leaders with the control law
for the followers remaining unchanged.

VI. CONCLUSION

This paper studies the formation control problem for a
leader-follower network and presents a barycentric coordi-
nate based approach to solve the problem under directed and
switching topologies. We introduce a communication graph
to exchange an auxiliary state such that a fully distributed
control law is available for the formation control purpose.
A necessary and sufficient graphical condition is obtained to
ensure global convergence.
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