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Editor’s Note: Several readers, including
Dr. T. Higglund of SattControl Instru-
ments in Sweden, have written in to say that
there were discrepancies in the numerical
values listed in Tables 1, 2, and 3 in the
paper ‘‘Optimal Gain for Proportional-Inte-
gral-Derivative Feedback’’ by Salem A. K.
Al-Assadi and Lamya A. M. Al-Chalabi,
which appeared in the December 1987 issue
of the IEEE Control Systems Magazine [1].
The authors, Al-Assadi and Al-Chalabi,
apologize for these errors. Part of the dis-
crepancies may have been due to misinter-
pretation of terms, but there are some even
more fundamental problems as explained in
this comment on that paper.

ABSTRACT: This comment concerns the
comparison of tuning parameters for propor-
tional-integral-derivative (PID) controllers
proposed in [1]. We focus on the time-delay
example contained in [1] and the resulting
Table 2; however, we first remark on some
fundamental points regarding PID control-
lers that have been misunderstood in [1] as
well as in Kinney [2], which serves as one
of the principal references for [1].

Background and
Preliminary Remarks

Recently, we have been working on prob-
lems of robust stability of time-delay sys-
tems. In looking for a ‘‘real”” example, we
focused on the one given in [1], where a
model for a heat exchange process is given
as a first-order system with time delay:

G(s) = exp (—71pp$)/(1;s + 1) (D)

with 757 given to be 0.67 min and 7, given
to be 0.33 min. A proportional-integral-de-
rivative (PID) controller of the following
form was proposed in [1]:

G.(s) = K, + K//s + Kps ?2)
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Our initial idea was to investigate the sta-
bility of the closed-loop system with respect
to parameter variations, using the proposed
values in Table 2 of [1] as nominal values.
This proved impossible since a Nyquist plot
of the proposed closed-loop system showed
it to be unstable. Further investigation of [1]
has led to this comment.

The importance of the proper tuning of
PID controllers has been recognized for some
50 years. Various methods to accomplish the
desired tuning are contained in [2]-[4] and
more recently in [5]—to cite but a few of the
many possible references. Most of these
methods are empirical and are ‘‘optimal”’
only in the sense of yielding ‘‘good’ prac-
tical values in many typical cases. It is well
known that classical tuning methods do not
produce optimal settings in terms of mini-
mizing the integral-squared-error (ISE). They
are by no means optimal in any strict math-
ematical sense. In fact, Shinskey ([4], Table
4.3, p. 97) points out that for *‘noninteract-
ing”” PID controllers, the optimum settings
require large Kp, making the closed-loop
system more sensitive to process parameter
variations. Furthermore, some authors (see
[51, p. 231) consider the ISE criterion to be
unacceptable due to the highly oscillatory
nature of the resulting closed-loop system.
In view of the preceding remarks, it is a
basic misconception to suggest, as is done
in both [1] and [2], that the methods used
for comparison purposes in [1] yield optimal
PID settings or that minimizing the ISE

yields the best PID controller settings. Since
the process model is only an approximation,
we believe robustness with respect to model
uncentainties is more important than opti-
mality (methods used for comparison pur-
poses in [1] at least provide good stability
margins). Furthermore, comparing methods
without mentioning the inherent assumptions
and limitations can lead to erroneous con-
clusions: The various methods are ‘‘good’’
only under certain assumptions, for exam-
ple, to quote ([5], p. 225), ‘‘these formulas
[Ziegler-Nichols open loop] ... should not
be extrapolated outside a range of 7p7/7| of
around 0.1 to 1.0.”” For the time-delay ex-
ample in [1], 7py/7y = 2.03, again calling
into question the validity of the comparisons
made in [1].

Time-Delay Example

A PID representation that is equivalent to
Eq. (2) is

G.(5) = K[1 + 1(T;s) + Tys] (3)
Thus, comparing Eqgs. (2) and (3), we have

K, =K
K; = KIT,
Kp = KT, “)

The columns in Table 2 of [1] are not labeled
properly [implementing what the authors
propose on a process described by Eq. (1)

Table 2 (revised)
Results for Time-Delay Example

Parameters of PID Controller

Method K T, T;
Ziegler-Nichols (Open 0.591 0.335 1.34
Loop)
Ziegler-Nichols 0.910 0.229 0.915
(Closed Loop)
Cohen and Coon [2] 0.766 0.176 1.06
Shinskey 0.755 0.146 0.622
(Noninteracting) [4]
Proposed 0.8416 0.3555 0.4359
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results in an unstable closed-loop system] and
many of the values given in this table are
incorrect. Using Eq. (3), we are convinced
that K,, Kp, and K; in Table 2 of [1] must
be replaced by K, T,, and T, respectively.
(Editor’s Note: This assertion has been con-
firmed by the authors of [1].) If Table 2 of
[1] is revised as given herein, then the values
proposed by the authors do yield a stable
system; the robustness of their proposed
controller, however, is relatively poor. For
example, if 7, is decreased by about 10 per-
cent from 0.33 to 0.298, the closed-loop sys-
tem becomes unstable, i.e., for 7, = 0.298,
s = j42.22 is a root of the characteristic
equation. We now give detailed calculations
to show how the values in the revised version
of Table 2 are obtained.

Kinney [2] references Shinskey {4], who
gives the PID representation (where P is in
percent) as

G.(s) = (100/P)[1 + VIs + Ds] (5)

Thus, using the notation in Egs. (2), (3), and
(5), we have

K = 100/P = K,

T, =1 =K,JK,
T, =D = Ky/K, (6)
Using the Ziegler-Nichols open-loop

method, we have from Eqs. (11a)-(1lc) of
[2], with P = PB and Rz = 3.7 min in [2],

K = 1.2/(rprRp) = 0.484
T = 2rpr = 1.34
T, = 0.57p; = 0.335

These are the values given in Table 2 of [1].
However, it should be pointed out that if we
utilize Eq. (1) as the process model (the au-
thors make this assumption in calculating
their ‘‘proposed’’ values), Ry in [2] should
be replaced by 1/7, resulting in K = 0.591.

In Egs. (12a)-(12¢) of [2], the Ziegler-
Nichols closed-loop relations are given (once
again P equals PB) as

P = 1.66P*
1 =057
D = 7,/8

The variable 7, is the ‘‘natural period’” found
by using only proportional control and ad-

January 1989

justing P to P* (PB* in [2]) so that the
closed-loop process oscillates around the set
point. Note that in [2], the value of 7q is
measured to be 2.2 min, and P* is chosen
as 140 percent. Using these values yields the
results given in Table 2 of [1], i.e.,

K =043
T, = 0.275
T,=1.1 0]

This supports our interpretation of Table 2.
If, however, we assume the process model
(1) to be exact, then 7y and P* can be cal-
culated explicitly as follows. Assuming a
proportional controller, the closed-loop
characteristic equation is as follows:

100\ exp (—7prs) _
1+<P> (ris + 1) =0 ®

Replacing s by jw and solving for the values
of P and w (denoted by P* and w*), which
produce oscillations, is equivalent to solving
100\ exp (=0.67jw*) _ ©)
P/ (0.33jw* + 1)

Setting the amplitude of Eq. (9) equal to 1
and the argument equal to =« yields w* =
3.43 = 2m/7, resulting in 7, = 1.83 min
and P* = 66.2 percent. Thus, from Eqgs.
(12a)-(12c¢) of [2], Egs. (4) and (6) here, we
have

K = 100/1.66P* = 0.910
T, = 14/8 = 0.229
T,=1=0.57=0915 (10)

The difference between the values in Eq. (10)
and those in Eq. (7) is that the theoretical
model [Eq. (1)] does not match the real pro-
cess considered in [2]. In fact, the Ziegler-
Nichols closed-loop method really does not
assume any process model and is based on
process measurements. Thus a comparison
between the authors’ method and the
Ziegler-Nichols closed-loop method should
use the values given in Eq. (10), if it is at
all meaning ful.

We now turn to the Cohen and Coon
method [2]. Since the original reference [6]
was unavailable to us, we assume that [2] is
correct. From Egs. (13a)-(13c) of 2], we
have, with u = 7p5,/7,,

P TprKR
TpT
=D =037 —2— =0.17
T,=D 037(1+H/5) 0.176
(1 + u/S) }
T, =1=25 —— | = 1.06
' T’”[(l + 3ul5)

These values, with the exception of 7, do
not agree with those in [1}!

For Shinskey’s method, the values given
in Table 2 of [1] agree with those that can
be calculated from Egs. (14a)-(14c) of [2],
with P* = 140 percent and 7o = 2.2 min.
We believe, however, that Eqs. (14a)-(14c)
of [2] contain errors. Going directly to the
procedure given in Shinskey ([4], p. 99), we
find that his ‘‘noninteracting controller’” pa-
rameters are as follows:

P = 2.0P*
I = 0.347, (14 in [4])
D = 0.087, (11

Note that the coefficients in Eq. (11) are not
those given in [2]. Using P* and 7, calcu-
lated from Eq. (9) in Eq. (11) yields

K =0.755
T, = 0.622
T, = 0.146

In summary, we believe the corrected val-
ues of the tuning parameters are given here
in the revised version of Table 2.
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