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wherek’ is a constant depending éa andk.. [9] G.C. Goodwin and K. S. SirAdaptive Filtering, Prediction, and Con-
Substituting (18) and (A-27) into (A-29) gives trol. Englewood Cliffs, NJ: Prentice-Hall, 1984. )
[10] Y. Zhang, C. Wen, and Y. C. Soh, “Robust adaptive control for uncertain
|(§i (t + 1)’[@_},@ +1)— ﬁi(t)lﬁ,;,k_,_] (t)] discrete-time systemsAutomatica vol. 35, pp. 321-329, 1998.
[11] C. Wen, “A robust adaptive controller with minimal modifications for
< cniflepr—ivrag (4 1)” + 2, || X{k—it1,0 (E + 1)” discrete time-varying systemsAutomaticavol. 39, pp. 987-991, 1994,
+ c3,i ||Zpk—it2, k1] (t)” | &, (t+ 1)” (A-30) [12] C. Wen and D. J. Hill, “Global boundedness of discret-time adaptive
’ ’ ’ ’ control by parameter projectionAutomatica vol. 28, pp. 1143-1157,
wherec,, ;,(m = 1,2,3) are constants combining.. ,,(m = 1992.

1,2,3:1 < p < i —1), ko andkg. Thusc,, i(m = 1.2,3) are [13] R H. Middleton and G. C. Goodwin, “Adaptive control of time-varying
dependent of, and k. only. So far we have proved the inequality linear systems,1EEE Trans. Automat. Confrvol. 33, pp. 150-155,

1988.
(A'ZZ_)- . ) . . [14] Y. Zhang, C. Wen, and Y. C. Soh, “Robust adaptive control for nonlinear
Using (A-22), it follows immediately from the definition af; (t4-1) discrete-time systems without overparameterization,” School of EEE,
that Nanyang Technological University, Tech. Rep., 1997.
it + D] < e |lepimn (E+ 1)” + ¢ Xyt + 1)”
+ e [z O] [En i+ D) (A-31)
wherec/, ;. (m = 1,2,3) are constants.
Sincexi(t + 1) = Oandxz(t + 1) < kokaled(t + 1)] + : .
ku|24] [&1( + 1)], it can be shown from (A-31) that When Is (D, G)-Scaling Both Necessary and Sufficient
it + D] < e [leq,imn(t+ 1) Gjerrit Meinsma, Tetsuya Iwasaki, and Minyue Fu
+ i zna®ff leni—n+ 1| (A-32)
wherec! ; andcy ; are constants combining andk.. Abstract—t is shown that the well-known ( D, G))-scaling upper bound
Takinger = max;<;<,{c!;} andes = max;<;<n{c5;}, (A-8) of the structured singular value is a nonconservative test for robust stability
follows - . - with respect to certain linear time-varying uncertainties.
Using (A-2) and inequality Index Terms—Duality, IQC, linear matrix inequalities, mixed structured
singular values, robustness, time-varying systems.
lx(to — Dl ()] < 1200 = Dllleilio)
O L ot — DR
bull(to — 1)|| |ei (t0)] I. INTRODUCTION
T (ko fla(to — DI?)Y/2 Is the closed-loop stable in Fig. 1 for all's in a given set of stable
< bu ((koka + a1)Mo + a1) (A-33) operator&3? That, roughly, is the fundamental robust stability problem.
A There is an intriguing result by Megretski and Treil [4] and Shamma
(A-9) follows. O  [8]which says, loosely speaking, thatlif is a stable LTI operator and
Remark A.1:Note thatM, is not a design parameter. For anythe set ofA’s is the set of contractive linear time-varying operators of
boundedz(0) andy,.(t), such a contantf, always exists. some fixed block diagonal structure
Remark A.2: In Lemma A.2, it is noted that the update law has the )
same properties as those given in [8] if the nonparametric uncertainties A =diag (A1, Ayeeon An) 1)

are removed and all the system parameters are considered to be
stants. Moreover, the constants «}, anda» are functions of ande, .
They can be made sufficiently small by specifying sufficiently small
ande.

tqr?gt_then the closed loop is robustly stable—that is, stable for all such
A’s—if and only if the Ho.-norm of DA D ™! is less than one for
some constant diagonal matriX that commutes with the\’s. The
problem can be decided in polynomial time, and it is a problem that has
since long been associated with @gpper boundf the structured sin-
gular value. The intriguing part is that the result holds for any number
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is self-adjointif (u,év) = (éu,v) for all u,v € (.. Note that all
vyt A real-valued static LTV operators are self-adjoint.

+ The M andA throughout denote bounded operators fréirto (5
and} is assumed linear time invariant (LT1). Bounded operator&on
are also calledtable Note that this notion of stability does not require

y u the operator to be causal, thus is less restrictive than the standard notion
of stability for linear control systems. The reader should keep this in
+ v mind in interpreting the results of this paper.
M ! Hats will denoteZ-transforms, so ify € (> theng(z) is defined as

9(2) = X pez y(k)z*. To avoid clutter we shall use for functiorfs
of frequency the notation
Fig. 1. The closed loop. R R

A precise definition is given in Section Il. Paganini’s result is an exact

generalization and leads, again, to a convex optimization problem oder Stability

the constant matriceB that commute witha. The closed loop depicted in Fig. 1 is calledernally stable(or
In view of the connection of these results with the upper bounds w. .

of the structured singular it is natural to ask if the well knowﬁ'mplyStabIe if the map from[ ]to[  is bounded as a map from

(D, @)-scaling upper bound of thmixed structured singular value 13" to 13". Because of stability oM andA we claim that the closed

also has a similar interpretation. In this paper we show that thatlip is stable iff / — AM) ! is bounded. This property is well-known

indeed the case. for the case wheré/, A and(/ — AM) ™! are causal. To see that this
The(D, G)-scaling upper bound of the structured singular value wagoperty holds without the causality requirement, we define

originally defined as a means to provide an easy-to-verify condition N .

that guarantees robust stability with respect to the contractive linear t=u+vi; Yy=y+v2.

time-invariantoperatorsA of the form o u "
Obviously, the map frorﬁ?J Jto] U] is stable iff the map fror{lz ]to
)2 1 v

A:diag (Slfﬁl,...,S,,LTIEMT761IVL1 ..... i
[ .]is stable. From Fig. 1, the latter map is given by
bmo T At Ay ) @ ¢
L . . I -A
with 4; denoting real-valued constants [1]. It is known that for general v
LTI plants M this sufficient condition isiecessargs well if and only -
if which is bounded if{7 — AM)~" is bounded.
The closed loop in Fig. 1 will be callachiformly robustly stablevith
2(my +me) +mp < 3. respect to some sgtof stable LTV operators if there exists> 0 such

(See [5].) Itis natural to expect that th®, G)-scaling condition be- that
comes less conservative if the parametérare relaxed to be real- H { }
valued LTV operators. However, no quantitative results about this are
available in the literature.

In this paper we show that theD, G)-
both necessary and sufficient for robust stability with respect to the cayain from[ ] to [ ] is bounded by a constant which is independent
tractive LTV operators of the form (3) with nows; denoting linear ¢ the uncertamtles

time-varyingself-adjointoperators orf . A precise definition follows.  \ye only consider\’s with norm at most one and stablé. In that

Paganini [7] has gone through considerable trouble to show that fo{ge (4) holds if and only if there is an> 0 such that
his structure (2) one may assume causalithofvithout changing the

condition. In the extended structure (3) with self-adjdinthis is no (I — AM)ull2 > ellulle VA€ B, wue€ly.
longer possible.

2]

scaling condition is in fact In another Word unlform robust stability means that the maxinium

VA € B, {“1} ean. (4

2 U2

B. TheA's and the(D, G)-Scaling Matrices
Throughout we assume that: (3 — (3 and thatA is of the form

Il. NOTATION AND PRELIMINARIES
={r:Zw— R:3>,,2°(k) < oo}. The norm|lv||, of

v € (5 is the usual norm o, and for vector-valued signals € (3 A = diag (51 Liinn.s SmTIﬁm Y S
the norm|v||2 is defined ag[|v1 13 + -+ + ||v.||3)'/?. The induced i
norm is denoted by} - ||. So, forF : (5 — (5 itis defined ag| F|| := Smeln,, s A1 ,...,AmF> %)

SUP, e om |Ew||2/||ul]2. For matricesF € C™*™ the induced norm
will be the spectral norm, and for vectors this reduces to the Euclide4hh

norm. §;:la— (> LTV, self-adjoint and [|6;]| <1
F'is the complex conjugate transposefdfandHe F is the Her- 8i by — (o LTV and ||&| <1
mitian partF defined adle F = (1/2)(F + F¥). Ai €8 (3 LTV and [|A] < 1.
An operatorA : (5 — (3 is said to beontractivef ||Av||2 < [|v]|2 B B N ©6)

for everyv € (%. Lower caseS’s always denote operators froth to
(3. Then foru,y € (3 the expressioy = 61, u is defined to mean The dimensions and numbeis, »;, ¢;, m.,, m., mp of the various
that the entrieg;. of y satisfyyr = dux. An operators : (, — (> identity matrices and\; blocks are fixed, but otherwis& may vary
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over all possible: x n LTV operators of the form (5), (6). Given that, is of the form, shown in (10) at the bottom of the page wdth= Z} >

the setsD and¢g of D andG-scales are defined accordingly as 0,He Z; > 0, Tr Z; > 0, and with “?” denoting an irrelevant entry.
. ~ Here the partitioning of (10) is compatible with thatAf
D= {D = diag (Di, «vesDumyy, Diyooos Do,y Proof (Sketch): The equatio — AM)u = 0 is the same as
Ay, e vdinply,, )i 0<D=DT ¢ R"X"} u = AMu.
G = {G — diag (éu G, ,0,....0, Wi_th appropriate partitionings, the expression= AMu can be
written row-block by row-block as

Uy = 51 11/.[1'11‘

o,...,o):G:GH ejR”X"}.

Note that theD-scales are assumed real-valued and thattieeales uz = 02 Mou
are taken to be purely imaginary. As it turns out there is no need to s
consider a wider class d? andG-scales. )

UK = An)Fi’L[f\’u-

lll. THE DISCRETETIME RESULT By Lemma 3.2 there exist contractive &; andA; of the form (6) for
Theorem 3.1: The discrete-time closed-loop in Fig. 1 with stablgVhich the above equalities hold iff certain quadratic integkaliave
LTI plant with transfer matrix/ is uniformly robustly stable with re- certain properties. It is not to difficult to figure out that these quadratic

spect taA's of the form (5), (6) if and only if there is a constant matrixNt€9ralst: are exactly the blocks on the diagonalfu, M“')'Ta”d
D € D and a constant matri& € G such that that the conditions on these blocks are that they sakisfy= ¥; >

0, He¥; > 0, orTrE; > 0, corresponding to the three types of

7 . T H
M., DM+ (GMw - M, G) -D<0 uncertainties. ]
Vw €10,2q). (7) Proof of Theorem 3.1:Suppose suclh € D andG € G exist.
0 Then a standard argument will show that there i an 0 such that

. . o [|(I — AM)ul|2 > €||ul|2 for all « and contractive\ of the form (5).
The existence of such andG can be tested in polynomial time. The'Lhis is the definition of uniformly robustly stable.

remainder of this paper is devoted to a proof of this result. Megretski . .

. o . - Conversely suppose the closed loop is uniformly robustly stable. For
[3] showed this for the full blocks case (1); Paganini [6] derived th'gomes > 0, then,||(T— AM )uljs > « for everyu of unit norm. Define
result for the case that th&’s are of the form (2). The proof of the ' o T

general case (5) follows the same lines as that of [6] and [5]. A key idea
is to replace the condition of the contractitxeblocks with an integral

quadratic condition independent Af:
Lemma 3.2: Letu, y € (3 and consider the quadratic integral By application of Lemma 3.3, the sEY does not intersect the convex
conez defined as

W= {S(u, Mu) : ||ul]s = 1} C R™*"., (11)

Z(u,y) = /;r(z)w — ) (o + G0) T dw € R (8)

The following hold.
1. There is a contractive self-adjoint LTV : ¢, — ¢ such that
u = 61,y if and only if ©(u, y) is Hermitian and nonnegative
definite. In the Appendix we show that in fa¢d is bounded away front.
2. There is a contractive LTV : {5 — ( such thaw = 61, y if Remarkably the closurgy of W is convex. This observation is from

and only if the Hermitian part of (u, y) is nonnegative definite. Megretski and Treil [4], and for completeness a proof is listed in the
3. There is a contractive LT\A : (2 — (% such that. = Ay if Appendix, Lemma 5.1. Becaus® is bounded away fronZ, also the

Z:={Z: Zis of the form (10) with
Zi=2Z">0,HeZ; >0.Tr Z; > 0}.

and only if the trace oE(u, y) is nonnegative. closureW is bounded away fronZ, so there is & > 0 such thatV
Proof: See the Appendix. m also does not intersect
A consequence of this result is the following.
Lemma 3.3: Letw be a nonzero element f . Then(I — AM)u = Z,= Z4{Z e RV |Z]) < 4}
0 for someA of the form (5), (6) iff

Sl M) e 2w e — Daoaf (M. + IV Both W andZ., are convex and have empty intersection, and therefore
Z(u, Mu) '_/ (Mo = Dty (Mo +1)7 dw © 4 hyper-plane exists that separates the two sets [2, p. 133]. In other

0

rZ 7 ? 2 7 9 % 2 21
7 Zy 7 ? ? ? ? 2 ?
? ’ 2 ? 9 > > ’
? 707 Z, 7 7 ? ? ?
? 77 T Zy 7 ? ?7 7| eR¥™" (20)
:? ? ﬁ? ? .'.? '_ .') ﬁ? ?
2 2 2 272 9 7, 7 ?
? 707 77 7 7 Zy 7
L 7 > 2 ? 79 2 2 ]
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be an orthonormal basis 6f, and

that expandy € ¢ in this basis
(E.W) < (B, Z.). (12) y= Z (i), () € R
j=0,1,...

As an inner product takéX,Y) = Tr X'V In particular (12) says We may associate with this expansion the makfix R=*¢ of coef-
that(E, Z) is bounded from below. By Lemma 5.3 that is the case ffcients
and only if £ is of the form

7(0)  72(0) --- v(0)
. . (1) (1) -or ~o(1
E = diag (ElEmElEellemFI) v - j‘( ) (D) 7all)

1(2) 2(2) - (2)
with E; + EL > 0, E; = EF > 0and0 < ¢; € R, that s, if and
onlyif E € D+ jG. Inthat casénf(E, Z) = 0, and so

The matrixU is likewise defined fromu. In this matrix notation the
expressiont = 61,y becomed’ = AY’, and the quadratic integral

Ay 1= inf(E,Z-,) < 0. (8) becomes
From (12) we thus see th&E, W) < a, < 0.If [lu||» = 1, then S(u,y) = (YT —UTYY +U).
-2 I By assumption the above is Hermitian and nonnegative definite, that is,
/ b, (He (Mo + 1) E(M, — I))bw dw o e _ "
0 Y'U=U'Y and U ULY'Y. (15)
27
= Re Tr/ BE(M, - [)uwuf (M., + [)H dw We may assume without loss of generality that the orthonormal basis
o {7,} was chosen such that the first, gayelementq f1,. .., f,} span
= (E,Z(u, Mu)) < sup{E.W) < a, <0. (13) ' the space spanned by the entgs, . ..,y,} of y. ThenY is of the
form
This being at most., < 0 for everyu € (3, ||u|l. = 1 implies that I
Y = L) P } C for some full row rankC € RP*9,
cOXp

He (M, + D)"(E+ e)(M, - I) <0 Vwel0,2 14 ) . . - . L

e (Mo + D7 (B +eI) ) welo.zr (14 Then the second inequality of (15) is tat U < C* C. This implies

for some small enough > 0. ExpressE + eI asE + eI = D + jG  thatU is of the formU = V C for someV . PartitionV’ as[:_1 ] with
2

forsomeD € D andG € G. Then (14) becomes (7). By c RP*P. The two formulas of (15) then become

cTvic=c'vIc and

IV. THE CONTINUOUS-TIME RESULT
cr (VF Vi + VZTVZ) c<c’ie. (16)

Analagous to the discrete-time case we say that a continuous-time
system isuniformly robustly stabléf there is ay > 0 such that (4) As C has full row rank, (16) is equivalent to that
holds for allvy,v2 € Lo. Completely analagous to the discrete-time Vi =7 Tys Ty
. ’ . =V and V' Vi + WV, Vo < T,.
case it can be shown that the following holds. _ _ 1_ ! o -i: 2= "
Theorem 4.1: The continuous-time closed-loop in Fig. 1 with stabldt is now immediate that” equalsl’ = AY" for A defined as

LTI plant with transfer matrix}/ is uniformly robustly stable with re- A i vl 17
spect toA’s of the form (5) with A= S - vy (17
;¢ Lo — Lo LTV, self-adjoint and [|4;]] < 1 Itis easy to verify that\ is contractive. Furthermora is symmetric
5,' Ly — L; LTVy and ||6] <1 T and so the corresponding operatas self-adjoint.
A L% — L% LTV and ”Alv”_< 1 (It may happen thaf — V? is singular. In that case the inverse in
roe 2 —elh = (17) may be replaced with the Moore—Penrose inverse.) |

Lemma 5.1: The closure of (11) is convex.
Proof: The proof hinges on the fact thiatn y . .o (u, eV v) = 0
for every pairu, v € £5 and withe™¥ denoting theV-step delay.
Letu,v € {3 both have unitnorm,i.e%(u, Mu), (v, Mv) € W.
GivenN € N andX € [0, 1] definex as

forallw € RU cc. O 2= Vo + vI= Vo,
SinceX is linear in its two arguments, we have that

if and only if there is a constant matri® € D and a constant matrix
G € G such that

M) DM (jw) + j(GM(jw) — M(jw)?G) = D <0

APPENDIX ,
_ S, M) = AZ(u, Mu) + V1 = AWAS(u, Mo v)
Proof of Lemma 3.2:I5§Tn:s ?Hand 3 are proved in [6] (note that F VIS (0N, Mu)

the Hermitian part of (8) i, 4. 9., — G492 dw, and its trace equals ’
2(lyll3 = flull®))- + (1= ME@, Mv).

If w := &I,y with § self-adjoint and contractive then (8) is easilyAs N — oc the contributions oE(u, Mo v) andS (" v, Mu) tend
seen to be Hermitian arl0. Conversely suppose (8) is Hermitian ando zero, so

1In (12) the expressiofiE, W) denotes the sdtz : « = (E,Y),Y € W} lim Y(x, Mz) = AZ(u, Mu) 4+ (1 = N)E(v, Mv).
and the inequality in (12) is defined to mean that every element of the setonthe "~
left-hand side{E, W), is less than or equal to every element of the set on thkhat this is an element of the closure of (11) follows from the fact that
right-hand side(E, Z.,). limy— o ||2]15 = Mlull3 + (1= M)||o|53 = 1. ]
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Lemma 5.2: Uniform robust stability implies thayV is bounded
away fromZ.
Proof: Suppose to the contrary that

inf [|X(u, Mu) — Z|| = 0.
wet |lullo=1,7€2

This means that there is a sequefigé, Qx Yren C €5 x R™*™ such
that

S, M)+ Qr e 2, |lu¥) =1, Jim_[|Qk[ = 0.

For each: definey” := Mu* € ¢3 and take:” to be any element af;
whose entries are mutually orthogonal and have unit n¢efn,z%) =
6:;, and whose entries are also orthogonal to all entriaskaindy"'.
With it define

Qk)

)

1

llQxll

1
In + 7@/@
QI

k

=~

1
i =t 4 5 (\/ QrlI L —
k : 1
7 =yt + 3 ( 1Q«|
The reason for this definition is that now

27
—k -k ~k
E(u:y):/ (yw—
0

x (zif; +al +/1Qk
=3 y*) + Qi € Z.

~k

1 :
a, + zk

VT

R\ H
zw'.) dw

So we see that(a”, 4*) is an element o2 and, hencey” = A*5*

for some contractive\* of the form (5), (6). Finally consider

(I — A*M)a*
=g - AkJW(’uk + (ﬂk — uk))
Fo ARG M@ - o)
E_ ARG 4+ (0" — §)) — AP M@ — o)
= AR — %) = AR M@k - o).

=u

U

(18)

Using the fact thatla® — «*||. = O(V]QxID, I7* — v*|l2 =
O(/||Q«||) and thafim,_ . ||Q«|| = 0, we obtain from (18) that

lim (I — A"M)a" = 0.

lim ||a*|. = 1.
k—oco k—oo
This contradicts uniform robust stability. [ |
Lemma5.3:infzez Tr ET Z is bounded from below for sonie €
R™*™ if and only if E is of the form

E = diag (E
with E; + EY > 0, E; = E} > 0 ande; > 0.

Proof: Suppose thainfzcz Tr ET Z is bounded from below.
The off-diagonal blocks of are then zero for the following reason:
Let F' be equal taF’ but with its blocks on the diagonal equal to zero
The off-diagonal blocks o € Z are not restricted in any way so
Z = AF is an element of for every\ € R. If F' is nonzero then
TrEYZ = Tr E¥(AF) = ATr F*'F and this is unbounded from
below as a function ok. ThereforeF' must be zero, i.e% is block-di-
agonal.
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The general form of a block-diagonAl is

E = diag (ElEElEElE

mF>

el Z = ZTr Bz + ZTr EYZ, + ZTr EYz,.

ExpressZ as in (10). Then

Each block ofZ € Z can vary independently of all other blocks4f
so the only way that the above is bounded from below is that all

inf TrE!Z;, inf TrE'Z and
Z;=2T>0 He Z;>0

inf TrE!Z
Tr 7;>0

are bounded from below. It is fairly easy to show that

inf TrE!Z; >-coo HeE; >0
Z;=ZT>0
inf TrE/Z >-oco B, =E>0
He Z;>0
inf TrE!Z >-oce Ei=cl, 0<e €R
Tr Z;>0

i

(This is considered in more detail in [5].)
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