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Abstract—Reset control was studied for enhanced perfor-
mance that can not be obtained by linear controllers. The
conventional reset control is simple for implementation by
resetting some of its controller states to zero when its input
is zero. However, we find that in some cases the performance
of conventional reset control is still limited such as only
partial reduction of the overshoot. Thus, this paper presents
the stability analysis and design of an improved reset control
system, where the reset times are prespecified and the controller
states are reset to certain non-zero values, which are calculated
online in terms of the system states for optimal performance.
Experimental results on a PZT microactuator positioning stage
show that the improved reset control can completely remove
the overshoot and thus achieve shorter settling time than the
conventional reset control. Moreover, robustness tests against
various step levels, disturbance and sensor noise are presented.

I. INTRODUCTION

Reset control was firstly proposed by Clegg [1] to over-
come limitations of linear control. This reset controller,
termed as Clegg integrator, consists of an integrator and a
reset law which resets the amount of integration to zero when
its input crosses zero. From the basic idea of reset control,
one can see that reset control is capable of reducing windup
caused by integration. Moreover, a Clegg integrator has a
similar magnitude-frequency slope as a pure integrator, but
with 51.9o less phase lag. This favorable property helps to
enlarge phase margin of a system. Krishman and Horowitz
have developed a quantitative control design procedure in
[2] for Clegg integrator and have generalized the concept of
reset control to higher order systems [3]. Related works on
this have been also summarized in [4], [5].

A lot of works show the advantages of reset control
over linear control. For instance, an example is presented
in [6] showing that reset control can achieve some control
specifications, which cannot be achieved by any ordinary
linear control. Moreover, it is experimentally demonstrated
in [7] that reset control can achieve better senor noises
suppression while without degrading disturbance rejection
nor losing of gain or phase margin. These advantages make
reset control effective for performance improvement in other
applications [8]-[10].

Typically, there are two steps in reset control design [11]:
linear compensator design and reset element design. Linear
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compensator is firstly designed to meet all performance
specifications except for the overshoot constraint. Then reset
element is designed to meet the overshoot specification.
However, the reset controller can improve the closed-loop
performance only when the reset law interacts well with the
base linear system. In other words, if the reset controller is
not appropriately designed, it may have little contribution to
the performance improvement, or even cause performance
degradation. In reset control system design, there are three
basic problems: stability analysis, base linear system design
and reset law design.

For stability analysis, there are lots of literatures address-
ing this issue such as [12]-[15]. Most of these existing results
require stability of the base linear system. In fact, stability
of a reset control system is related to both the base linear
system and the reset actions. Either factor may destroy the
stability of the whole system. Note that reset control systems
are also known as impulsive systems. Many stability results
which do not rely on the stability of the base linear systems
have been obtained in [16].

For reset control design, more efforts are put on the design
of base linear system in existing literatures. The reset law
adopted is generally the conventional one, i.e., resetting the
controller states to zero when the controller input crosses
zero. The base linear system is then designed to interact
well with the reset law. We refer to this kind of reset control
as conventional reset control in this paper. The conventional
reset control has been demonstrated to be able to achieve
better performance than a pure linear controller. However,
we find that in some cases the performance of conventional
reset control is still limited, for example, the overshoot is
only partially reduced based on the linear control system
[7], [8]. Actually, reset control can be more generalized by
relaxing the design of the reset times and the reset values to
push the performance improvement further.

The purpose of this paper is to propose an improved reset
control system, where the reset times can be prespecified
and the controller states are reset to certain non-zero values,
which are calculated online in terms of the system states
for optimal performance. In Section II, we firstly formulate
the improved reset control system in a state space form.
Then, the reset control system is reformulated as a new
system, which is referred to as induced difference system.
We show that under some mild conditions the stability of
a reset control system is equivalent to the stability of its
induced difference system. Based on this, we obtain some
new results about stability of reset control systems, which
do not rely on the stability of base linear system. Lastly,
we propose a reset law design approach, which aims at
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Fig. 1. Block diagram of a reset control system.

minimizing a performance index related to the tracking error.
Section III demonstrates our proposed reset control design on
a piezoelectric (PZT) microactuator positioning stage. Exper-
imental results showed its effectiveness in overshoot removal,
disturbance and sensor noise suppression. Conclusions and
future works are given in Section IV.

II. IMPROVED RESET CONTROL DESIGN

A. Formulation of Reset Control Systems

A typical reset control system is depicted in Fig. 1, where
r is the reference input, e is the feedback error, u is the reset
controller output, d is the output disturbance, n is the sensor
noise, and yp, y and ym denote the plant output, controlled
output and measurement output, respectively. The linear plant
P is described by

ΣP :

{
ẋp = Apxp + Bpu

yp = Cpxp

(1)

where xp ∈ R
np , u ∈ R, and yp ∈ R. The reset controller

(RC) is described by impulsive differential equation (IDE)
as follows:

ΣRC :

⎧⎨
⎩

ẋr = Arxr + Bre, t �= tk
xr(t+k ) = Ekxp + Fkxr + Gkr, t = tk
u = Crxr + Dre

(2)

where xr ∈ R
nr is the reset controller state, e ∈ R, and

t+k is the reset time. Ar , Br , Ek, Fk, Gk, Cr, and Dr

are appropriate dimensional constant matrices. The set of
reset times {tk} is an unbounded time sequence increasing
monotonously with respect to k, k ∈ Z

+, i.e., tk < tk+1

for any k ∈ Z
+ and limk→∞ tk = +∞. In conventional

reset control, the set of reset times is defined as {tk} Δ=
{tk
∣∣e(tk) = 0, tk < tk+1}, i.e., reset actions are triggered

by the feedback error and additionally the states are always
reset to zero. However, in our proposed reset controller (2),
it is assumed that the reset times are prespecified and the
reset values are modulated in terms of the system states and
reference input for improved performance. Furthermore, we
assume that the reset actions are finite in any finite time
interval to ensure the existence of solutions.

Combining (1) and (2) gives the closed-loop system as
follows: ⎧⎨

⎩
ẋ = Ax + Bw, t �= tk,
x(t+k ) = Mkx + Nkr, t = tk
y = Cx + d

(3)

where x = (xT
p , xT

r )T , w = r − d − n, and

A =
[

Ap − BpDrCp BpCr

−BrCp Ar

]
, B =

[
BpDr

Br

]
,

Mk =
[

Inp 0
Ek Fk

]
, Nk =

[
0

Gk

]
, C = [Cp 0],

where Inp is the identity matrix of dimension np.

B. Stability Analysis

In this subsection, we derive the stability condition of the
reset control system (3) under the assumption of r ≡ n ≡
d ≡ 0 but subject to non-zero initial condition. Hence, the
reset control system (3) can be rewritten as{

ẋ = Ax, t �= tk, x(0) = x0

x(t+k ) = Mkx, t = tk.
(4)

Suppose that the solution to (4) is continuous from the left,
we thus have x(t+k ) = limt→0+ x(tk) = Mkx(tk) and

x(t+k+1) = Mk+1e
A(tk+1−tk)x(t+k ).

Define ηk = x(t+k ), Δtk = tk − tk−1, Lk = MkeAΔtk , and
t0 = 0, we have

ηk+1 = Lk+1ηk, k = 0, 1, · · · , N. (5)

The system (5) is referred to as the induced difference system
of the impulsive system (4).

In general, in order to analyze the stability of system
(4), we find a Lyapunov function of the base linear system
ẋ = Ax which decreases at every jump time instant, i.e., find

a positive function V (x) such that V̇ (x) =
(

∂V (x)
∂x

)T

Ax ≤
0, ΔV (x) = V (Mkx) − V (x) ≤ 0. This indicates that
the base linear system is stable and the impulses always
decrease the amount of the Lyapunov function. The following
result reveals that under some mild conditions, stability of
an impulsive system is equivalent to stability of its induced
difference system. Thus, the stability of the base linear
system is not required any more, and the impulses are
allowed to increase the value of Lyapunov function of the
base linear system.
Proposition 1. If there exists a positive number ΔT > 0
such that Δtk = tk − tk−1 < ΔT for all k ∈ Z

+, then
the system (4) is (asymptotically) stable if and only if its
induced difference system (5) is (asymptotically) stable.
Proof : The necessity is obvious. We only prove the
sufficiency. According to the fact that the solutions to the
base linear system ẋ = Ax depend continuously upon initial
conditions, we have for any ε > 0, there exists a positive
number δ1 > 0 such that

‖x0‖ < δ1 ⇒ ‖eAsx0‖ < ε, s ∈ [0, ΔT ]. (6)

Assume the induced difference system (5) is stable, then for
δ1 selected above, there exists a positive number δ > 0 such
that

‖η0‖ < δ ⇒ ‖ηk‖ < δ1, k ∈ Z
+.
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Note that η0 = x0
Δ= x(0+) and for any t ∈ [0, +∞), there

is a nonnegative integer k such that t ∈ (tk, tk+1], so

x(t) = eA(t−tk)x(t+k ) = eA(t−tk)ηk.

Since t − tk ∈ [0, ΔT ], we have

‖x(t)‖ = ‖eA(t−tk)ηk‖ < ε, t ∈ [0, +∞).

So the system (4) is stable.
If the induced difference system is asymptotically stable,

then we have
lim

k→∞
ηk = 0.

For any ε > 0, choose δ1 such that

‖x0‖ < δ1 ⇒ ‖eAsx0‖ < ε, s ∈ [0, ΔT ]. (7)

Thus for any η0 (= x0), there exists a K(x0) ∈ Z
+ for

‖ηk‖ < δ1, k ≥ K(x0).

Then for any t > K(x0), there exists a k ≥ K(x0) such that
t ∈ (tk, tk+1] and x(t) = eA(t−tk)ηk, so we have

‖x(t)‖ = ‖eA(t−tk)ηk‖ < ε

due to t− tk ∈ [0, ΔT ]. Therefore, limt→∞ x(t) = 0, which
implies that the system (4) is asymptotically stable. �
Corollary 1. If both Δtk = δ is a constant and Mk ≡ M
is a constant matrix, then the reset control system (4) is
(asymptotically) stable if and only if

|λ (MeAδ
) | ≤ 1, (< 1),

where λ(·) denotes the eigenvalues of (·). �
In practice, the base linear system is typically designed

to be stable, thus the bounded constraint on {Δtk} can be
relaxed. Thus we have the following.
Proposition 2. Assume the base linear system is stable,
then the system (4) is (asymptotically) stable if and only if
its induced difference system (5) is (asymptotically) stable.
Proof : To complete the proof, just replace ΔT in the proof
of Proposition 1 by +∞ and follow the same lines. �
C. Reset Law Design for Improved Performance

Consider the reset control system (3) and assume that
the the base linear system has been appropriately designed
for basic stability and performance, and the reset times are
predefined. Our objective here is to find a set of reset values
xr(t+k ) of the controller states such that the system transient
response is improved. Suppose n ≡ d ≡ 0, we can formulate
this problem as solving xr(t+k ) to minimize the following
quadratic performance index

Jk =eT (tk+1)P0e(tk+1) + ėT (tk+1)Q0ė(tk+1)

+
∫ tk+1

tk

e(s)T P1e(s)ds, (8)

where e = r − y, and P0, P1 and Q0 are positive semi-
definite matrices. To solve the problem, we assume that for
any r(t) ∈ R, there exists xss = (xT

pss, x
T
rss)T such that{

Axss + Br = 0
Cxss − r = 0 (9)

Define ξp = xp − xpss, ξr = xr − xrss, we have{
ξ̇ = Aξ − ẋss, t �= tk
ξr(t+k ) = ρk(ξ, r), t = tk

(10)

where ξ = (ξT
p , ξT

r )T . Hence we have e = −Cξ, ė = −CAξ,
and the performance index Jk can thus be rewritten as

Jk = ξT (tk+1)P̄ ξ(tk+1) +
∫ tk+1

tk

ξT (s)Q̄ξ(s)ds (11)

where

P̄ = CTP0C + AT CT Q0CA (12)

Q̄ = CTP1C. (13)

If ξp(tk), r and tk, tk+1 are fixed, Jk is in fact a function of
ξr(t+k ). In order to choose ξr(t+k ) such that Jk is minimized,

we need to calculate
∂Jk

∂ξr(t+k )
. In the following, we consider

the case of r being constant, which implies ẋss = 0, thus it
gives that

ξ(t) = eAtξ(t+k ), t ∈ (tk, tk+1].

We then have
∂Jk

∂ξ(t+k )

=
∂ξ(tk+1)
∂ξ(t+k )

∂

∂ξ(tk+1)
(
ξT (tk+1)P̄ ξ(tk+1)

)
+
∫ tk+1

tk

∂ξ(s)
∂ξ(t+k )

∂

∂ξ(s)
(
ξT (s)Q̄ξ(s)

)
ds

= 2eAT Δtk P̄ eAΔtk ξ(t+k )

+2
∫ tk+1

tk

eAT (s−tk)Q̄eA(s−tk)ξ(t+k )ds

= 2
(
eAT Δtk P̄ eAΔtk

+
∫ tk+1

tk

eAT (s−tk)Q̄eA(s−tk)ds

)
ξ(t+k )

= 2

(
eAT Δtk P̄ eAΔtk +

∫ Δtk

0

eAT sQ̄eAsds

)
ξ(t+k )

= 2Γkξ(t+k ) (14)

where

Γk = eAT Δtk P̄ eAΔtk +
∫ Δtk

0

eAT sQ̄eAsds. (15)

Partition Γk as

Γk =
(

Γ11
k Γ12

k

Γ21
k Γ22

k

)
,

with Γ12
k = (Γ21

k )T . Thus we have

∂Jk

∂ξr(t+k )
=

∂ξ(t+k )
∂ξr(t+k )

∂Jk

∂ξ(t+k )

= 2
(

0 I
)( Γ11

k Γ12
k

Γ21
k Γ22

k

)
ξ(t+k )

= 2(Γ21
k ξp(tk) + Γ22

k ξr(t+k )). (16)
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If Γ22
k is positive definite, letting

∂Jk

∂ξr(t+k )
= 0 derives

ξr(t+k ) = −(Γ22
k )−1Γ21

k ξp(tk). (17)

Thus the reset law which minimizes Jk is given by

xr(t+k ) = −(Γ22
k )−1Γ21

k (xp − xpss) + xrss. (18)

Furthermore, if we consider equidistant reset control (i.e.,
Δtk ≡ δ is a constant), then Γk ≡ Γ is a constant matrix
independent on k. According to the analysis above and by
Corollary 1, we have the following.
Proposition 3. Suppose that Δtk = δ is a constant and
Γ22 > 0, then the reset law which minimizes Jk (8) is
independent on k and is given by

xr(t+k ) = −(Γ22)−1Γ21(xp − xpss) + xrss. (19)

In addition, the corresponding closed-loop system (4) under
this reset law is asymptotically stable if and only if∣∣∣∣λ

((
Inp 0

−(Γ22)−1Γ21 0

)
eAδ

)∣∣∣∣ < 1. (20)

�
Remark : If the stability condition (20) can not be satisfied,
we have to retune the base controller or the reset law design
parameters. Generally, the base linear system is designed to
be asymptotically stable, then we can alternatively use the
following reset law

xr(t+k ) = −μ
[
(Γ22)−1Γ21(xp − xpss) + xrss

]
+(1 − μ)xr, μ ∈ [0, 1], (21)

to compromise between the stability and the performance
characterized by Jk. It is clear that when μ varies from 1 to
0, the reset control system tends to the base linear system
that is assumed asymptotically stable. On the other hand,
according to (16), we have

∂Jk

∂μ
=

∂ξr(t+k )
∂μ

∂Jk

∂ξr(t+k )

= −2(1 − μ)
[
(Γ22)−1Γ21ξp(tk) + ξr(tk)

]T
×Γ22

[
(Γ22)−1Γ21ξp(tk) + ξr(tk)

]
≤ 0.

Denote xr(t+k ) = ρ(ξ, r, μ), thus Jk(ρ(ξ, r, μ)) is
monotonously decreasing when μ varies from 0 to 1. Thus
we can always choose μ ∈ (0, 1) such that the closed-loop
system is asymptotically stable and at the same time,

Jk(ρ(ξ, r, 1)) < Jk(ρ(ξ, r, μ)) < Jk(ρ(ξ, r, 0)).

The above inequality indicates that the performance index of
the resulting reset control system is always less than that of
the base linear system, though the minimal index can not be
achieved.

III. EXPERIMENTAL RESULTS

In this section, we experimentally verify the proposed
improved reset control design on a PZT microactuator posi-
tioning stage (P-752 PZT Flexure Stage System, Polytec PI,
Germany) as shown in Fig. 2.

Moving stage

Flexure

Moving
stage Piezo

k
c

y

m u

Base

Fig. 2. A picture of the PZT microactuator positioning stage.

A. Modeling of the PZT Positioning Stage

The PZT positioning stage consists of a PZT microactua-
tor, a moving stage connected with the base via the flexures, a
PZT amplifier, and an integrated capacitive position feedback
sensor with 0.2 nm resolution to measure the displacement of
the moving stage. The PZT microactuator is of high stiffness
and has a maximum travel range of ±15 μm. The mechanical
resonance caused by the flexures is actively damped by the
integrated control electronics. Thus, the dynamics of the
PZT positioning stage can be simply depicted by a mass-
damper-spring system as shown in Fig. 2, which can be then
described by a state space form as follows:

ΣP :

⎧⎨
⎩

ẋ1 = x2

ẋ2 = −a1x1 − a2x2 + bu
y = x1

(22)

where x1, x2 are the position and velocity of the moving
stage, respectively, and u is the control input to the PZT
amplifier. The modal parameters in (22) are identified from
experimental frequency response data. A dynamic signal
analyser (HP 35670A, Hewlett Packard Company, Wash-
ington) is used to generate the swept-sinusoidal excitation
signals and collect the frequency response data from the
excitation signals u to the position output y. The dashed
lines in Fig. 3 show the measured frequency responses of
the PZT positioning stage. The PZT dynamics is of high
stiffness that exhibits a flat gain in the low frequency range.
By using the least square estimation method [17], we obtain
the model parameters as follows:

a1 = 106, a2 = 1810, b = 3 × 106.

The solid lines in Fig. 3 show that the identified model match
the measured model well in the frequency range of interest.

B. Reset Control Law

Our objective is to design a control law for fast step
responses with little overshoot and no steady-state error,
for which high open-loop gains in low frequency range and
high bandwidth with sufficient stability margin are typically
required. Thus, we use the classical proportional-integral (PI)
controller as the base controller,

u(s)
e(s)

= kp +
ki

s
, (23)

where kp = 0.08 and ki = 300. The base linear system
has an open-loop bandwidth 109 Hz, and gain/phase margin
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Fig. 3. Frequency responses of the PZT microactuator positioning stage.

11 dB/33 deg. The integrator increases the low frequency
gains to achieve a fast rise time and remove the steady-state
error (see the dashed lines in Fig. 4). However, the overshoot
induced by the integrator is also significant (40% of the step
level), which results in tedious settling time. Therefore, it is
expected that the overshoot could be reduced by resetting
the integrator state to the proper values calculated by using
Proposition 3.

Here, we set the reset time interval as a constant, i,e.,
Δtk = 1 ms and select the tuning parameters of Jk in (8)
as P0 = 2.1, Q0 = 1.0× 10−6, P1 = 0. Thus, we can easily
obtain xss and Γ by calculating (9) and (15), respectively.
The resulting reset controller is then described in state space
as follows:⎧⎨

⎩
ẋr = e, t �= tk
xr(t+k ) = E1x1 + E2x2 + Gr, t = tk,
u = kixr + kpe

(24)

where E1 = −2.8× 10−4, E2 = −6.8× 10−7, G = 0.0014,
ki = 300, and kp = 0.08. Moreover, it is easy to verify
that the resulting reset control system satisfies the stability
condition in (20), which implies that the closed-loop system
is asymptotically stable.

C. Results and Discussion

The reset controller (24) was implemented by a real-time
DSP system (dSPACE-DS1103) with the sampling time of
Ts = 50 μs. The velocity x2 is estimated by the backward
differentiation of the measurable position signal x1(t), i.e.,
x2(z) = z−1

Tsz x1(z).
The experimental results for 1 μm step responses are

shown in Fig. 4. It can be seen that our improved reset
control completely removes the overshoot and thus reduces
the settling time from 15 ms (No reset) to 3 ms. Moreover,
we observe that the improved reset control has a faster
transient response compared to that under no reset because
the integrator state was reset to minimize Jk from the
beginning at t = 0 leading to a larger control input at the
initial stage and thus faster response. When the position
output approaches the target, the integrator state is reset
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Fig. 4. Step responses (r = 1 μm) of the reset control system. The
improved reset control exhibits little overshoot and the resultant settling
time is 3 ms, which is identical to the rise time of the base linear system
(No reset). The conventional reset control still exhibits 15% overshoot in
the first peak and causes limit cycles in steady state.
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Fig. 5. Time responses of the reset control system to various step levels
(r = 2,3, 4 μm). The overshoots in all cases are nearly removed and the
settling times are maintained to be 3 ms.

to a smaller value (see the control input at t = 1 ms in
Fig. 4) to reduce the overshoot and keep the moving stage
at the desired position. In this case, the conventional reset
control works badly, which can only partially reduces the first
overshoot peak and results in limit cycles. This is because
resetting the integrator state to zero tends to resetting the
control input to zero, which will cause the moving stage
going to its initial position due to the high stiffness of the
PZT actuator. Thus, the conventional reset control needs an
intentional interplay between the reset mechanism and an
appropriately designed base linear controller [7].

Next, we test the robustness of the improved reset control
system against various step levels, disturbance and sensor
noise. Fig. 5 shows the time responses to various step
levels. Figs. 6 and 7 respectively show the time responses
to a single-frequency (100 Hz) sinusoidal input disturbance
ud and sensor noise n, which are artifically introduced to
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Fig. 6. Time responses of the reset control system to step input r = 1 μm
and sinusoidal input disturbance ud = 0.1sin(2π100t) V.
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Fig. 7. Time responses of the reset control system to step input r = 1 μm
and sinusoidal sensor noise n = 0.1sin(2π100t) μm.

the control system. We can see that the improved reset
control simultaneously provides an improvement of 65% in
both disturbance and noise suppression based on the base
linear system (No reset). However, we also observe that this
favorable property does not hold in other frequencies or there
even exists performance degradation as shown in Fig. 8.

IV. CONCLUSIONS AND FUTURE WORKS

This paper studied an improved reset control system,
where the reset times are prespecified and the controller
states are reset to certain non-zero values. The stability
condition of the reset control system is given and the reset
law design is presented. Experimental results on a PZT mi-
croactuator positioning stage showed that the improved reset
control can achieve faster settling time than the conventional
reset control by removing the overshoot. Moreover, it can
simultaneously achieve sinusoidal disturbance and sensor
noise suppression at some frequencies. Our future works will
include the design of the reset time instants and disturbance
and noise suppression in a wide frequency range to enhance
the overall system performance.
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Fig. 8. Plot of reduction ratio of sinusoidal input disturbance and sensor
noise versus frequency. The improved reset control adversely increases the
low-frequency disturbance and high-frequency noise reduction ratio. This
problem will be investigated and improved in our future works.
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