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Abstract

This paper focuses on the problem of computing a control
law which maximizes (in a sub-optimal sense) the delay of
the closed-loop system for a class of linear systems with
delayed input. The delay is assumed to be a continuous
bounded time-varying function. The analysis is given using
two different approaches: a Razumikhin based method and
a frequency-filtering based method.
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1 Introduction

The control of dynamical systems including delayed states
or delayed inputs is a problem of practical and theoretical
interest since the existence of a delay in the closed-loop
system may induce instability or bad performances (see,
e.g. Malek-Zavarei and Jamshidi, [14]). An interesting
technique for stabilizing such systems has been proposed
in [1] by wransforming the delay system into a linear finite-
dimensional one using an appropriate infinite-dimensional
controller. Other remarks and generalizations of this results

could be found in [6] and [19].

The problem of the existence of finite-dimensional con-
trollers for stabilizing classes of time-delay linear systems
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has been considered in [10, 13, 17]. Thus, Kamen et al.
[10] prove that a stabilizable time-delay systems can al-
ways be stabilized by a finite-dimensional controller. Their
technique based on the interpretation of the considered de-
lay system as a linear system over an associated polyno-
mial ring is better adapted to delay-independent closed-
loop stability, which is relatively restrictive. A more gen-
eral class of time-delay systems including the neutral one
have been considered in Logemann [13). The proposed
conditions, which are necessary and sufficient, are based
on a frequency-domain technique. Notice that all these re-
sults are relatively difficult to be checked for numerical ex-
ample. Delay-independent closed-loop stability conditions
have been also derived in [5] (a linear matrix inequality) or
in [20] (a Riccati equation). A classification of memoryless
controllers has been introduced in [17], function on the de-
pendence or not of the closed-loop stability on the delay size
and for both cases simple conditions expressed in terms of
some appropriate properties of matrix pencils or linear ma-
trix inequalities (LMI) have been derived.

In this paper, we consider a class of linear systems with
delayed input including a continuous time-varying, but
bounded delay. Sufficient conditions for delay-dependent
closed-loop asymptotic stability are given in terms of some
appropriate linear matrix inequalities (LMI). Furthermore,
we propose a state feedback controller which maximizes the
delay bound of the closed-loop system, by transforming the
stability problem into a convex optimization one. The cor-
responding algorithm is of the type “convex / quasi-convex”



similar to the one proposed in {15] or [16]. The approaches
adopted here make use of the Lyapunov-Razumikhin func-
tion technique (the time-varying delay case) or of some
frequency-filtering techniques (if the delay is constant). A
good introduction to the LMI techniques could be found in
Boyd et al. [2] and for Razumikhin techniques see, for in-
stance, Hale and Lunel [8]. To the best authors’ knowledge
there does not exist in the literature any result concerning
the construction of state feedback which maximizes the de-
lay bound of the closed-loop system. Furthermore, all the
results developed here could be extended to systems includ-
ing uncertainty or several delayed inputs (see also the results
proposed in [11, 12]).

The paper is organized as follows: the problem statement is
presented in Section 2. The main results via the Razumikhin
technique and via some filtering techniques are proposed in
Section 3 and respectively in Section 4. Some concluding
remarks end the paper.

2 Problem Statement

Consider the following delay system:
&(t) = Az(t)+ Bu(t-7(t)), 1)
with an appropriate initial condition (z (%), u(-)),
z(to) € R", u(@) =¢(@) VO€EE,,, (2

where ¢ : £, » = R is a continuous norm-bounded initial
function (see also [4]) and

Cor={tER t=n~-71(n) <to,n>to},

with z(t) € R™ is the state, u(t) € R™ is the input and
T(t) > 0 is a continuous time-varying but bounded (i.e.
there exists a T such that 7(t) < ) delay function. A and
B are constant matrices of appropriate dimension.

We have the following assumption:
Assumption 1 The pair (A, B) is stabilizable.
Notice that this Assumprtion guarantees the existence of a
controller :
u(t) = Kz(t), K € R™*"

such that the closed-loop system (1) free of delays is asymp-
totically stable.

Using a Datko [3] type argument, it follows that, in this case,
the same controller guarantees the closed-loop stability for
“sufficiently” small delays 7 (see also [17]).

Furthermore, if A is an unstable matrix but satisfying As-
sumption 1, the the closed-loop system is always delay-
dependent asymptotically stable. Indeed, since the Hurwitz

stability of the matrix A is a necessary condition for delay-
independent closed-loop stability (see Hale ef al. [9]), the
property follows (see, for instance, Niculescu [17]).

The problem that we consider in this paper consists in

Finding a finite-dimensional controller of the form
u(t) = Kz(t), K eR™*"
which maximizes the delay bound of the closed-loop system.

We adopt two different approaches:

¢ the first one is based on a Razumikhin method and
makes use of an appropriate Lyapunov-Razumikhin’
function;

o the second one is a frequency-filtering based method
and makes use of an appropriate filter design for the
computation of the delay bound.

Notice that if the Razumikhin approach allows a time-
varying delay, the proposed frequency-filtering method
needs a constant delay. Furthermore, the results developed
in this note are suboptimal, but can be easily applied for
numerical examples.

3 Razumikhin-based Approach

'We have the following result:

Theorem 1 Consider the system (1)-(2) satisfying Assump-
tion 1. If there exist a symmetric and positive definite matrix
Q € R™" amatrix W € R™*" and the scalars 8 and
B2 such that the following LMIs hold:

1
;:[QAT + AQ+
+BW + WTBT) BW

+(B1 + B2)Q <0 @
WTBT __1_Q
2
—£1Q + AQAT <0, )
-@Q 0 0 BW
w98 [t W0 o

then the system (1)-(2) is closed-loop uniformly asymptoti-
cally stable via an input of the form

u(t) = Kz(t), K e R™*",
for all the delays 7(t) satisfying
0<r(t) <.
Furthermore, the corresponding input is given by:

u(t) = WQ 1z(t).
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A sketch of the proof is given in Appendix A. The basic idea
is to rewrite the closed-loop equation, which is a functional
differential equation on a &  delay set as a functional dif-
ferential equation on a & 2, delay set and to use the Razu-
mikhin method combined with some matrix inequalities for
the “new” differential equation.

Next, notice that:

o for given W B; and (3, the above optimization prob-
lem consists of minimizing a generalized eigenvalue
problem which is a quasi-convex optimization prob-
lem (see [2] and the references therein);

o for a given ¢ > 0, the considered optimization prob-
lem consists of minimizing an eigenvalue problem
which is a convex one.

Based on the above remarks, we propose the following
“convex-quasiconvex” algorithm to find 7* (see also [17]
and the references therein);

Algorithm:
Initial Data: Qo > 0 and Wy such that the following LMI
holds*
QoAT + AQy + BWy + WIB <0, 6
Step 2: For Q > 0 given in the previous step, find (1,
Bas and W that solve the following convex optimization
problem

W{%??éz T (W1 ﬂl: ﬂ2) .t
3) —(5) hold for @ > 0 fixed.

Step 3: For W, 31 and (3, given in the previous step, find
Qs > O that solve the following quasi-convex optimization
problem

{

and return to step 2 until the convergence of T* is attained
with a desired precision.

maxt(Q)

(3) — (8) hold for W, B and (s fixed.

S.z

Remark 1 The Assumption 1 guarantees the existence of
two matrices Qg = QF > 0, Q¢ € R™*™ and W, € R™*"
satisfying the LMI (6).

Due to the form of (3)-(5), it follows that choosing Go1, fo2
and 73 such that:

Ama:t: (AQOAT)
Amin (QO)
LChoose Bo1, Boz2 “great enough” such that (4) et (5) hold. The initial

value of 75 is chosen “small enough” such that the LMI (3) holds (see also
Remark 1)

Bor

1
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Ama.:c (BWDQSIW(;FBT)

,302 /\min(QO) ’
1 Amaz ((Bor + Bo2)Qo + 2BWoQ5 Wi BT)
T Amin (—QoAT — AQo — BWo — WIB)

then the inequalities (3)-(5) are always satisfied.

Due to the quasiconvexity (Step 3) and the convexity (Step
2) at each step of the algorithm, we have the following:

Proposition 1 The above algorithm gives a suboptimal
value of T (Q*, W*,Bt,8%) which guarantees that the
closed-loop system (1)-(2) via the control law

u(t) W Q") a(2),

is uniformly asymptotically stable for all the continuous
time-varying delays 7(t), satisfying

0< () < 7H Q" W™, 81, B3)-

4 Frequency-filtering Approach

Consider now the case when the delay is constant 7(t) = 7.
In this case the set £ , becomes the interval [t — 7,t]. Let

f(s)=cy(s] —ay)~'bs +dy Q)
be any asymptotically stable scalar rational function with
the following property:

, sin(v
FGl 2 122 ®

Note that f(s) is in fact some kinds of filters which can be
designed a priori. We can select higher order filters, there-
fore, a; is not necessary a scalar.

Vv eR.

Denote Ay € R™*™/, By € R**", (y € R"*"f and
Dy € R"*" diagonally stacked-up matrices of ay, by, cs
and d respectively, i.e.,

__) I,

F() f(‘2

2 2\~
-Cf (SI - ;_-Af) By +Dy. (9)
o

8T 8T

2

Then we have the following theorem:

Theorem 2 Consider the system (1)-(2) satisfying Assump-
tion 1. If there exist two positive definite matrix Py €
R X" and Q € R™ ", a matrix W € R™*" and two
positive scalars By and B3 such that the following matrix
inequality holds:

Po(t*)  Pi(B1) Pi(Be)
P1(B1)T -—%Q 0 <0, (10)
PiB)T 0 —%



where
Po(r*) =
%(A?Pf + PfAf) %C?WTBT
2 QAT + AQ ?
~BWC ( +BW + WTBT

PuB) = [BWDI:fffﬂQAT ]

then the system (1)-(2) is closed-loop asymprotically stable
via an input of the form

u(t) = Kz(t), KeR™"
Jor all the delays T satisfying
0<r<r.

Furthermore, the corresponding input is given by: u(t) =
WQ—txz(t).

A sketch of the proof is given in Appendix B.

Remark 2 Note that if we choose a zero order filter, i.c.,
f(s) = 1, then Theorem 2 reduces to a form similar to The-
orem 1. Generally, a higher order filter will increase the
suboptimal upper bound for the time-delay with the cost of
computational complexity. A second order filter is usually
sufficient for many applications.

Remark 3 Due to the similarity of the Theorems 1 and 2,
the computation of the 7* delay bound and of the corre-
sponding control input may be done, in this case, via the
same “convex / quasi-convex” optimization algorithm.

$ Concluding Remarks

This paper is devoted to the closed-loop stability analysis
for a class of linear systems including a delayed input. Suf-
ficient delay-dependent conditions are derived via two ap-
proaches: a Razumikhin approach (time-varying delay) and
a frequency-filtering approach (constant delay). Notice that
all these results can be extended to uncertain systems as well
as to multiple delays case.

A. Proof of Theorem 1

We have the following Lemma:

Lemma A.1 There exists a symmetric and positive-definite
matrix P € R™*™ and a matrix K € R™*™ such that:

M = (A+BK)TP+ P(A+ BK) +

+1* [B7 ' PBKAP 'ATKTBT P+
+(B1 + B2) P+
+8;'P(BK)*P~Y(KTBT)’P] <0 (11)

if there exist the matrices ) and W satisfying (3)-(5).

Consider the following time-delay system

(t) = (A+ BEK)¢(t) — BK x

x / ’ , AE+9)+ BIE(— () +0) s, (12

with the initial condition
E(to +6) = §(8), VO € &y o, (13)

where ¢ : Eto,2r — R is a continuous norm-bounded ini-
tial function and

Eioor = {tER : t=1n—27(n) <to, 12 to},

Connection between the stability properties of this system
and the original one can be found in [17].

Introduce now the following Lyapunov function
V() = €TP¢,
with P = PT > 0 and P € R™*", it follows
a [ EIP < V) < az )P (14)
(where a1 = Amin(P)), a2 = Amaz(P)).

The time-derivative of V (£(¢)) along the solutions of (12)-
(13) is given by:

V(E@®) = €7(t) [(A+ BK)TP + P(A + BK)] £(t)
~2 / ’ [€T(t)PBK AL(t +6)
~7()
+¢T(P(BK)2E(t —  + 6)] 8 15)

Following the Razumikhin Theorem (see Hale and Lunel
[8]), we assume that for any § > 1, the following inequality
holds

V(Em) < oV (E@), t-2r<n<t

then we have (after some simple algebraic manipulations):

VEQ) < —FOME®),0EE)  (16)
where M (-, -) is given by:
M(r(t),8) = (A+BK)TP+ P(A+ BK)+
+7()[B; ' PBKAP*ATKTBTP +

+(B1 + B2)0P +
+6; ' P(BK)? P~ (KT BT)?P),
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for some positive scalars 5 and 3;. Since
0<r(t) <77,
we have from (16) that:
VE®) < M, 0E0) (17)

From Lemma A. 1, it follows that if there exist ) = QT >0,
B1 > 0, B2 > 0 and W satisfying the conditions (3)-(5),
then

M(r*,6=1)<0. (18)

Using the continuity property of the eigenvalues of M with
respect to 4, then there exists a § > 1 sufficiently small such
that (18) still holds. Thus, for a such 4, we have

M(r*,8) <0,

and the conclusion follows, etc.

(19)
VvV

B. Proof of Theorem 2
Let u{t) = Kx(t), we have the following lemma:

Lemma B.1 (see also [7]) The system (1)-(2) is asymptoti-
cally stable if A + BK is stable and

A(jw, 7) jwl — A— BK
—1p1(jwr)BK A — 7p2(jwT)(BK)? (20)

is nonsingular for all w € R, where

IR
: 21
p2(jv) = p(Gv)e™”.

Generally, we can use (20) with loose bounds |p;(jv)| <
1, 1 = 1,2 to derive delay-dependent results. To reduce
the conservatism, we will overbound p;(t), i = 1,2 with a
better function in the sequel.

Take the controller gain matrix K as
K=wQ! 22)

where W and Q are defined in Theorem 2. Then we can
rewrite (20) as

AGw,7) = jwl—-A-BwWQ™!
sinw/2 sinw/2
o [l snan)

x(e—jw‘r/2TQ"lA + e"j3w‘r/27'Q—'lBWQ_l). (23)

Consider

A(jw,7)

jwl —A—-BWQ™!
—~BWF (521) (61 (jw)T Q1A +

+8,(jw)TQ ' BWQ™Y). 4

1627

Obviously, A(jw, ) is nonsingular if A(jw, 7) is nonsin-
gular for all |6;(jw)| < 1,4 = 1,2. In the sequel, we will
consider A(jw, T) instead.

A state-space realization for A(jw, ) is given by the fol-
lowing augmented uncertain system:
3Af

[ sBWC;

By
+ [ BWD;
[ z(t)

zo(t) ]
[

0 Q14
A (z1) + Az(z2)

0
A+BWQ!

|«

Z(t) ] Z(t)

(25)

0 Q-1BWQ-! ] z(t) 26)

@n

where Aj(-) and Ay(:) are causal and stable linear opera-
tors satisfying the following condition:

£(jw)

61(jw)z1 (jw) + 62 (jw)2z2(jw),
[0:(jw)| <1, i=1,2

for any z1(+) and 22(-) in £3[0, 00).

It is then straightforward but tedious to show that (10) is a
sufficient condition to guarantee that the augmented system
(25)-(27) is asymptotically stable,which in turns means that
A(jw, ), and hence A(jw, ), is nonsingular. \AvAY)
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