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Robust Stability for Time-Delay Systems: The
Edge Theorem and Graphical Tests
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Abstract—In this paper we consider the robust stability problem for a
class of uncertain delay systems where the characteristic equations involve
a polytope P of quasi-polynomials (i.e., polynomials in one complex
variable and exponential powers of the variable). Given a set D in the
complex plane, our goal is to find a constructive technique to verify
whether all roots of every quasi-polynomial in P belong to D (that is, to
verify the D-stability of P). We first d trate by terexample that
Kharitonov’s Theorem does not hold for general delay systems. Our next
result is that, under a mild assumption on the set D, a polytope of quasi-
polynomials is D-stable if and only if the edges of the polytope are D-
stable. Hence, the D-stability problem of a higher dimensional polytope
of quasi-polynomials is reduced to the D-stability problem of a finite
number of pairwise convex combinations of vertic quasi-polynomials of
the polytope. This extends the ‘‘Edge Theorem’’ developed by Bartlett,
Hollot, and Lin {1] and Fu and Barmish [2] for the D-stability of a
polytope of polynomials. Our third result gives a constructive graphical
test for checking the D-stability of a polytope of quasi-polynomials which
is especially simple when the set D is the open left-half plane. The
graphical test is based on the frequency response plots of some transfer
functions associated with the vertic quasi-polynomials of the polytope. In
the special case when the vertic quasi-polynomials are in a factored form,
the graphical test is further simplified via a special mapping. An
application example is used to demonstrate the power of the results.

1. INTRODUCTION

ESEARCH into robust stability of uncertain systems has
become of great interest in the last few years. The general
problem can be roughly formulated as follows: Given a family of
linear systems S and a set D in the complex plane, provide
computationally tractable techniques for determining the D-
stability of S, i.e., checking whether the eigenvalues of the
systems in S stay within D. The first notable result regarding this
problem was given by Kharitonov [3]. He demonstrated that if a
family of polynomials P is a so-called ‘interval polynomial’’ with
real coefficients (meaning that each coefficient varies indepen-
dently in an interval) and the set D is the open left-half plane, then
P is D-stable if and only if four special extreme polynomials are
D-stable. If the coefficients are complex, then it is shown in
Kharitonov [4] that eight extreme polynomials are sufficient.
There are, however, two assumptions made by Kharitonov
which limit the applicability of the results: 1) independent
coefficient perturbations; this is often too restrictive in applica-
tions; 2) the set D must be the open left-half plane, thus the result
is not applicable to general D-stability problems such as stability
of discrete-time systems where the stability set D is the open unit
disk. Recently a considerable research effort has gone into
attempts to remove these limitations [1], [2], [S]-[12]; see
Barmish and DeMarco [13] for a survey of related research and
references prior to 1987. The most pertinent results to the
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problem we are addressing here are those by Bartlett, Hollot, and
Lin [1] and Fu and Barmish [2]. In [1] it was shown that given a
simply connected set! D in the complex plane, a polytope of real
polynomials P (see (4) for definition) is D-stable if and only if the
edges of P are D-stable. Therefore, the D-stability problem of a
higher dimensional polytope of polynomials reduces to that of a
finite number of pairwise convex combinations of vertic polyno-
mials (see Section III for definition). This Edge Theorem is
generalized in [2] to include disconnected D sets and complex
polynomials. This is done by considering a set D with its
complement D¢ being continuously connected on the extended
complex plane (the complex plane including the infinity point). It
is demonstrated that the D-stability of the edges of a polytope of
complex (including real) polynomials P is necessary and sufficient
for the D-stability of P. Thus, the result of [1] becomes a special
case of the result of [2] since any simply connected set D in the
complex plane satisfies the requirement on D¢.

In this paper we consider the D-stability problem for a class of
uncertain delay systems where the characteristic equations involve
a polytope of quasi-polynomials P. Given a set D in the complex
plane, our goal is to find a constructive technique to verify
whether all roots of every quasi-polynomial in P belong to D (that
is, to verify the D-stability of P). We first demonstrate by
counterexample that Kharitonov’s Theorem does not hold for
general delay systems. Our next result is that, under a mild
assumption on the set D, a polytope of quasi-polynomials is D-
stable if and only if the edges of the polytope are D-stable. Hence,
the D-stability problem of a higher dimensional polytope of quasi-
polynomials is reduced to the D-stability problem of a finite
number of pairwise convex combinations of vertic quasi-polyno-
mials of the polytope. This extends the Edge Theorem developed
by Bartlett, Hollot, and Lin [1] and Fu and Barmish [2] for the D-
stability of a polytope of polynomials. One difficulty we have
encountered in extending the results in [2] and [1] to delay systems
is due to the fact that a quasi-polynomial usually has an infinite
number of zeros. In other words, the set of zeros of a polytope of
quasi-polynomials is usually unbounded. As a consequence, for a
given set D, assuming the simple connectedness of D or D¢ being
continuously connected on the extended complex plane may not
necessarily lead to the ‘‘edge reduction.’” For this reason, a mild
assumption is added on D. Roughly speaking, we require that D is
such that for any point x € D¢ there exists a continuous path in D¢
connecting x to some point y with an arbitrarily large absolute
value and real part larger than some prescribed number. Examples
of such D sets are shown in Fig. 1. The precise assumptions on D
are given in Section IV.

The third result of this paper deals with the D-stability problem
of a polytope of quasi-polynomials when D is the open left-half
plane. Namely, we provide a constructive graphical test for
checking the D-stability of a polytope of quasi-polynomials. The
graphical test is based on the frequency response plots of some
transfer functions associated with the vertic quasi-polynomials of

' A set D is called simply connected if every closed curve in D can be
continuously shrunk to any point in D without leaving D [14]. For example,
the open left-half plane and the unit disk are simply connected, while an
annulus defined by {s:1 < |s| < 2} is not.

0018-9286/89/0800-0813%01.00 © 1989 IEEE



814

s-plane

s-plane

h j@ 4 j(l)

D=D,v D,v Dy

Fig. 1. Examples of admissible D sets.
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Fig. 2. Block diagram of the counterexample.

the polytope. It is also easily extendable to the D-stability problem
with a general open D set (see Remark 5.2). We feel that the
graphical test is especially attractive since no simple analytical test
exists for checking the stability of a quasi-polynomial. (This
contrasts with the polynomial case where we have, for example,
the Routh-Hurwitz criteria.)

When the generating quasi-polynomials of the polytope are in a
factored form (see Section VI for definition), we further simplify
the graphical test via a special mapping which transforms the
stability problem of a quasi-polynomial to that of a polynomial.

II. A COUNTEREXAMPLE SHOWING THAT KHARITONOV’S THEOREM
DoEs NoT EXTEND TO DELAY SYSTEMS

It is well known [31, [4] that for the polynomial case where the
polytope reduces to a hyper-rectangular region generated by
varying the coefficients in some given intervals, it is sufficient to
check the Hurwitz stability of eight (or four for real coefficients)
specially chosen vertic polynomials in order to determine the
Hurwitz stability of the entire family of polynomials. In [18] and
[19], counterexamples were given which demonstrate that check-
ing the vertices of an interval polynomial is not sufficient for
discrete-time systems. Since delay systems fall somewhere
between the continuous and discrete cases, it is of interest to know
whether checking vertices may also be sufficient for continuous
systems with time delays. Unfortunately, the following counterex-
ample shows that this is not possible in general. (This contradicts
Theorems 3 and 5 of Mori and Kokame [20], although the
extension may stand in some special cases; see, for example, [20,
Theorem 2}.)

Consider a closed-loop system as in Fig. 2. The characteristic
equation of the system is given by

(s+e )2+ K=0.

The stability of the system is preserved for K close to zero since
the equation

s+e*=0

has all its roots in the open left-half plane; see, for example,
Bellman and Cooke [16]. The Nyquist plot corresponding to K =
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Fig. 3. Nyquist plot of the counterexample.

K, = (31/2 + 1)?is presented in Fig. 3, it crosses (=1 + jO) at
@ = w; = 37/2. It can be easily verified that for

T 2
K=K, = ( z+nz- (=1

and the corresponding frequencies

s
wW=w, = 5+n7r,

n=0,1,2, -, the Nyquist plot crosses (—1 + j0). Since the
phase is oscillating around — « for @ > /2 (see Fig. 3), we have
infinitely many switches from stability to instability and again
stability when K grows to + 0. Thus, for instance, the system is
stable for K € [0, Ko} and K € (K;, K;) but unstable for K €
(Ky, K1). Therefore, given the uncertainty interval K € [K(/2,
(K, + K;)/2], checking the stability of the quasi-polynomials for
the extreme values of K, K;/2, and (K, + K3)/2 does not
guarantee the stability for all K in the uncertainty interval. This
shows that it is not possible to extend Kharitonov’s results to
interval quasi-polynomials.

III. PROBLEM FORMULATION AND NOTATION
We consider a class of delay systems described by
1
Fx(t)=Y, Aix(t-) (1)
i=0

where the trajectory vector x(f) € R”, A; and F are real (or
complex) system matrices with F nonsingular, and 0 = 70 < 7; <
7, &---< 7, represent the delays. Then the characteristic
equation of (1) is given using an nth order quasi-polynomial in the
form of

!
p(s) = det <sF72 e*'iSA,->=O
i=0

where p(s) can be written as

N N
§)=ags"+ aje ks ) snl 4 aye ks ) "2
p 00 1
k=0

k=0

N
SRR ( S a,,ke"'k5> @
k=0

where
@y = o+ JBiks i, Bk € R

are constants, @ * 0, and 0 = hy < h; < hy <--* < hyare
linear combinations of 7;.
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Definition 3.1: Given a set D in the complex plane, the delay
system (1) is called D-stable if the zeros of the characteristic
quasi-polynomial p(s) in (2) stay in D. If so, p(s) is called D-
stable. In particular, p(s) is called stable if p(s) is D-stable for
D being the open left-half plane. (The latter case corresponds to
exponential stability of solutions to (1) with integrable initial
functions [16].) Od

Suppose the coefficients of p(s) in (2) involve uncertain
parameters, then it is of interest to determine the D-stability of the
system for all admissible parameter perturbations. Mathemati-
cally, we consider a family of nth order (real or complex) quasi-
polynomials

n N
P = {p(s)=aoos"+2 <E a,rke"'r‘> $"71 g #0;
k=0

i=1 =

(a0, @10, @11y ** 5 QINs "* 7 Ann) € 1’:} (3)

for some FF C C™+*7*! characterizing the parameter perturba-
tions. Given a set D in the complex plane, we want to determine
the D-stability of P, i.e., whether p(s) is D-stable for all p(s) €
P.

In this paper, we consider a special family of quasi-polynomials
for which P is a polytope generated by the convex combinations of
a number of nth-order quasi-polynomials p,(s), p»(s), - - -, p,(s)
as in (2), i.e.,

“@

and for which every member of P does not have a vanishing
leading coefficient. We will call the p;(s) in (4) generators of P.

We denote by E[ X] the set of all edges of a polytope X. Recall
that an edge of a polytope is its one-dimensional face [17], i.e., a
closed segment [x, ¥] = conv {x, y} in X such that for any open
segment (xg, ¥o) = conv {Xxg, Yo} \{Xo, Yo} in X intersecting
[x, ¥1, we have [xo, yo] C [x, y]. Note that any edge of the
polytope (4) is of the form conv {p;(s), p;(s)} but not all such
closed segments are necessarily the edges [e.g., conv {p;(s),
P2(s)} is not an edge if p3(s) = (pi(s) + paAs)/2, pi(s) #
»2(s)]. The end points x and y of an edge [x, y] are called
vertices, and in particular, the vertices of P are called vertic
quasi-polynomials.

Remark 3.2: The requirement that the leading coefficient of
every member of P does not vanish is equivalent to the assumption
that the set of the leading coefficients of the generators p;(s) are
on one side of some line through the origin in the complex plane.
For the real case, this requires that the leading coefficients of
pi(s) are of the same sign.

P = conv {p|(s), p2(s), * -, p(5)}

Remark 3.3: Given a finite number of open-loop transfer
functions G;(s) = q(s)/pi(s), i = 1,2, -+, r where g;(s) and
pi(s) are quasi-polynomials, and an uncertainty model consisting
of all convex combinations

G(s)=3 NGils),  Nz0, P =1

i=1 i=1
the D-stability of the closed-loop system with a unity feedback can
be reduced to the D-stability of a polytope of quasi-polynomials

P=conv {(Gi(s)+ 1)p(s),(G2(s) + D)p(s),
w1 (G(s)+ Dp(s)}

where p(s) is a least common denominator of Gi(s), i = 1, 2,

e O
For an nth-order complex quasi-polynomial p(s) given by (2),

we denote its coefficient vector by

aun Ban] )

P =l Boo @10 Bio " N Biv * -

815

Then, it is straightforward to show that s is a zero of p(s) if and
only if

K(s)p=0
where
— Re (s™) Im (s") T T
—1Im (s") Re (s")
Re (e *0ss"~1)  Im (e~"oss"~1)
—1Im (e #0ss"-') Re (e "0ss"~!)
Kis) = ©

Re (e—thsn—I) Im (e—hN:Snvl)
—1Im (e ~#nss"~1) Re (e "NSs™~1)

Re (e "~%)

[ —Im (e ")

Im (e ~hn%)
Re (e—th) ]

isa2 X (nN + n + 1) real matrix. For a family of nth-order
quasi-polynomials P given by (3) and £ in the complex plane, we
define

O(P, &) = {K(t)p : p(s) € P}. M
Note that for a polytope of quasi-polynomials P and each fixed &,
Q(P, £) is a polytope in the complex plane. With the definition
above, a given polytope of quasi-polynomials P as in (4) is D-
stable if and only if Q(P, &) does not contain O for any £ € D<.

IV. D-STaABILITY CRITERIA FOR A POLYTOPE OF DELAY SYSTEMS

In this section we prove an Edge Theorem for delay systems.

Theorem 4.1: Consider a polytope of nth-order (real or
complex) quasi-polynomials P as in (4) and a set D in the complex
plane satisfying the following condition: There exists some real
number « such that, for any point x € D¢ (the complement of D)
and any M > 0, we can find a continuous path in D¢ connecting x
and some point y with |y| = M and Re y = «. Then, P is D-
stable if and only if all the edges of P are D-stable.

The following lemma is essential in the proof of Theorem 4.1.

Lemma 4.2: Consider a polytope of quasi-polynomials P as in
(4) and Q(-, -) defined in (7). Then, for any £ in the complex
plane

E[Q(P, §)] C Q(E[P], §) ®)

where E[P] (respectively, E[Q]) denotes the set of the edges of
P (respectively, Q).

Proof: Denote m = dim P = dim aff (P), where aff (P) is
the affine extension of P. Since the case m =< 1 is trivial, we
assume m = 2 in the proof. For any £ in the complex plane and
anya € E[Q(P, §)], we need to show that e € Q(E[P], £). We
proceed by defining

P, = {p(s) : p(s) € aff (P), K(§)p=a}.

Note that P, is an affine subspace in aff (P) withdim P, = m — 2
and that, by assumption, P, N\ P contains at least one point, say
P.(5). We claim that there must exist a two-dimensional face F, of
P such that P, N F, # 0. This is obvious when m = 2. When m
= 3, P, is at least one-dimensional and must intersect an (m —
1)-dimensional face, say F, _,, of P. Indeed, either p,(s) lies on
the relative boundary of P and we are done or it belongs to the
relative interior of P and P, contains a line through p,(s) which
intersects F,,_,. If m = 3, this face is two-dimensional and our
claim holds. If m > 3, we replace P by F,,_, which is also a
polytope [17] and repeat the argument above until we obtain a
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two-dimensional face of P intersecting P,. The remaining part of
the proof is divided into the following two cases.

Case 1. The linear mapping p(s);-;:aff (F;) — C is one to
one. Then there exists a unique point p,(s) € F; such that p,(§)
= a. Since the points from the relative interior of F, are mapped
into interior points of Q(P, £), p,(s) is on the boundary of F;,
and therefore on an edge of F; (also an edge of P). Thus, a €
Q(E[P], §).

Case 2: The kernel of the image of the linear mapping p(s);;-;:
aff (F,) — C is at least one-dimensional. In this case, we have
dim P, N F, = 1. Therefore, P, must intersect an edge of F (also
an edge of P). Again, a € Q(E[P], §).

Proof of Theorem 3.1: The necessity is obvious because
E[P] C P. Now we proceed with the sufficiency by assuming, on
the contrary, that there exists some s, € D¢ such that 0 € Q(P,
5o0). We need to show that there exists some s; € D¢ such that 0 €
Q(E[P], s;). Indeed, because of the boundedness of P, there
exists some M > O such that 0 & Q(P, s) for all s with |s| = M
and Re s = «. This follows from the fact that

N
w |70,
P(SYEPRes=a | A00S
[S|=M N
= sup E 2 age "k ) s =0
P(SYEPResza i=1 k=0
I1S|=M

as {M| — oo. Now let I' C D¢ be any continuous path connecting
5o and some point s, with |s,| = Mand Re s, = «. Forevery § €
T, we define

4 = {min {la:| : q; € EIQ(P, 6]} if0 & Q(P, §)

—-min {|g| : s € E[Q(P, £)]} if0 € Q(P, §).

By the continuity of I', the minimum function, and the vertices
with respect to £, we know that d(-) is continuous on T'. Since
d(s;) > 0and d(sp) < 0, there must exist some s, € T such that
d(s;)) = 0, i.e., 0 € E[Q(P, s,)]. Using Lemma 4.2, we
conclude that 0 € Q(E[P], ;). Od

Remark 4.3: It can be seen that the Edge Theorem is
extendable to a polyhedron of polynomials as well as a polyhedron
of quasi-polynomials using the same proof above. A polyhedron
can be defined as the union of finitely many polytopes. This
geometric object describes a more general class of linear
perturbations or can be used to approximate nonlinear (including
multilinear) perturbations. O

V. A GRAPHICAL APPROACH FOR CHECKING D-STABILITY OF
DELAY SYSTEMS

In this section, we present an approach to checking the D-
stability of delay systems which is based on frequency response
plots. Although it can be argued that a closed-form expression for
testing the D-stability (or stability) of a quasi-polynomial would
be more desirable than a graphical test, this is not necessarily true.
For example, for polynomials an alternative method (see Bialas
[6] and Fu and Barmish [7]) would be to check the eigenvalues of
H,H;' (or, equivalently, H 'H,, or H. Hg, or
HyoH "), where Hyoand Hy, are the Hurwitz matrices of py, and
D1, respectively. That is, stability of a polytope of polynomials P
requires that, for every edge Ej, the eigenvalues of H,; H k_()l need
to be either complex or positive. However, this involves
calculating Hy,H ' and its eigenvalues while for the graphical
test to be proposed it is only necessary to evaluate the values of
rational functions py;( jw)/pro( jw). Furthermore, every control
engineer is familiar with frequency response plots. With readily
available graphics workstations and frequency response plot
software, we feel that graphical tests are as good or better than
analytic tests which often involve complicated numerical calcula-
tions for realistic systems.
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Theorem 5.1: Consider a polytope of nth-order (real or
complex) quasi-polynomials P as in (4). We use E,, E, -+, E,
to denote the edges of P and p;,(s) and py, (s) to denote the vertic
quasi-polynomials of E;. Then, P is stable if and only if the
following two conditions hold for every E;, | < k <

i) the frequency response plot of pso(jw)/(jw + 1)" does not
encircle the origin;

it) the frequency response plot of py(jw)/Pro(jw) does not
cross ( — o0, 0] (the nonpositive part of the real axis).

Proof: Note that if D is the open left-half plane, then the
condition on D¢ in Theorem 4.1 is easily satistied (by choosing «
= 0). According to Theorem 4.1, P is stable if and only if E;, E>,
- -+ E, are stable. Hence, we need to show that conditions i) and
ii) are necessary and sufficient for the stability of every Ey, | < k
< t. For this purpose, we write E; as

Ey={pux(s)=(1 = N)pro(s) + A\pri(s) : N € [0, 11}

and need to show that condition i) is necessary and sufficient for
the stability of pyo(s) and condition ii) is necessary and sufficient
for the stability of py,(s) for all A\ € (0, 1] when condition i)
holds. Indeed, using the argument principle, the number of zeros
of pro(s) in the closed right-half plane is equal to the encircle-
ments of pyo(Jjw)/(jw + 1)" around the origin since (s + 1)" is
stable; see, for example, El’sgol’ts and Norkin [15]. Therefore,
Dro(s) is stable if and only if condition i) holds.

Assuming p,o(s) is stable, we now need to show that condition
ii) is necessary and sufficient for the stability of all p;,(s), X €
(0, 1]. To see the necessity, note that, for 0 < A < 1, pe,(s)
being stable implies that

®

for all w € R. Since pyo(jw) # 0 and X # 0, equation (9) is
equivalent to

Pin(Jo) =1 =N)pro(jw) + APk () #0

1*>\+Pk|(jw)
N (e

Noticing that (1 — N\)/\ takes values in [0, oo) when X varies in (0,
1], we conclude that condition ii) is necessary for the stability of
all pp(s), A € (0, 1].

To show the sufficiency of condition ii) we proceed by
contradiction. Suppose there exists some « € (0, 1] such that
Pie($) is not stable; then we need to find some 8 € (0, 1] and w
€ R such that pys(jw) = 0. For this purpose, we let s,(\),
53(A), -+ be the set of zeros of p,,(s). Note that the si(\)
continuously depend on N (by Rouche’s Theorem). Since py,(s) is
unstable, there must exist some j with s;(«) having nonnegative
real part. Since 5;(0) has negative real part (because pyo(s) is
stable), there must exist some 8 € (0, «] and some w € R such
that Re (s;(8)) = 0, i.e.,

Prs(w)=(1=B)peo(jw) +Bpri (Jw) =0. (10)
Hence, condition ii) is sufficient for the stability of py, (s) for all A
€ (0, 1]. O

Remark 5.2: 1t can be seen from the proof that the number of
tests in i) for stability of vertices can be reduced to checking just
one arbitrarily chosen vertex po(s). Then we can check the
stability of those edges which contain po(s) using the tests of
form ii). In the next step, we test the stability of those edges which
have a common vertex with one of the previous edges, etc. Since
the set of edges of a polytope is connected, we can verify in this
way the stability of all edges in a finite number of steps. O

Remark 5.3: It should be noted that the graphical test given in
Theorem 5.1 can be generalized to sets other than the open left-
half plane by using the argument principle. For example, in the
case when D is the open unit disk, then we only need to replace
Jow:w € (—o0, )by cos b + jsin0:0 € [— 7, 7] and pro(jw)/
(o + 1)" by pyo (cos @ + j sin 8)/(cos & + j sin §)". When the
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r(t) o

Fig. 4. A system with characteristic quasi-polynomial in the factored form.

quasi-polynomials are reduced to polynomials, this case corres-
ponds to the stability of discrete-time systems. In general, if the
set D is an open set and the boundary of D is a continuous path (or
a finite collection of such paths in the case when D is
disconnected), then the graphical test can be carried over by
substituting jw by a point on the boundary and (s + 1)" by (s +
d)" for some arbitrary d € D. |

VI. PoLYTOPE OF QUASI-POLYNOMIALS WITH GENERATORS IN A
FACTORED FORM

In this section, we consider the stability problem of a special
polytope of quasi-polynomials when the generating quasi-polyno-
mials are in a factored form. Let p(s) be an nth-order quasi-
polynomial given by

p(s)=(s+ae ") s+ae™ ) - (s+ae ™)

a1

where a; are complex (or real) numbers and 4 > 0 represents the
delay. When n = 2, the quasi-polynomial has the following
expansion:

p(s)=52+a se "+ e 2h

where o) = a; + @ and o, = @,a,. A simple example of such a
quasi-polynomial corresponds to the characteristic equation of the
closed-loop system shown in Fig. 4, where each integrator has
delay time h. It can be verified that the characteristic equation of
the system is given by

A(s)=s2+kyse "+ k ke =0,

Note that a given complex number s is a zero of p(s) in (11) if
and only if A”e"™p(s) = 0. On the other hand,

h7emsp(s)=(hse" + ha,)(hse™ + hay) « -+ (hs* +ha,). (12)
We define a mapping

= hse™.

(13)
Then, (12) becomes

p(O) = (¢ +ha))(§+hay) -+ (§+hay).

The analysis above indicates that the mapping (13) transforms a
quasi-polynomial in the factored form to a polynomial. It can be
shown that every member of a polytope of quasi-polynomials can
be expressed in the factored form if its generators are in the
factored form.

It can be shown that the mapping (13) maps the closed right-half
plane onto the complement of the bounded set D . in the {-plane
with its boundary described by

(14)

¢=—wsinv+jvcosv;v € [—7/2, 7/2]; (15)
see Fig. 5. Thus, the necessary and sufficient condition for
stability of the quasi-polynomial (11) is that the roots of (14) are in
D_ . Hence, we obtain Theorem 6.1.

Theorem 6.1: Consider a polytope of quasi-polynomials P as
in (4) with each generator p;(s) having the following factored
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Fig. 5. The set D_ in the {-plane.
form:
pi(s)=(s+ane M) s+ape ") - (stame ™). (16
Let E,, E,, - -+ E, denote the edges of P and pyo(s) and py(s)

denote the vertic quasi-polynomials of E,. Without loss of
generality, we assume that all generating quasi-polynomials are
stable (i.e., ha; € D_ for all p;(s) and j). Then, P is stable (i.e.,
D-stable for D being the open left-half plane) if and only if the
following condition holds for every Ex, 1 < k < I

ox1($)

Pkﬂ(g-) ¢{=vsinv+jvcosy

does not cross (— o, 0] (the nonpositive part of the real axis) for
all v € [—7/2, w/2].

Proof: This result is a direct consequence of Theorem 5.1 by
noting that: 1) condition i) in Theorem 5.1 is guaranteed by the
stability of all vertic quasi-polynomials of E, and; 2) the
imaginary axis of the s-plane is mapped to the curve described by
(15) in the {-plane. O

Remark 6.2: Although few real systems can be modeled by the
factored form in (11), this is not surprising since Theorem 6.1 is a
very strong result which reduces the D-stability problem of a
polytope of quasi-polynomials to the D;-stability of a polytope of
polynomials. Also, Remark 5.2 applies here too; i.e., the
graphical test in Theorem 5.1 can be generalized to the D-stability
problem of a polytope of quasi-polynomials in the factored
form. O

VII. AN APPLICATION EXAMPLE

In this section, we provide an example of a real life control
system involving a time delay and uncertain parameters for which
the problem of robust stability is crucial. This is a2 wind tunnel
control problem addressed in [21], [22] where the main objective
of the feedback control is to provide a fast Mach number response
so as to reduce the cost of liquid nitrogen losses during the
transient regimes. Using the methods developed in this paper we
shall examine the asymptotic stability and the exponential stability
of a given decay rate of the closed-loop system for the whole
range of uncertain parameters. The latter case corresponds to a
shifted left-half plane. Moreover, the graphical tests we use
provide additional information on the frequency domain nature of
unmodeled uncertainties which may endanger the robust stability.

Let us start with the system equations [21]

X ()= —ax;(t)+ akxy(t—h)
X () =x(1)

X3 ()= —wixy () = 2fwx; (1) + w?u(t) a7
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where { and w are fixed at 0.8 and 6.0, respectively, the delay A
varies slightly but can, for all practical purposes, be assumed
equal to a nominal value # = 0.33. The parameters ¢ = 1/7 and
k, however, depend on the operating point, varying within a range
approximated by

7 € [0.739, 2.58], k € [—-0.0144, —0.0029]. (18)

A feedback controller of the form

0
u(ty= —kyx (£) — kapxo (t) — ky S \ e®x,(t46) db — k3 x; (1)

was proposed in [21]. The main goal there was, for the nominal
parameters Kk = k = —0.0117and 7 = 7 = 1/a = 1.964, that
the characteristic polynomial of the feedback system be

(s+2.5)(s2+45+6.25).
It turned out that the control parameters were chosen to be
k= —1305; kyo= —22.75; k31 =9.0; k3= —3.6.

Furthermore, to simplify the realization of the integral in the
control law, the following three-point Simpson approximation was
used in [21]:

0
Ky L, e®x,(1+0) do~0.5(x,(r)

+3.68x,(£~0.165) +0.85x,(# — 0.33)).

Assuming this approximation and the mismatch between the
model parameters k and 7 and their nominal values £ and 7 which
were used to design the controller, we arrive at the following
characteristic equation for the closed-loop system:

p(s, k, 1) = 153+ (67+ 1)s?
+(13.757+ 6+ 1.827e ~ 01655 4 0. 42r¢ ~0.335)g
+13.75+ 1.82e ~01655 4 (0.42 — 1305k)e 05 =0

and the associated polytope of quasi-polynomials
P={p(sy k) T) . k € [kminv kmax]y 7€ [Tmin! Tmax]}

where [Toin, Tmax] and [Kpin, kmax] are the assumed ranges for 7
and k, respectively. Using the methods proposed in this paper, we
checked and found that the closed-loop system is asymptotically
stable for all k and 7 even exceeding the range given in (18). To
save space, we do not present the corresponding numerical
results. Then we asked the question whether for all & and 7 within
the assumed range of uncertainty the system eigenvalues remain in
the half plane D = {Res < —1}. Recall that the nominal system
eigenvalues are —2.5 and —2 =+ ;2.5 and they change only a
little, after introducing the Simpson approximation, moving to
—2.674 and —1.97 + j1.503, respectively. In order to check the
D-stability, we proceeded by denoting

po(U) = P(U— 1, Tmax » kmin),
Pi1(0) = plo—1, Toaxs Kmax),
P2(0) = p(o—1, Tin, Kmax)s

p3(a) = p(a— la Tmin > kmm)-

We have translated the problem to a form tractable by Theorem
5.1, namely the stability of the polytope generated by the p;(0), i
= 0, 1, 2, 3. For several choices of ranges for k and 7 we
obtained a series of negative and positive results including a
negative answer for the ranges given by (18). The latter means
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Fig. 7. Frequency response plot of p,(jw)/pe(jw) in Section VIIL.

that the transient response of the closed-loop system may decay
slower than e’ if the uncertain parameters differ from their
nominal values. We present a set of computer generated figures
for the case [7min, Tmax] = [1.571, 2.357] and [Kmin, Kmax] =
[—0.0144, —0.0088] which corresponds to +20 percent varia-
tion in 7 and =+ 25 percent variation in k. This is a critical case as
seen from the figures. Fig. 6 shows the frequency response plot of
Po(jw)/(jw + 1)* which proves the stability of py(c). The
frequency response plots of p\(jw)/pe(jw), pi(Jjw)po(jw),
pi(jw)pi(jw), and p3(jw)/p,(jw) are given in Figs. 7-10,
respectively. It can be seen that these plots do not intersect (— oo,
0], thus by Theorem 5.1, the closed-loop system is D-stable.

We want to point out that the presented figures not only prove
the robust stability but also provide additional information on the
nature of unmodeled uncertainties which could change stability
into instability or vice versa. For instance, Figs. 7 and 8 show that
relatively small perturbations of p(s, 7, k) in high frequencies
may lead to the loss of D-stability on the edges conv {p,(0),
p1(0)} and conv {py(a), ps(o)}, respectively. Similarly, Figs. 9
and 10 show that somewhat larger perturbations for the mid-
frequency range may destroy D-stability on the remaining two
edges.

VIII. CONCLUSION

In this paper we have considered the D-stability problem for a
class of uncertain delay systems where the characteristic equations
involve a polytope P of quasi-polynomials. We first have
demonstrated by counterexample that Kharitonov’s Theorem does
not hold for general delay systems. Our next result shows that,
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Fig. 8. Frequency response plot of p3(jw)/po(Jw) in Section VII.
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Fig. 9. Frequency response plot of p,( jw)/p,(jw) in Section VII.
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Fig. 10. Frequency response plot of p;(jw)/p,(jw) in Section VII.

under a mild assumption on the set D, a polytope of quasi-
polynomials is D-stable if and only if the edges of the polytope are
D-stable. This extends the Edge Theorem developed by Bartleit,
Hollot, and Lin [1] and Fu and Barmish [2] for the D-stability of a
polytope of polynomials. Our third result provides a frequency
response plot based graphical test for checking the D-stability of a
polytope of quasi-polynomials. In a special case when the vertic
quasi-polynomials are in a factored form, the graphical test is
further simplified via a special mapping. As shown in the
example, the graphical tests we provided are quite useful in
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applications, allowing us to easily handle examples with several
uncertain parameters.
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