ELEC240: Signals and Systems

Lecturer: Professor Minyue Fu
The University of Newcastle

(Full set of notes available only to enrolled students)

Lecture notes developed for the sole purpose of teaching this subject at PSB. Any other use of the notes requires permission from the author.

Course Description

Introductory course to fundamentals in signals and systems. Essential foundation for electrical eng., computer eng. and telecommunications.

Main Topics to cover:

- Fundamental concepts: signals and systems
- System Modeling
- Convolution
- Fourier series and Fourier transform
- Frequency domain analysis
- Laplace Transform
- Linear System analysis
- Sampling and discrete-time Fourier analysis
- Matlab: Modeling, analysis and design

Text:

Fundamentals of Signals and Systems using the Web and MATLAB (2nd Edition) by Edward Kamen and Bonnie Heck, Prentice Hall, 2000.

Assessment:

• Assignments: 20%

• Laboratory Work: 20%

• Quiz: 15%

• Exam: 45%

Lecture 1 Fundamental Concepts

Topics:

- Signals: Continuous-time & Discrete-time
- Systems: Continuous-time & Discrete-time
- System Properties
- Introduction to Matlab

Readings: Ch1.1-1.5 of Text

Lecture 2 System Modelling

Topics:

- Linear time-invariant (LTI) systems
- Modelling of continuous-time systems
- Discretisation of differential equations
- Time-varying/nonlinear systems

Readings: Ch2.1-2.5 in text

Lecture 3: Convolution

- Topics:
 - Response of discrete-time LTI systems
 - Convolution of discrete-time signals
 - Response of continuous-time LTI systems
 - Convolution of continuous-time signals

Readings: Ch3.1-3.4 in text

Lecture 4: Fourier Series and Fourier Transform

- Topics:
 - Sinusoidal signals and frequency contents
 - Fourier series of periodic signals
 - Fourier transform

Readings: Ch4.1-4.3 in text

Lecture 5: Properties of Fourier Transform

- Topics:
 - Review of Fourier transform
 - Inverse Fourier transform
 - Key properties of Fourier transform
 - Commonly used Fourier transforms

Readings: Ch4.3-4.5 in text

Lecture 6: Frequency Domain Analysis

- Topics:
 - Review of Fourier transform
 - Frequency response of LTI systems
 - Response to a sinusoidal input
 - Response to a periodic input
 - Response to a general input
 - Ideal filters

Readings: Ch5.1-5.4 in text

Lecture 7: Laplace Transform

- Topics:
 - Laplace transform & Inverse Laplace transform
 - Properties of Laplace transform
 - Common Laplace transform pairs

Readings: Ch8.1-8.3 in text

Lecture 8: Laplace Transform (continued)

- Topics:
 - Computation of Inverse Laplace transform
 - Transform of Input/Output Differential Equations
 - Transfer Function Representation of LTI Systems

Readings: Ch8.3-8.5 in text

Lecture 9: System Analysis Using Transfer Function Representation

Topics:

- Impulse response
- Stability
- Stability test: Routh-Hurwitz criterion
- Bode diagrams

Readings: 9.1,9.2,9.5

Lecture 10: Sampling and Discrete-time Fourier Analysis

Topics:

- Sampling and Signal Reconstruction
- Discrete-time Fourier Transform
- Discrete Fourier Transform
- Fast Fourier Transform

Readings: 5.5, 7.1-7.5

