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ABSTRACT

In this paper, we study the problem of finite horizon Kalman
filtering for systems involving a norm-bounded uncertain
block. A new technique is presented for robust Kalman filter
design. This technique involves using multiple scaling pa-
rameters which can be optimized by solving a semidefinite
program. The use of optimized scaling parameters leads to
an improved design. Also proposed is a recursive design
method which can be applied to real-time applications.

1. INTRODUCTION

Finite horizon Kalman filters, including recursive least-
squares filters as a special case, are widely used in signal
processing applications. Compared with infinite horizon
Kalman filters, the finite horizon ones can offer a better
transient performance, which is an important property for
applications where signals are non-stationary.

One of the problems with Kalman filters, which has been
well recognized now, is that they can be sensitive to sys-
tem data, or in another word, they may lack robustness. A
typical phenomenon is that the performance of the filter, al-
though being optimal for a “nominal” system, may deterio-
rate very quickly as the system data drift; see, e.g., [4]. This
is of course not acceptable for applications where a good
system model is hard to obtain or the system drifts. Moti-
vated by this problem, a number of papers have attempted to
generalize the classical Kalman filter to systems involving a
norm-bounded uncertain block; see {6, 3, 4, 5, 2]. Note that
norm-bounded blocks are used to represent inaccuracies in
the system model. The resulting filters are often called ro-
bust Kalman filters.

The design of robust Kalman filters faces a major obsta-

cle in comparison with the classical Kalman filters. There

are two prevailing properties possessed by classical finite
horizon Kalman filters. First, an optimal filter at time k
leads to an optimal filter at k¥ + 1. That is, an optimal fil-
ter at k produces a minimum state estimation error at k (in
the variance sense), which is the best initial condition for
the filter design at k¥ + 1. Secondly, the optimal filter for
state estimation is also optimal for estimation of any other
signal, provided it is a linear function of the state. Unfor-
tunately, neither of the two properties carries through when
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the system involves uncertainties. More precisely, a filter
which produces a small state estimation error at time k may
worsen the state estimation at time k + 1. Similarly, a filter
which minimizes the state estimation error may not be opti-
mal for estimation of the signal of interest, even when it is
a linear combination of the state.

A commonly used technique for robust Kalman filter de-
sign is to apply the so-called S-Procedure, which replaces
the uncertainty block with a scaling parameter. This yields
an upper bound for the covariance of the estimation error.
Two types of scaling parameters have been used: constant
and time-varying. A constant scaling parameter (7) is used
in [3, 6, 4] and is most suitable for infinite horizon or sta-
tionary filtering problems. One serious problem with us-
ing a constant scaling parameter is that the entailed conser-
vatism can aggregate quickly as time evolves and may lead
to a very poor estimator. Time-varying scaling parameters
(1) are more flexible, and if they are carefully chosen, the
amount of conservatism can be reduced. Two papers have
used time-varying scaling parameters. In [S], a simple for-
mula is given but the scaling parameter is not optimized in
any way. In [2], the scaling parameter is chosen using a
semidefinite program. However, as we shall reveal later, the
scaling parameter obtained at time k using [2] may lead to a
poor estimation at future times. Also, the semidefinite pro-
gram to be solved in [2] is quite cumbersome.

In this paper, we intend to carry out some deeper study
on finite horizon Kalman filtering for systems involving a
norm-bounded uncertain block. Our focus will be on how
to choose scaling parameters. A summary of our results is
given below.

e We show that optimal scaling parameters for time k
may lead to poor estimation at future times. Sub-
sequently, two types of scaling parameters are sug-
gested: one optimal for time k, and one used for the
future. In fact, at each time k, all the scaling parame-
ters 7o, - - - , T Need to be re-optimized.

e The design of the estimator has the following separa-
tion properties:

— The covariance of the estimation errorat k + 1
depends only on the scaling parameters 7g, - -+, Tg
and the system data, not on other parameters in
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the filter. Thus the scaling parameters can be
optimized first. In particular, we note that they
depend on the signal to be estimated.

— Once the scaling parameters are determined, an
optimal filter can be generated using an alge-
braic formula. In particular, we note that the op-
timal filter does not explicitly depend on the sig-
nal to be estimated. Implicit dependence hap-
pens only through the scaling parameters.

o We show that optimal scaling parameters can be com-
puted using a semidefinite program. The size of the
program is moderate and grows at the rate k. An sub-
optimal scheme is also given which requires a con-
stant amount of computation at each k.

2. COVARIANCE ANALYSIS
Consider the following uncertain system:

(Ax + HyFyEx)xy + Brwg
Ckxk

Tk+1 =
Zr =

@

where 2 € R™ is the state, zx € RP is a linear combination
of T, A € R™*™, Hy € R™*}, By € RI*", B, € R**m
and Cj, € RP*™ are given matrices, Fy € R**J represents
norm-bounded time-varying uncertainty, i.e.,

FkFlgsI:Vk=0711"' (2)

wy and xp are zero-mean, independent and satisfy the fol-
lowing second order statistics:

o [ I iftk=1 ty
E(wpwy) = { 0 otherwise E(zozp) =% >0

3)

Without loss of generality, Fy # 0 for all k. To assure that

the order of the system is not degenerate, we further assume
rank[A,, Hk .Bk] =n, Vk (4)

Denote by £ and X, = CxXxC}, the covariance ma-
trices of zx and z, respectively. The (worst-case) covari-
ance analysis problem is as follows: Given T" > 0, deter-
mine the worst-case £, 741, i.e.,

Ly =max{L(Z,741)  FFEKI,0L< KL T} (5)

where L(X) is any given linear function of . In particular,
itis common to choose L(X) = trace(X).
We first introduce the so-called S-Procedure (see [1]):

Lemma 2.1 Given M, A,Y. € R**", H € R™, and E €
RIXP with ¥ = Xt > 0, the following inequality holds

M—(A+HFE)S(A+HFE) >0,VF € R**I FFt < T
©)

if and only if there exists T > 0 such that

M-_r-1HH! A
or equivalently,
M A H
At T L—7EtE 0 >0 (€))
H? 0 I

Next, we give a solution to the covariance analysis prob-
lem for the case T = 0.

Theorem 2.1 Define
T1(70) = AoSodl + BoBf + 15 ' HoH, m € R (9)
where
So =To + ToE§ (15 — EgSoEY) ' EeXe  (10)
Then,
1(70) > T1, Tu(10) > 0, VO < 70 < ||EoXoES|| ™}
1
Also,
Ly = inf{L(C1Z1(70)C}) : 0 < 10 < || BoSoEf|I 7'} (12)

Further, the optimal 19 can be found by solving the follow-
ing semidefinite program:

L] = mmL(C’lXCf)

X — BoB(t) Ao HO
s.t. Al Lol —-mEfE, 0 | >0
Hé 0 T(]I
X=Xt7>0
(13)

Proof: Follows from Lemma 2.1. Details are omitted. W

Returning to the problem in (5) for T > 0 where more
than one Fj terms are involved, it is expected that they will
be replaced by additional scaling parameters 75 to compute
L1 This can indeed be done except that for T > 0 an up-
per bound L1 for Lpyy yields. Nevertheless, this bound
can be solved via semidefinite programming. This is de-
tailed as follows:

Theorem 2.2 Denote T = [1y,+ -+, 7r] and define

20(1') = Zo
Trpa(r) = BBt 477 HyH} + A Sk(7)AL
(14)
fork=0,1,---,T, where

Sk(1) = Zk(1)+ Sk (1) Ef (13 I- Ex Si (1) EL) 7 Ex Zg (1)
(15)
with

Syt (r) =Z5' (1) — RELEy (16)
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Also define

A={r:0< 1 < ”Ekzk(r)Ei”"l, k=0,---,T}
an
Then,

Ek+1(‘r) > Ek+1; E;H.l('r) >0, V7€, 0<k<T
(18)
Next, an upper bound for L., is given by

Ly = inf L{Cry1Zr41 (1)Ch41) 19

Further, the optimum above can be found by solving the fol-
lowing semi-definite program:

ET+1 = min L(OT+1XC§~+1)

X Urpr
.5 >
s | o, ma]zo @
X=Xt 72>0

where Ur and Il are defined recursively:

Uo = I;
M, = %3
; t It 21
Oy = diag {1y — UL ELERU, Tiliy I}
Uyr = [ApUr Hy By}, k20
Proof: Omitted due to page limit. |

Remark 2.1 Theorem 2.2 suggests that T needs to be re-
computed as T changes. This is indeed the case. In fact,
we will show in Section 6 that an optimal T at a given time
T may not be optimal at a different time. Because of this
property, we will denote the optimal T at time T by T,
k=0,---,T whenever necessary.

Remark 2.2 In Theorem 2.2, we have assumed nonsingu-
larity of ¥y. If X9 is singular, we can always decompose it

into UpIly U¢ for some Uy and Ty. With these Uy and Iy,

the recursion in (21) will still be valid.

3. ROBUST FILTER DESIGN: PROBLEM
STATEMENT

We extend the system (1) to the following:

Tpy1 = (Ak + Hl,kaE],)xk + Brwy
v = (Cop+ HopFrEp)zy + v (22)
ze = Cipzk

where yx € R" is ameasured output, Cy x € R™", Hy ;. €
R7™**, vy 1s a zero-mean measurement noise, which is inde-
pendent of wy, and with statistics

I ifk=1

Yy .
Elvenr) = { 0  otherwise ’ 23)

The other matrices are defined accordingly. In the de-
sign problem, zj is a linear combination of zx to be esti-
mated. Similar to (4), it is assumed that

Ay Hip B | _
rank[c,we Hax 0 =an+r, Vk (24)

The robust linear filter is of the form:

Fre1 = Ardp + Br(yx — Capde)
o = 0 (25)
Zy = Ciiix

Note that the use of the same C},x and C, x does not lose
any generality.

Given the filter above, the augmented system involving
i and £y is given by

(Ax + By Fy By )2, + Buin
CrZy,

Zpp1 =

0oz 26)

where ey, is the estimation error and

— | Tk . | Wk
2o [2].
(i ahe]

k B Gy Ar—~BiCop |’

= [Bx O o Hyg
Bk_[ 0 ék]’Hk_[BkHz.k]’
Ek=[Ek 0]; C'k =C1,k[I —IJ

8

P

‘We will denote by ‘Z?k, Y2,k and ¥, 3 the covariance matri-
ces of &, zx — &) and eg.

Similar to the previous section, scaling parameters Ty
will be used to replace the uncertainty block Fj, which
yields parameterized covariance matrices £, T 5 and S x.
With this in mind, a number of technical problems are pro-
posed as follows:

P1 : Given £y and 7y, find the optimal filter at k (i.e., A
and B;) such that L(X, .+1) is minimized.

P2 : Given £, find optimal 7, Az and By such that
L(X, k+1) is minimized.

P3 : Given T, X, find optimal 73 and the optimal filter
atallk, k = 0,---,T such that L(X¢ 141) is mini-*
mized.

Obviously, our aim is to solve P3 while P1 and P2 are the
immediate steps.

4. ROBUST FILTER DESIGN: SOLUTIONS

Solutions to P1-P3 are given in this section.
Problem P1
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Theorem 4.1 Suppose

ik = [ Ez,k + Ez,k 22,': ] ) Ez,k > 0, E?,k Z 0
Yok Lok
27
{which holds at k = 0) and Oty < |\ExZ1 x EL|| 7Y, where
Y1,k denotes Lz + Yo x. Then the optimal solution to

Problem 1 is given as follows:

Ar = Ap+Ax (28)
Ar = (Ap — BiCoi)To xELVi By 29
By = (ry'HypHS, + AxSiChy)
(T + 7 Hy g HY ), + C2,6SkC% ) ™! (30)
where
Vi = ('1-EyZ4EL)1>0 31
Sk = Zok+ZerEiViErTo (32)

In particular, the optimal filter is independent of Cy k41 (or
the signal to be estimated). Further, the optimal filter given
above preserves the structure in (27), i.e.,

& | Bkt (r) + B2k (k) Bapa(mr)
Beea(me) = Z2,k+1(7k) 2,k+1(7x) ]
(33)
with
Z‘MH (1‘],) = BkB,tc-f-T;lHl,kHik-}'AkSkAi—Z,t‘E;l Zy
34
and

Tz k+1(Tk) + a1 (%)
= BkB,tc + Tk_lHl,ka,k + A;;(El_,}c - TkE,t,Ek)_I/(tkiS)
where
Ep =TI+ 77 Hyp HY  + C2xSiCh (36)
Zy =73, Ha o Hy  + Co 1Sk A}, €1))
Finally, we have
Tz k+1(T6) >0, Zzp41(7%) 2 Xz k41,
VO <1 < ||ExZ1 s EL| 71 (38)
Proof: Omitied due to page limit. |

Problem P2

Theorem 4.2 Under (27), the optimal solution to Problem
2 is given as in Theorem 4.1 with the optimal Ty, solving the
Sfollowing semidefinite program:

min L(Cyx+1XC% )

X - BB} Ay Hy g
s.t. At St +CL (Cap Ct (Han
Hf,k H;,kCﬁ,k Tl + Hzt,kH&k
X =Xt 0<7 <||ELZ) B!
39
where Sy, is given in (32) with
St =3%;% — ELE; (40)

Proof: Omitted due to page limit. |

Problem P3
Before we give the solution to P3, several key observa-
tions about Theorem 4.2 are needed:

e First, only £, 4, rather the whole £y, is directly re-
quired for the filter design at time k. However, the
term X i is used in constraining the range for 7.

e The optirpal T}, is solved independently of the optimal
Ay, and By, although the latter depends on 7.

e The optimal X in (39) is indeed the optimal X5 x;.
Further, if X5 x, is replaced with any of its upper bound,
the resulting optimal X x1 will be worsened.

These observations, together with the results in Section
2, lead us to the main result of the paper:

Theorem 4.3 Let ¥o > 0 and T > 0. Denote

T = [T()a"',TT]
Le,k = Cl,kzz,kof,k

Define 50(7) = Lo. Let Tz p41(7) and Ty p41(7) be
given as in (31)-(32), (34)-(37) for k = 0,1, - - -, except that
Sk Lok and Xy x are replaced by Yig k(7), Xk (1) and
%1.,k(7). Then, an upper bound for Le 14 is given by

Lersr = Jof LGy Ze (T )Clrr)  (41)

where
Q={r:0< < ||E£E1,k(T)Ek||_1,k =0,---,T}
(42)
Also define
( Uz,O = I
Oo = Mo=35%
Wer = IHpp-— TkU:.,kEyt,EkUz,k;
Wix = Ihg—nUL 4 ELExUs i
_ oo Wer O Uz xCs x
" [CopxUszp Hagl, Im}
M = diag{Wy g, ml,In}
\ Uzp4r = [ApUzx Hyx By]

43)
Note that I, , is affine in 7. Then the optimal Le 741 can
be found by solving the following semi-definite program:

L, 741 = min L(Ci,r+1XCt 11y)

[ X Uz,T+1

S.L +

Uz,T+1 1Py I8} (44)
Wl,k 20) k:O!""T

X=Xt71>0

1\
o

Once the optimal T is found, the optimal filter at time T is
given as in Theorem 4.1, with X5 v = Xz p(7).
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Proof: Omitted due to page limit. n

Remark 4.1 Note that the optimal Ty for each T' may be
different. Using a fixed Ty, may lead to conservative designs.
But the optimal At and Bt does not explicitly depend on
past filters, i.e., they depend on the optimal T and the system
dataat T.

5. RECURSIVE ROBUST FILTER DESIGN

There is one unpleasant feature about the solution in Theo-
rem 4.3. That is, the size of the semidefinite program in (44)
grows linearly in k. To avoid this, we propose a suboptimal
solution, i.e., a recursive method which optimizes only a
fixed number of most recent scaling parameters. The mo-
tivation for this approximate solution stems from a simple
fact about Kalman filtering that the contribution of the ini-
tial covariance X to the estimation error at time T' decays
as time evolves, provided that the augmented system (26) is
asymptotically stable. The recursive method involves solv-
ing a semidefinite program of a constant size. Therefore,
it is suitable for real-time applications where the informa-
tion of the system dynamics (i.e., A, By, etc.) may not be
available a priori.

The recursive algorithm given below is simply modified
from Theorem 4.3.

Step 1: Let N + 1 be the window size for recursion, N > 0.
For 0 < T < N, apply (43) and (44);

Step 2: For T > N, still apply (43) and (44) but replace the
constraint Wy > 0, Vk = 0,---, T by Wy >
0, Vk =T — N,-.-,T and reinitialize U r-n =
Tand I, r-n = (B%_p)~Y, where £%._ is the
optimal £r_ n(7) determinedat T — N,

6. EXAMPLE

To illustrate the results in this paper, we consider the fol-
lowing example, which has been used as a “benchmark” in
I6, 5, 2):

0 -05 -6
Tebl = |1 14038 |TFT| 1 [ W
v = [~100 10Jzk + v @3
zg = [1 Olzg

where |0x] < 11is the uncertainty. We assume that the initial
state covariance matrix X9 = I.

To match the system description in (22), the uncertain
term is represented by the matrices

H = [ g ] H,=0, E=[00.03. (46)
Stationary filters are designed in [6, S, 2] to compare

with the so-called “nominal” Kalman filter where the un-
certainty is ignored. An infinite-horizon filter is used in [6]

with guaranteed stability, which gives a great improvement
over the nominal design. The design in [S] is based on finite-
horizon. In our setting, this design is similar to the recursive
case with window size equal to one except that the scaling
parameter 7 is pre-selected. The performance turns out to
be superior to [6]. The design in [2] is similar to [S] except
that the scaling parameter is optimized at each iteration us-
ing a semidefinite programming technique, yielding some
small improvement over [5].
For comparison, three new designs are shown below.

Design 1: Recursive Design with N = 1

First, we design a filter using the given system data. The
resulting filter turns out to be unstable. This demonstrates
the inherent instability of finite-horizon designs. The in-
tuitive reason is that the filter only aims at minimizing the
cost function at each given time instant without considering
its consequence in the future. This problem has been rec-
ognized by other researchers. For example, [S] solves this
problem by using a fixed (conservative) scaling parameter,
while in [2] the augmented covariance matrix £y, is required
to be bounded.

Alternatively, we solve the instability problem by adding
an additional term to the performance cost. Indeed, we take

Cl=[3 2] )

and the performance cost is trace{C, € (exe})Ct}. It is ob-
served in the simulations that increasing & can dramatically
improve the stability and the steady state performance with
a minor tradeoff of the initial performance.

To demonstrate various recursive designs, we select e =
0.2. The corresponding filter is stable and converges to a
stationary one as k — oo, and it is given by (22) with

. [0 -05165] 5 [ -0.003044
A = [ 1 1.0362 ] By = [ -0.003304] “8)

Design 2: Recursive Design with N = 2

Recall that with N = 2, two scaling parameters, 7r,7—1
and rr,T, are involved at each T'. The first one is for es-
timating Xz, 7 from X, r_; and the second one is used to
estimate Xz 41 and to design the filter.

For the same fix of C in (47), the steady state filter has

i _ [0 —051757 » _ [ —0.002569
A"“[ 1 1.0386 ] By = [ —-0.004348] “9)

The steady state scaling parameters are 7r,r—1 = 4.3966,
rr,r = 1.5101.
Design 3: Recursive Design with N = 3

The filter for N = 3 and the same fix of C} is also stable
and has steady state matrices

. [0 -0563]  _ [ —0.002613
Ax = [ 1 11238 ] By = [ ~0.004252 ] (50)
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Now, the scaling parameters converge to 7r,7—2 = 4.7172,
rrr_1 = 4.8874, . = 1.6699.

&

g & =»

varlance of estimatlon error

8

. L . L s
50 60 70 80 80 100
time

Figure 1: Performances for Recursive Robust Filter De-
signs. Design 1: The top curve; Design 2: The middle
curve; Design 3: The bottom curve

scaling parameters
-
=)

100 L 1 1
0

time

Figure 2: Scaling Parameters for Recursive Robust Filter
Designs. Design 1: 7r—the bottom bottom; Design 2:
7r,7-1-the third curve from the top; 77, r—the second curve
from the bottom; Design 3: 7r,r_2,7r,7-1-the two top
curves; Tr,r—the third curve from the bottom

7. CONCLUDING REMARKS

In this paper, we have proposed a new design technique for
finite horizon robust Kalman filters. This technique allows
us to effectively treat systems with norm-bounded uncer-
tainty blocks. The uncertainties are dealt with using the so-

Filter 0=-1 6=0 é=1 Bound

Nominal Filter 551.2 36.0 83528 -

Robust Filter of [6] 64.0 61.4 64.4 98.7
Robust Filter of [S] 46.6 45.2 54.1 54.3
Robust Filter of [2] 50.8 494 535 N/A

Proposed Design 1 39.22  39.68 4029 4433
Proposed Design2  38.13  38.68 3942 42.07
Proposed Design 3 3775  38.19 38.82 4147

Table 1: Steady State Performance Comparison

called S-Procedure, which yields a set of scaling parame-
ters to optimize. The corresponding optimization problem
is convex and can be solved either directly or via semidefi-
nite program. Also presented is a recursive design method
which is mostly suitable to applications with non-stationary
processes or signals. The proposed technique gives less
conservative designs in comparison with existing techniques
for robust Kalman filtering. This property has been demon-
strated using an example.
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