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Abstract. This paper considers the problem of robust
global stabilization of a large class of nonlinear systems.
We introduce a recursive design approach based on a
powerful technique of Wei for quadratic stabilization
of linear systems. This approach allows us to globally
stabilize an uncertain nonlinear system which is aug-
mented from a robustly globally stabilizable system via
either down-augmentation or up-augmentation. These
augmentations are similar to the so-called backstepping
and integrator forwarding. However, the advantage of
the proposed augmentation approach is that robust sta-
bilizability is achieved for nonlinear systems involving
large uncertain parameters.

1 Introduction

In Wei [8], a remarkable result was given for quadratic
stabilization of uncertain linear systems. Wei’s re-
sult gives a structure of uncertain systems, called an-
tisymmetric stepwise configuration, which guarantees
quadratic stabilizability via state feedback. This struc-
ture is constructed using a chain of the so-called down-
augmentations and up-augmentations. The former aug-
ments a quadratically stabilizable system by cascading
dynamics at the control input, while the latter adds
state variables which integrate the existing ones. A re-
markable feature of Wei’s result is that time-varying
uncertain parameters of large size are permitted. Also,
the antisymmetric stepwise configuration is proved to
be the only structure which can be quadratically sta-
bilized via state feedback, under certain structural as-
sumptions on uncertain parameters; see [8] for details.

For nonlinear systems, the down-augmentation tech-
nique corresponds the well-known back-stepping ap-
proach; see, e.g., [2], which is used for global stabi-
lization of nonlinear systems with the so-called lower-
triangular form (or strict feedback form). The up-
augmentation technique, on the other hand, corre-
sponds to a number of recent techniques for deal-
ing with nonlinear systems with the so-called upper-
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triangular form (or strict feedforward form); see [7, 3,
1]. Indeed, the lower-triangular and upper-triangular
forms are generated using down-augmentations and up-
augmentations recursively.

The up-augmented structure starts with a base system
of the following form:

i(t) = f(=(t),9) + b(Q)u(t) W

where ¢ represents time, z(t) € R™ is the state, u(t) €
R is the control, ¢ € R' is an uncertain parameter
vector contained in a compact set 2, b(g) is continuous
in g, f(z,q) is continuous in ¢ and smooth in z (in this
paper, if no specification, all smooth functions means
globally smooth functions) with f(0,q) = 0.

An up-augmented system is given by

Zo= fo(z,q) (2)
& = f(z,q) + b(g)[u + d(z, 0,7, )]

where 2o, € R is a new state variable, fo(z,q) is
continuous in ¢ and smooth in z with f3(0,q¢) = 0,
d(zx,zo,n, q) is continuous in ¢ and smooth in (z,zo,n)
with d(0,0,0,q) = 0. The parameter 7 represents state
variables generated by up-augmentation other than zg
and z if (2) is a subsystem of a larger one, or void
otherwise.

On the other hand, the back-stepping technique deals
with the so-called down-augmented structure. For the
same base system (1), a down-augmented system is of
the form:

& = f(z,q) + b(@)Tn41 (3)
En41= Onp1(9)[u + d(z, Tnt1, 7, 9)]

where z,41 € R is a new state variable, 6,,1(q) is a
continuous function bounded away from zero, and d(-)
is the same as before.

In this paper, we intend to generalize Wei’s augmenta-
tion approach to a class of uncertain nonlinear systems
which often involve uncertain functions of a large size.
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The uncertain functions are also allowed to be time-
varying. The robust stabilizing controller is designed
recursively. When reducing to linear systems, the ro-
bust controller becomes linear, and our result recovers
Wei’s result on quadratic stabilization [8].

2 Robust Nonlinear Forwarding

In this section we revisit the robust forwarding tech-
nique in [5]. This technique does not yield a global
smooth controller. But the controller can be made
smooth as shown in [6]. The control law is designed
in two steps. In the first step, a nonlinear controller is
applied to the base system so that its state z converges
to a “small” bounded set  while z¢ is not regulated.
In the second step, a nonlinear controller is designed to
maintain z within  while driving the augmented state
z% to zero. Overall, this two-step control law achieves
robust global asymptotic stabilization (RGAS) and ro-
bust local quadratic stabilization (RLQS) (see Defini-
tion 2.1 and 2.2).

Definition 2.1 An n-order system

&= f(z,q) 4
is robustly globally asymptotically stable (RGAS) if,
lim z(t,q) =0, Vg€ Q, Vz(0) € R™
t—ro00

Definition 2.2 An n-order system (4) is robustly lo-
cally quadratically stable (RLQS) if there are a lo-
cal quadratic Lyapunov function V(z) = 2T Pz, P =
PT > 0, a decay rate € > 0 and a local region Q such
that, v

V(z) < =ellz||?, Vz €.

ASSUMPTIONS

Assumption 2.1 (Local Quadratic Stabilizability):
There exists a local smooth controller u,(z) for the
base system (1) such that, with

u(t) = un(z(t), (5)

the state of the system (1) is RLQS with a local
quadratic Lyapunov function V(z) = zT Pz, a local
region Q and a decay rate €. O

Assumption 2.2 (Local Smoothness Properties): For
the same local region § and local controller u,(z) as
above, any z € 2 and q € @, there holds

1@, + Y@un(@) = Alz,q)a
o) = 0a(a) (] ) = 0ala

(6)
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where

0
dnl (.’L', q)

A~ (x,q)

A(z’ Q) = *

(7)

with * representing an arbitrary term, 1 > 0,(z,q) >
8, > 0, where 8, is constant. m)

Remark 2.1 With the local smoothness assumption,
the RLQS property in Assumption 2.1 can be modified
to the following: there exists g > 0, > 0 and matrix
P = PT > 0 such that

PA(z,q) + AT(z,q)P < ~eI, Vz € Q,q€Q (8)
where

Q={z: zTPz <p}. (9)

Assumption 2.3 (Global Properties): Consider the
following system derived from (2):

& = f(z,9) +b(@)[u + d(z*,1,q)). (10)

Given any smooth function n(¢) and 0 < p < 1,
there exists a locally (or globally) smooth controller
ug(z*,7) such that, with

u(t) = ug(z™ (t), n(t)), (11)

the state of the system (2) will be driven into pQ) in
a finite time T, where  is given in (9), and pQ =
{pz: z € Q}. o

Assumption 2.4 (Local Smoothness Properties): For
the local region 2 and any z € ) and ¢ € @, there
holds

fo(z,q) = a(z,q)z (12)

where
a(z,q) = [bo(z,q) #] (13)
with 1 > 6p(z,q) > 8, > 0 where 8, is constant. 0

LYAPUNOV FUNCTION AND CONTROLLER DESIGN

Now we pay attention to controller design for (2). First,
we utilize Assumption 2.3 and apply (11) to drive z(t)
into pQ in a finite time T. In this step, z¢(t) is not
regulated. Once z(t) € pf2, we switch to a local mode
where a different controller u*(z%,n) will be applied.
This controller will maintain z(t) in 2 while driving
zt(t) to zero. The design of u*(z*,n) relies on a local
Lyapunov function for (2)

V*(z*) = (z0 - (v 0)Pz)’

V(z)
+/ s(wdw >0, V€ Q (14)
0



where v < 0 is a constant to be specified and s(-) is
a locally smooth function satisfying: s(w) > 0 Vw €
[0, )5

/ s(w)dw < o0, Yv € [0, u); (15)
0
and .
lim s(w)dw — co. (16)
v g

Remark 2.2 Note that (14) includes a quite large set
of Lyapunov functions. A particular choice of s(-) is
given by [5]:

1

For linear systems we can take p = oo and s(w) a con-
stant, which yields a quadratic Lyapunov function. It
can be verified that this is the same Lyapunov function
used in Wei [8]. In generally, these Lyapunov functions
are non-quadratic. However, as ¢ — 0, V*(z%) be-
comes quadratic in =+ because s$(0) > 0. We also note
that the function [, ) s(w)dw resembles a “potential
barrier” and the Lyapunov function (14) is valid only
forz € Q, i.e,

V*(@*t) —» oo as zTPz - p. (17)
This implies that future z € Q as long as that V*(z™%)
remains bounded. m}

For notational simplicity, we will denote s(V(z)) by
s(z). Defining
-(y 0)P

{—PZ ) s(z)P+P( 7 ) (v mp} (18)

0
which is positive definite for all z € . The inverse of
P+ is given by

P+

Y
0

s@+60p( ) 4o

St =s"Y(z) . (19)
Y p-1
(3)
Also define a (nonlinear) state transformation
2zt = (2, 27)T = Ptzt. (20)

To simplify the analysis, we also assume in this section
that 5 is void, i.e., d(z*,n,q) = di(z*,q). The case
n # 01is a little more involved; see [5, 6]. Since d;(zt,q)
is smooth in z% and d; (0, g) = 0, we can rewrite

di(z*,q) = D*(z¥,q)z* = D¥(z*,9)ST2  (21)

for some D*(z*,q) smooth in z+ and continuous in g.
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Differentiating V*(z*(t)) along the trajectory of (2),
we have
V= 2z — (v 0)Pallio ~ (v 0)Pi]
+2s(V(z))zT Pz
=2(zT)TPHit,

(22)

Theorem 2.1 For the up-augmented system (2) satis-
fying Assumptions 2.1-2.3 and d(z*,7,q) = di(z+, q),
there exist v < 0 and a(z*) > 0 such that the nonlin-
ear controller

u(t) = ut(z*) = u,(z) — a(z™)2Tb (23)
will render
VH(a®) < —sH(@)et (@)V (),
vzt e Rx Q (24)

for some continuous e (z) > 0, z € (2.

Moreover, the following choice of v, a*(z+) and ¥ (z)
will suffice :

0<E<E&maz = qe%l;izne(z Amin .[—P"1 (AT(.'E, q)P

+PA(z,q)) P™'] (25)

Y < Ymae = __min Tol@ la(z,q) (AT (z,q)P
+PA(@,q) +EP) " d"(e,0) -2 (26)
et(z) = g,\mm (P*(z)) >0 @7)
o(zt) = s-l(x)ﬁ(;f—J’—) (28)
where §(zt) is any smooth function satisfying
6(c*) 2 max||s(2)D(a*, @)S™ (s) + {v%’f—(z-q’)i) 0] u .
(29)

Proof : Similar to the proof of Theorem 3.1 in [5].
\AAY)

Since the controller u*(z*) in (23) is locally smooth
and the system (2) satisfies Assumption 2.2, we have
the following theorem:

Theorem 2.2 The closed-loop system (2) with the
controller (2) is RLQS and has a local quadratic Lya-
punov function V3" = (z*)T Pffz+ when z+ € QF =
{z+, (=) Pzt < ;ﬁ} where pt > 0,

1 ~(y O)P
P0+= _pl

(0 ) 50P+P( g)(v O)P] (30)

and sq is a positive constant.

Proof: Similar to the proof of Theorem 4.1in [5]. VVV



3 Robust Backstepping

In this section we consider the robust stabilization
problem for nonlinear systems down-augmented from
the base system (1). In fact, when a global Laypunov
function of the base system is known, the stabilizaion
of the down-augmented systems can be achieved by the
well-known backstepping method [2]. However, the re-
sults in Sections 2 provide only a local Laypunov func-
tion when the base system is an up-augmented system.
In this section, a modified backstepping method will be
discussed for this case.

We first rewrite the base system as follows:

z = f(z,q) + b(g)Tn+1

where z,41 is the input of this system.

(31)

To simplify the analysis, we assume that vector 7 in (3)
is void, i.e., d(z,Tnt1,7,9) = fat1(2,Tn+1,9). Also,
for notational simplicity, we assume 0,41(¢) = 1 in

3).
Hence, the down-augmented system (3) is rewritten as

t = f(z,q) + (@) Zn+1

. 32
Lp4l = fn+1(za xn+11‘1) + u. ( )

Suppose there is a globally smooth controller ug(z),

up(0) = 0, such that the base system (31) with this
controller satisfies the following Assumptions.

Assumption 3.1 The base system (1) with the con-
troller u(t) = wo(z(t)) is RLQS with a local quadratic
Lyapunov function V(z) = z7 Pz, a local region z €
Q = {z, V(z) < p} and decay rate ¢ > 0. 0

Assumption 3.2 (Local Smoothness Properties) For
the system (31), there is a matrix function A(z,q)
which is smooth in z and continuous in g such that,

f(z,q) + b(q)uo(z) = Az, q)z. (33)
forallz e Q,q€ Q. m}

Assumption 3.3 (Global Properties) Consider the
given controller ug(z) and the following system

& = f(z,9) + b(q)(uo(z) + w) (34)

where w is a disturbance input with @
$up;> [lw(t)|l < co. Then, for any z(0) and sufficiently
small @, there exists T' > 0, s.t. z(t) € Q, t > T. o

With Assumption 3.3, we introduce a transformation

T T

Tpy1 — Up(ZT).

35
Zn+1 (35)
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Under this transformation, the system (32) can be
rewritten as

@ = f(z,q) + b(g)(uo () + zn+1)
Zngt = fap1(zh,9) +u

(36)
(37)

where 2zt = (27, z,41)T and
fn+1(2+, q)
6u0
= fn+1(.’l?,(l:n+1, q) - E[f(m’ q) + b(q).’l)n+1]. (38)

Since f(z,q), fa+1(2,Tn+1,9) and ug(z) are glob-
ally smooth functions, there is a matrix function
Fui1(2%,q) such that fai1(zt,q) = Fuyi(2t,9)2t.

Then we choose

V) = V(@) + 2 (39)
as a Lypaunov function candidate for (32).
Theorem 3.1 Under Assumptions 3.1-3.3, let
Wtz = =201+ Doniabiaet) - Sz
(40)
where 6,,4+1(z%) is a smooth function satisfying
IgleagIIFnﬂ(ZJ',Q)ll < bnta(z+); (41)
and e e
a:max{ﬁ,c+§}. (42)

Then, u*(z%) is a robust controller for system (32)
yielding RGAS and RLQS.

Proof: Let Vo1 = 22 . The derivative of this function
along the trajectory of (37) is
Vi1 = 2zn41[far1(zF,q) + 4]
4 . ellz*?
< 20zt + 122, .62 +
= E(”Z “ + )zn+1 7‘:.+1(‘z ) + 4(”Z+”2 + 1)

+2zp41u. (43)

The controller (40) leads

ezt |2
4(llz*112 + 1)
£

4

y 2
Vn+1 < —QZ, 4 +

<-azi+ (44)

After some Ty > 0, |[zp41]| £ ©. Using Assumption
33,37 >0, z(t) € Q,Vt > T. Now using Assumption
3.1,

V< —ellz|? + 227 Pb(q)w
; 2 . )
< —elle|* + Sllel® + Z67 (g) P*b(q)w?

< —%e”z“Q + cw?. (45)



Note that V¥ =V + V,;;. Fort > T,

V+ = V+Vn+l

1 2 ellzt ”2 2
< ——gllzl|? + et (g~
- 25”'1'“ + 4(”Z+"2 + 1) (O! C)Zn+1
£ B
< =SfeH (46)
Therefore, this theorem holds. \VAVAY)

When combining backstepping with forwarding, we
need a local quadratic Lyapunov function for (32).
V*+(z*) in (39) would be an ideal candidate because
it is a quadratic Lyapunov function in the coordinate
z*. Unfortunately, a careful analysis suggests that the
transformation (35) can complicate the system and pre-
vent further use of up-augmentations.

Due to this problem, we have to find a local quadratic
Lyapunov function in the z coordinate.

Theorem 3.2 Suppose the system (32) satisfies the
Assumptions 3.1-3.3 and the controller ut (z7) satisfies
(40). Then the closed-loop system has a local Lyapunov
function

2
Vot (e*) = V(z) + [$n+1 - &g)a(:o)w] , gt et
where
at = {zt : Vgt (=) <pt}, pt>0. (47)
Proof. Omited for this conference version. vvv

In generally, the function d(z,%p+1,7,q) in (3) can be
rewritten as

d(.’E, Tnt1,7, Q) = fn+1 (.’E+, Q) + dﬂ+1 (.’B+, 7, q)
(48)

where d,,+1(0,0,7,9) = 0 for all z+ = (2T 2,4,)T and

q€ Q.
Also, note that uo(0) = 0. Hence there is a vector
function k(z) such that uo(z) = k(z)z.
Theorem 3.3 Let
a*(z*,n)
= (@) = (Il + Db (5, m)
(49)

where
(50)
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max Idn+1 ((IZ, Zn+1,7, Q)| < Sﬂ+1(x+: 77)3
g9€Q

+\ 1

a:max{<§+%) 62,c+i} (51)

+_€ . Amin(PH(z)) |
== 52
¢ T 2T e (B (52)

- P+ kT (x)k -k
P+(£L‘) — [ _kT((z)) (:L‘) (9;) ] (53)
and
T
6u0(0) 611.0(0) _ auo(o)

PJ, = P+ ( 331: 0) r oz ax (54)

- (2gl) 1

Then, the controller 4t drives the state zt of the sys-
tem (3) into Q7 in (47) in a finite time.

Proof: Omited for this conference version.

\AAY

Remark 3.1 Theorems 3.1-3.2 and the smoothness
property of the controller (40) imply that Assumptions
3.1-3.2 can be preserved in the down-augmentation pro-
cess. Theorem 3.3 assures Assumption 2.3 for the sys-
tem (3). Although it is shown here, Assumption 3.3 can
be guaranteed for the system (3) by slightly modifying
the controller (49). u|

4 Antisymmetric Stepwise Configuration

In this section, we combine the results on up-
augmentations with down-augmentations to form a
class of uncertain nonlinear systems which can be ro-
bustly stabilized. This class is characterized by the
antisymmetric stepwise configuration (ASSC).

To explain the ASSC, we consider the following system
¢ = f(z,q) + b(q)u (55)

where f(z,q) is smooth in z and continuous in ¢, b(q)
is continuous in ¢, and g € @ is an uncertain parameter
vector as before. Define

Mg = [LED o) (50)

and adopt the following convention:
e x = any scalar function of z and ¢ with a known
bound over  x Q;

¢ § = any scalar function of z and ¢ with 1 > 6] >
8> 0over O x Q.



Then, examples of ASSC are given as follows:

6 0 6

* % @O
* % D *
* Do
OO O
* ¥ D ¥
* DO *
OO O

0 0 0
* 0 0
* X %
These examples are all generated via a sequence of up-
and down-augmentations. For example, the first ex-
ample is generated via an up-augmentation from the
lower-right 2 x 3 structure. A precise definition of the

ASSC can be found in Wei [8] with the exception that
the matrix M (z,q) in [8] is independent of z.

A general formula for M(z, q) is given below; which is
slightly genralized from [8]:

Definition 4.1 The system (55) is said to have an an-
tisymmetric stepwise configuration(ASSC) if the con-
figuration matrix M(z, q) in (56) satisfies the following
conditions.

1. Ifp > k+2and mgp(z,q) = 0, then my,(z,9) =0
foralu>v,u<p—landv<k+1,

2. If mij(z,q) # 0 for some j < 4, then m; ;1(z,q) is
independent of z;41 and m;;41(z,q) # 0 for Vz; € R
and Vg € Q.

Lemma 4.1 A nonlinear system (55) with an anti-
symmetric stepwise configuration can be obtained via
a series of up-augmentations and down-augmentations.

Proof: [8] proves the result for linear systems. Since
the ASSC is a feature of the system’s structure, the
result obviously holds for the nonlinear case. =~ VVV

With this lemma, we will recursively apply the robust
stabilization results on up-augmentations and down-
augmentations to solve the stabilization problem of the
ASSC system.

Theorem 4.1 Given the nonlinear system (55) with
ASSC. There exists a nonlinear controller u(z) such
that the closed-loop system is RGAS and RLES.

\A'AY

Proof Omitted for this conference version.

5 Conclusion

In this paper, we have proposed a new design technique
for robust nonlinear forwarding and robust backstep-
ping. This technique is inherently different from exist-
ing ones for nonlinear forwarding and backstepping in
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the sense that we can handle nonlinear systems with
large size uncertain parameters. By recursive appli-
cations of up-augmentations and down-augmentations,
we have identified a new class of uncertain nonlinear
systems which can be robustly stabilized. This class of
systems is characterized by the so-called antisymmetric
stepwise configuration (ASSC) and includes the well-
known lower-triangular structure and upper-triangular
structure as special cases. The ASSC is generalized
from a result of Wei [8] which shows that the ASSC
is a complete characterization of the class of uncertain
linear systems that can be robustly stabilized via state
feedback, subject to some structural assumptions on
the system. It is worth to note that the results of this
paper reduce to Wei’s results for uncertain linear sys-
tems.
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