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Abstract— The well-known Separation Principle plays a
vital role in output feedback control of linear systems. The
lack of a suitable Separation Principle for uncertain linear
systems makes output feedback control for these systems
a challenging problem. This paper is concerned with the
problem of robust output feedback stabilization for a class
of uncertain linear systems admitting the so-called Stepwise
Augmentation Structure. This structure is generated via a
sequence of up and down augmentations, including the well-
known lower and upper triangular structures as special
cases. We provide a recursive, state-space design approach
for constructing quadratically stabilizing output feedback
controllers. This design approach is based on a new Separation
Principle for uncertain linear systems, which we believe is a
powerful tool for robust control.

I. INTRODUCTION

Robust stabilization of uncertain systems has been an
active research area for many years. Numerous results are
available for state feedback stabilization; see, e.g., see [1]-
[6] for the case of linear systems and [7]-[13] for the case
of nonlinear systems. However, most design approaches
for state feedback control do not readily admit modifica-
tions to handle the output feedback case. Consequently,
design methods for robust output feedback stabilization
are scarce. Noticeable examples are [14]-[17] for linear
uncertain systems with an minimum-phase transfer function
and [18]-[19] where lower triangular state space uncertainty
structures are considered.

In a recent paper [20], we proposed a frequency domain
design approach to robust output feedback stabilization
for a class of single-input-single-output uncertain linear
systems with a pseudo-minimum phase transfer function.
The numerator polynomial of a pseudo-minimum phase
transfer function consists of a robust Hurwitz polynomial
and a s™ factor, m > 0. Although this structure may
appear to be a simple generalization of minimum phase
systems, it requires a conceptually different design ap-
proach. Indeed, the commonly used high-gain approach
for minimum phase uncertain systems fails to work for
pseudo-minimum phase systems. Furthermore, despite its
simple appearance, the structure above covers a large class
of state space uncertain systems admitting the so-called
Stepwise Augmentation Structure which is generalized from
a number of uncertainty structures in the literature; see
[1], [4], [6] and [16]. This structure is generated via a
sequence of up and down augmentations. Special cases
of this structure include the well-known lower-triangular
structure and upper-triangular structure.
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The well-known Separation Principle plays an important
role in the linear control theory because it allows us
to simplify an output feedback control problem into a
state feedback control problem and a state observer design
problem. There are several versions of the Separation
Principle. The first version states that an observer-based
state feedback system has closed loop eigenvalues specified
by the state feedback controller and those of the state
observers. The second version applies to Linear Quadratic
Gaussian (LQG) control problems and states that an optimal
output feedback controller is formed by an optimal state
feedback controller and an optimal state estimator [21].
A similar version is available for output feedback H,
control [22].

However, these Separation Principles break down in
general for uncertain systems. The lack of a suitable Sepa-
ration Principle for uncertain linear systems makes output
feedback control for these systems a challenging problem.
The first goal in this paper is to provide a new Separation
Principle suitable for robust stabilization of uncertain linear
systems. The Separation Principle basically states that,
under suitable assumptions, quadratic stabilizability via
output feedback is equivalent to quadratic stabilizability via
state feedback and the so-called quadratic detectability.

Using the new Separation Principle, we provide a recur-
sive, state-space design approach for constructing quadrat-
ically stabilizing output feedback controllers. Roughly
speaking, we prove that any uncertain linear system admit-
ting the Stepwise Augmentation Structure can be quadrat-
ically stabilized using a dynamic, linear output feedback
controller.

Due to the page limit, many results are stated without
proofs. The details can be found in [24].

II. SEPARATION PRINCIPLE

In this section, we show, under some mild conditions,
that output feedback quadratic stabilization can be separated
into state feedback quadratic stabilization and the so-called
quadratic detection, which is a dual version of quadratic
stabilization for observer design. Our result is based on a
generalization of the so-called Elimination Lemma which
is a powerful algebraic tool for linear control design.

Definitions: The set of n X n symmetric matrices is
denoted by S™*™ and the set of n x n symmetric and
positive (resp. negative) definite matrices is denoted by
S (resp. S™*™). An orthogonal complement of a matrix



N is a matrix V| with maximal rank such that N, N = 0.
When N is a nonsingular (square) matrix, [NV is void.
Given an uncertain system:

a(t) = Alq(t)x(t) + Blg(t))u(t);
y(t) = CT(a(t)x(t),

where ¢(t) = [q1(t) g2(t) ... ¢u,(t)] represents measurable
time-varying uncertain parameters, ¢(t) € @ for all ¢t € IR,
@ is a compact set. The system is said to be quadratically
stable if there exists P € ST™" such that

AT(q)P+ PA(q) <0, YqeQ.

The system is said to be quadratically stabilizable via
state feedback if there exists a matrix K such that A(q) +
B(q)K is quadratically stable. The system is said to be
quadratically stabilizable via output feedback if there exists
an output feedback controller

Z(t) Acz(t) + ch(t)
u(t) = Cez(t)+ D.y(t)

such that the closed loop system is quadratically stable. The

system is said to be quadratically detectable if there exists

a matrix L such that A(q)+LC7(q) is quadratically stable.
The first main result of this paper is given below.

Theorem 1: (Separation Principle for Quadratic Stabi-
lization) Given an n-th order uncertain system . described
by

@(t) = Aq(t))x(t) + Bu(t);
y(t) = CTa(),

where q(t) = [q1(t) q2(t) ... q(t)] belong to a compact
set Q for all t € IR and A(q) is a continuous matrix
function. Then, we have the following results:

(i) X is quadratically stabilizable via state feedback if
and only if there exists S € ST™" such that

Bi(A(q)S + STAT(¢))BT < o.

(i1) X is quadratically detectable if and only if there exists
P e ST*™ such that

CL(AT(q)P + PA(q))CT < 05

(iii) X is quadratically stabilizable via output feedback if
and only if it is quadratically stabilizable via state
feedback and quadratically detectable.

(iv) X is quadratically stabilizable via an k-th order output
feedback controller for k < n if and only if it
is quadratically stabilizable via state feedback and
quadratically detectable and in addition, the asso-
ciated matrices P and S satisfy the following rank

constraint:
P I P 1
n > n <
|:In S]O and rank{ln S]n—i—k.
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III. PROOF OF THEOREM 1

This section, devoted to the proof of the Separation
Principle, can be skipped by readers solely interested in
the application.

Lemma 1: (Elimination Lemma [23]) Given G = GT €
R™™, M € IR"*™, N € IR"™", there exists K € IR™*"
such that

G+ MKN" + NK"M" <0

if and only if the following two elimination conditions hold:
M,GMT <0; N,GNT <o,

where M| and N are any orthogonal complements of M

and N, respectively'.

Lemma 2: Given two full-rank matrices M € IR"*™
and N € IR™™™ with n > m and n > r, there exists
a nonsingular matrix U € IR™ ", called transformation
matrix such that

I 0 Ii 0
0 Lk |, o o
UM=| o 0tV ON= | TV
0 0 0 0

for some 0 < k < min{m, r} and nonsingular matrices
Vi e IR™ ™ and Vo € IR™™".

Lemma 3: (Robust Elimination Lemma) Given an n X n
matrix function G(q) = GT(q) which is continuous in g,
q=1|q1 q2 ... qu] belonging to a compact bounding set @),
and two full-rank matrices M € IR™™" and N € IR™*"
with m <n and r < n, there exists K € IR™*" such that

G(q)+ MKNT + NTKM <0, YqeQ

if and only if the following two (robust) elimination condi-
tions hold:

M, G()MT <0; N G(g)NT <0, Vg€ Q.

Furthermore, suppose the condition above is satisfied, a
solution to K is given by

VlKVQT:[Kl 0}

0 O

where V1 and Vs are resulted from a transformation matrix
U on M and N as specified in Lemma 2.2, and K, € S***
is such that

2K — G11(9)G12(q)Goy () G21(q) < 0, Vg€ Q
with

s - @11(q)

G(q) = (@) Gr2(q)

N T

'When M or N is a nonsingular matrix, the corresponding inequality
is void. This convention will be adopted throughout the paper.



and k is also as specified in Lemma 2.

Lemma 4: (Completion Lemma [23]) Suppose X,Y €
S1Y*" and k is a positive integer. Then the following are
equivalent:

(i) There exist Xo,Ys € R™* and X3,Y5 € Sf_Xk such

that
Xo XTIV o [ X XT 71 [% Y],
X, X . CU. ¢ Tl Y, YO
(i) We have the following rank constraint:
X I, ) X I,
|:In Y}ZO’ rank[]n Y}SnJrk.

Furthermore, if the condition in (ii) holds, a solution to (i)
is given by

Ys=1p; Yo=-W; Xz=IL+WIXW; X,=XW,
where W € IR™*k s a factorization of Y — X1 e,

wwl =y - XL

Proof of Theorem 1: Result (i) follows from [3]. Result (ii)
holds because it is a dual version of (i). It is easy to see that,
by scaling down P or S properly, the rank constraint above
is automatically satisfied when &k = n, and this scaling
does not affect the conditions for quadratic observability or
state feedback quadratic stabilizability. Therefore, Result
(iii) follows from Result (iv) which is what we proceed to
prove next.

Denoting

= .| O 0 5. | Ik O A | Ik O
A(q)—[ 0 A(q)}’B_{ 0 B]’C_{ 0 c]’
then the closed loop system is given by

z(t) = (A(q(t)) + BKCT)x(t).

Therefore, the given uncertain system is quadratically stabi-
lizable via a k-th order dynamic output feedback controller
if and only if there exists K and P = PT > 0 such that

(A(q) + BKCT)T'P + P(A(q) + BKCT) <0, Vg€ Q.

According to the Robust Elimination Lemma, the above is
equivalent to

Bi(A(g) P~ + Pt AT(q))BI <0, Vg€ Q,
and
Ci(PA(q) + AT(q)P)CT <0, YgeQ.
Note that

BLZ[O BL]; C’LZ[O CL].
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Denoting

P—mhw{g};s—mhwl[g]

and simplifying the two inequalities above, we get
By (A(q)S + STAT(q)BL < 0;
CL(AT(q)P + PA(g))CT <.

Finally, the constraints on P and S are derived using the
Completion Lemma. [ |

Remark: The Separation Principle above implies that out-
put feedback quadratic stabilizability can be separated into
state feedback quadratic stabilizability and quadratic de-
tectability. In fact, it also implies that the controller design
can be separated from the construction of the Lyapunov
matrix.

Controller Synthesis Procedure: Suppose the conditions

in Result (iv) of Theorem 2.5 are satisfied for some P, S €

S1X". Then,

(i) A Lyapunov matrix P for the closed-loop system
is constructed by completing a (n + k) x (n + k)
symmetric and positive definite matrix with

=1 0 | _ 5 =1 0 | _

[0 I,]P { I } =P; [0 I,)P { I } =S5,
which can always be done, according to the Comple-
tion Lemma.

(i) Defining

C_?(q)ﬁp[ook A(()q)}; Mﬁp“ﬁ“ g};

. [ 0] ..[A B.
ve[§ ol me[E B

then K can be found by applying the Robust Elimina-
tion Lemma.

IV. STEPWISE AUGMENTATION STRUCTURE

In this section, we introduce a class of single-input-
single-output uncertain linear systems satisfying the so-
called Stepwise Augmentation Structure. This structure is
generated via a series of down augmentations and up
augmentations. Using Theorem 1, we will show that the
Stepwise Augmentation Structure is quadratically stabiliz-
able via output feedback.

Notation: The following will be adopted in the rest of this
paper. The uncertain parameter vector g is allowed to be
time-varying but its time dependence is suppressed. The
bounding set ) is compact. An asterisk (*) term denotes
an arbitrary function of ¢, and an 6 term denotes any
sign-invariant function of ¢. If a system involves multiple
asterisk (or #) terms, it is understood that they are in general
different uncertain functions.



Augmented Systems: For the construction to follow, we
begin with an n-th order uncertain system

A(q)z + bu

CTl'

J—
y =

and an auxiliary vector v € IR"¥!. We require b =
[00 ... 01]7 and decompose

Alg) blg) }
Alq) = { N ~ .
D=1 &) dg
We call ¥ = (A(q), b, c,v) a generating system.
Given a generating system X = (A(q), b, c,v) as above,
the system X7 = (A% (q), b, ct,vT) is said to be a down
augmentation of X if

A(q) blg) © 0
a@=| foodl o6 i)
¢(q) dlg) =

ct=1[c 0 vt = 07,

Similarly, given a generating system ¥ = (A(q),b,c,v)
above, T = (A% (q),bT,cT,vT) is called an up augmen-
tation of X if

0 ¢"(q) d(q) 0
AT(@) =10 Aqg) blg) |: 0" = [ b]’
0 * *
ct=100 g% vt =010...07%

Note that the auxiliary vector v is used only in the aug-
mentation process and is redundant in the description of the
augmented system. For this reason, we will often suppress v
in the augmented system. When considering state feedback
design or quadratic detection, we may also suppress c or b
as well.

Stepwise Augmentation Structure: An uncertain system
¥ = (A(q),b,c) is said to admit a Stepwise Augmen-
tation Structure if it is obtained via a sequence of up
and down augmentations from a generating system >y =
(Ao (q), bo, co, Uo) of the form

R NI

where Ao(q) is quadratically stable, and if no up augmen-
tations are involved, vy = 0 and the remaining entries of
Ao(q) are arbitrary; otherwise, vg is such that vlvy = 1
and

Aofa) = |

Ao(q)vo = [ y } .

Remark: The matrix Ay(q) is used to represent possible
stable zero dynamics in the system . We note that the
requirement on the existence of vy is a mild one. In fact,
for a given Ag(q), the condition on vy amounts to some

constraints on the other entries of A¢(q). Indeed, given any
Ao(q) € IR™*™ and any nonzero 7y € IR™*!, we can
simply choose

, 1 o ] - S i -
Vo = i bo(q) = —Ao(q)0o;
ToL + 1 [ 1 @ @
[ (a) do(q)] = 6vg + [)(vo)
to satisfy the required conditions on Ag(q), where [#] is .
Examples: To illustrate the stepwise augmentation struc-

ture, we list four possible structures for A(q) associated
with 4-th order systems

* 6 0 0 0 0 * =
* « 6 0 [0 0 6 x
* x x 0|7 [0 0 0 6|’
* ok ok ok 0 * x x
0 6 x 0 0 6 x x
006 0f |00 6 0
0 « x 6| |0 0 x 6|’
0 * * 0 *x *x x

where the underlined row corresponds to the state variable
where augmentations originate. The sequences for aug-
mentations for the structures above are: down-down-down,
down-up-up, down-up-down and down-down-up. The ex-
amples above are all void of zero dynamics. But they can
be easily generalized to include them.

We have the second main result of this paper as follows:

Theorem 2: An n-th order Stepwise Augmentation Struc-
ture is quadratically stabilizable via an (n — ng — 1)-th
order output feedback controller, where ng is the order of
the quadratically stable uncertain matrix Ay(q).

The rest of this paper is devoted to the proof of The-
orem 2. But due to the page limit, we only show that an
n-th order quadratically stabilizing controller exists.

V. STATE FEEDBACK QUADRATIC STABILIZATION

In this section, we study the problem of state feedback
quadratic stabilization.

Lemma 5: If Ay(q) is quadratically stable with Sy being
its associated inverse Lyapunov matrix, then the uncertain

5, = <[ Ao(g)  bo(9) } { 0 D
o(q) do(q) |7 L1
with any bo(q), ¢ (q) and do(q) is quadratically stabilizable

via state feedback and its associated inverse Lyapunov
matrix can take the form

structure

[Sy o
-] 4]
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for any s1 > 0.

Theorem 3: Suppose an uncertain system Y =
(A(q),b,c,v) with b = [0 0 ... 0 17 is quadratically
stabilizable via state feedback with an associated inverse
Lyapunov matrix S. Then, any down augmentation ¥ =
(A% (q),bT,cT,vT) of ¥ is quadratically stabilizable via
state feedback and its associated inverse Lyapunov matrix
can be chosen as

S —b

St =
—’be S1 +72bT571b

for any s; > 0 and some ~ with a suitably large magnitude
and an appropriate sign.

Lemma 6: Suppose a Stepwise Augmentation Structure
Y = (A(q),b,c) contains at least one up augmentation.
Then, the property of Ao(q)vo = [0 0]T is preserved after
each down or up augmentation.

Theorem 4: given an uncertain structure Y =
(A(q),b,c,v) withb=1[00 ... 0 1]7 and

b1 A(Qu=0, VgeQ,

suppose it is quadratically stabilizable via state feedback
with an associated inverse Lyapunov matrix S. Then, any
up augmentation X7 = (A1 (q),b") of ¥ is quadratically
stabilizable via state feedback and its associated inverse
Lyapunov matrix can be chosen as
s1+720TS w —yw
St =
—yvT S

for any s1 > 0 and some ~ with suitably large magnitude
and appropriate sign.

VI. QUADRATIC DETECTABILITY

In this section, we study the problem of quadratic
detection. We start by introducing the notions of dual
augmentations and showing that by reordering the state
variables, the Stepwise Augmentation Structure can be
generated via a sequence of dual augmentations. We then
develop some basic results for quadratic detectability of
the Stepwise Augmentation Structure by using these dual
augmentations.

Dual Augmentations: Given a generating system X =
(A(g),c) with c=[1 0 ... 0]T, &t = (AT (q),cT) with
et =[c? 07 is called an dual down augmentation

*

Alq)

At (q) =

o >

[x0 ... 0]

861

or dual up augmentation if

At(q) =

Note that for a dual down augmentation, the last row of
At (g)(ct)T is all zero.

Theorem 5: Given an n-th order Stepwise Augmentation
Structure . = (A(q),b,c) with the generating system
Yo = (Ao(q),bo,co,v0) as specified in Section 3.3, let
the sequence of up and down augmentations be s and
r1,Ta,- -, T be the up-augmented state variables. Then
the transformed structure

%= (Alg),e) = (TA(q)T ", Te)
with

I,

~
|

0 In—k :|

has the decomposition

1
(o [ Aol bel 1. _[o] . _|°
A(Q) - |: * 14_11(61) ; €= él y €1 =
0
and that ¥y = (A1(q), ) is obtained from
Typ = *ITp
Yy = Tn

via a sequence of dual augmentations with the sequence
which is the reverse of s.

The following three results study the quadratic detectabil-
ity of X.

Theorem 6: A Stepwise Augmentation Structure Y. is
quadratically detectable if and only if the subsystem %,
as specified in Theorem 5 is quadratically detectable.
Furthermore, suppose Pyisa Lyapunov matrix associated
with the quadratic stability of Ay(q) and P, is a Lyapunov
matrix associated with the quadratic detectability of ¥.
Then,

P=T7'PT

s. [P O
P = —
{ 0 ph ]
is a Lyapunov matrix associated with the quadratic de-
tectability of X for some suitably small p > 0.

with

Theorem 7: Suppose an uncertain structure Y =
(A(q),c) with ¢ = [1 00 0] is quadratically
detectable with an associated Lyapunov matrix P. Then,



any dual up augmentation ¥ = (AT (q),ct) of ¥ is
quadratically detectable and its associated Lyapunov ma-
trix can be chosen as

pr+2TP e —~cT

+ _
Pr= —ve P

for any p1 > 0 and some suitably large scalar v with an
appropriate Sign.

Theorem 8: Given an uncertain structure ¥ = (A(q), ¢)
with ¢ = [100 0]7 and the constraint that the
last row of A(q)c? is all zero, suppose it is quadratically
detectable with Lyapunov matrix P. Then, any dual down
augmentation ¥+ = (AT(q),c") of ¥ is quadratically
detectable and its associated Lyapunov matrix can be
chosen as

P —vb
pt =
-7 pr+ 42T P

for any p1 > 0 and some suitable ~y.

VII. PROOF OF THEOREM 2

Proof: Using Theorem 1, we only need to establish that
any Stepwise Augmentation Structure ¥ = (A(g),b,c)
generated from Yo = (Ao(q),bo, co,vo) is both quadrat-
ically stabilizable via state feedback and quadratically de-
tectable. To show the former, we note from Lemma 5 that
Yo = (Ao(q),bo,co,v0) is quadratically stabilizable via
state feedback. From Theorem 3, the quadratic stabilizabil-
ity property is preserved under any down augmentation.
Similarly, Lemma 6 and Theorem 4 imply that this property
is also preserved under any up augmentation. Hence, > =
(A(q), b, ¢) is quadratically stabilizable via state feedback.
Next, Theorem 5 implies that ¥ = (A(q), b, ¢) is quadrati-
cally detectable if and only if the transformed system X (see
Theorem 5), which is obtained using a sequence of dual
augmentations, is quadratically detectable. The quadratic
detectability of the ¥, part of ¥ follows from Theorems 7-
8. Subsequently, the quadratic detectability of X follows
from Theorem 6. [ |

VIII. CONCLUSION

We have presented a new class of uncertain linear
systems which admit the so-called Stepwise Augmentation
Structure. Using a new Separation Principle for uncertain
linear systems, we have shown that this class of uncertain
systems can be quadratically stabilized via a dynamic out-
put feedback controller. The result also leads to a recursive
design method for constructing such a controller.

The new Separation Principle introduced in this paper is
the key to our design approach. We believe that the use
of such a result is the first attempt of systematic designs
for output feedback control for uncertain linear systems. It
would be very interesting to see whether this Separation
Principle can be applied to other robust control problems.
We also hope that, with an appropriate generalization,
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this Separation Principle would lead to useful tools for
output feedback control of nonlinear systems, which is an
important problem made challenging also because of the
lack of a suitable Separation Principle.
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