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Fig. 4. Expected delays per low priority arrival for 7\ and exponen-
tial interarrivals (for fixed a).

arrivals are controlled by the acting D™ value. The other
factor which strongly affects the delays of the low priority traffic
is the processing time of the high priority arrivals, especially for
relatively high rates of the high priority traffic; indeed, in the
presence of relatively high ¢, and a values, the high priority
traffic dominates the processor resulting in severe delay penal-
ties for the low priority arrivals. In general, the low priority
traffic is vulnerable to any changes concerning the high priority
traffic while the delays of the latter are always controlled by
D", regardless of possible variations in the rate of the low
priority arrivals. For relatively low arrival rates of the high
priority traffic, the factor which affects the delays of the low
priority traffic most is the processing time of the high priority
arrivals; the second most effective such factor is the rate of the
low priority traffic. In Figs. 2—4, we exhibit the effects of various
factors discussed above on the expected delays induced by the
mvnp; Fig. 2 depicts the effects of D™ and ¢, on the expected
delays of the high priority arrivals, while Figs. 3 and 4 show the
effects of the arrival rates and ¢, on the expected delays of the
low priority traffic.
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H,, Analysis and Synthesis of Discrete-Time Systems
with Time-Varying Uncertainty

Carlos E. de Souza, Minyue Fu, and Lihua Xie

Abstract—The problems of H,, analysis and synthesis of discrete-time
systems with block-diagonal real time-varying uncertainty are consid-
ered. We show that these problems can be converted into “scaled” H
analysis and synthesis problems. The problems of quadratic stability
analysis and quadratic stabilization of these types of systems are dealt
with as a special case. The results on synthesis are established for
general linear dynamic output feedback control.

1. INTRODUCTION

This note is aimed at the problems of H, analysis and
synthesis of discrete-time systems with real time-varying norm-
bounded uncertainty. Similar problems with different settings
have been studied elsewhere. In [1] and [2], continuous-time
systems with time-invariant complex parameter uncertainty are
considered and the so-called u-analysis and u-synthesis are
developed for analyzing robust H, performance and designing
robust H,, controllers. In [3]-[5], continuous-time systems with
time-varying parameter uncertainty are treated and results simi-
lar to the p-analysis and p-synthesis are given. In [6], quadratic
stability of discrete-time systems with complex and real uncer-
tainties are considered, and certain relationships between
quadratic stability and H,, analysis are reported. Some results on
quadratic stabilization of discrete-time uncertain systems are
given in [7] and [8].

The emphasis of this note is as follows: 1) we deal with the
problems of H,, analysis and synthesis, that is, both quadratic
stability and robust H, performance need to be achieved; 2)
linear dynamic output feedback control is of our interest; and 3)
time-varying parameter uncertainty with a block-diagonal struc-
ture is considered. By replacing the parameter uncertainty by
some superfluous exogenous disturbance, we show the following
two parallel results:

i) The problem of robust H,, performance analysis of such
an uncertain system can be converted into a “scaled” H,,
performance analysis problem of a system without un-
certainty; and similarly;

ii) The H, control problem of such an uncertain system
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can be converted into a “scaled” H,, control problem of
a system without uncertainty. General linear dynamic
output feedback control is considered and parameter
uncertainty is allowed in both state and output equa-
tions.

Therefore, techniques for standard H,, analysis and synthesis
problems can be applied to solve the robust H, analysis and
synthesis problems. These results can be viewed as a version of
the w-analysis and u-synthesis [1], [2] for discrete-time systems
with time-varying real parameter uncertainty. As a special case,
the problems of quadratic stability analysis and quadratic stabi-
lization of certain type of discrete-time uncertain systems via
linear dynamic output feedback are solved by using the same
technique.

I1. PROBLEM FORMULATION

We consider discrete-time uncertain systems of the following
form:

x(k+1)=[A4+ AA(k)]x(k) + Bw(k)

+[B + AB(k)]Ju(k)
z(k) = Cyx(k) + Dyu(k)

y(k) = [C + AC(k)]x(k) + Dyw(k) + [D + AD(k)]Ju(k)
¢y,
where x(k) € R” is the state, u(k) € R™ is the control input,
w(k) € R? is the exogenous disturbance which belongs to
1,[0,), y(k) € R" is the measured output, z(k) € R? is the
controlled output, 4, B, C, D, By, C,, D,,, and D,, are known
real constant matrices of appropriate dimensions which describe
the “nominal” system, and A A(k), AB(k), AC(k), AD(k) repre-

sent the time-varying parameter uncertainty. The parameter un-
certainty is assumed to be of the following structure:

AA(k) AB(K)] [H
[AC(k) AD(k)}=[H2]F(k)[E1 Bl @

where H,, H,, E,, and E, are known real constant matrices
which capture the structure of the uncertainty, and F(k) € R**#
is the uncertainty matrix in the following block-diagonal form:
F(k) = diag {Fy(k), Fp(k),+, F,(K)},  FT(k)F(k) < p1,
k=0,1,2,- (3)

for some p; > 0,i=1,2,---,v.

When the robust stability or stabilization is the only concern,
the system (1) reduces to

x(k + 1) = [4 + AA(K)]x(k) + [B + AB(k)]u(k)

y(k) = [C + AC(k)]x(k) + [D + AD(k)Ju(k). (4)
We recall [9] that the uncertain system
x(k+1)=[A4+ AA(k)]x(k) )

is said to be quadratically stable if there exists some symmetric
positive definite matrix P such that

[4+AA(K) P[A + AA(K)] -P<0, k=012,

(6)

for all admissible A A(-). An associated Lyapunov function for
establishing robust stability is x7Px. The notion of quadratic
stability is conservative for robust stability in view of the fact
that a constant P matrix is used in the Lyapunov function
above. However, this notion is very popular for dealing with
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time-varying uncertainty (see, e.g., [9), [6] and the references
thereof) due to its simplicity and lack of better methods for
doing so.

Definition 1: Consider the following time-varying system:

x(k + 1) = A(k)x(k) + B(k)w(k)
z(k) = C(k)x(k)

where x(k), w(k), z(k) are the same as in (1) and A(k), B(k),
and C(k) are time-varying real matrices of appropriate dimen-
sions. The system (7) is said to have H,, disturbance attenuation y
for some y > 0 if it is asymptotically stable with the following

property:
llzllz < ylwllz,
for all nonzero w € [,[0, ) whenever x(0) =0 (8)

O

where |- I, denotes the usual /,[0, ) norm.

ITI1. ROBUST H,, ANALYSIS AND SYNTHESIS

Consider the uncertain system (1)-(2) with block-diagonal
parameter uncertainty (3). Then, for any constant vector
eU)T’ € >0, k=1,2,,v ©)

e= (&, €,
we define

M(e) = diag{PIEIIi,xi,’ p2€215 i, Py EuIivxiL,} (10)

N(e) = diag (€7 L €1 s & L} (D)
H(e) = HM(e), Ef(e)=N(e)E, 1=12 (12)

and
F(k) = M~'(&)F(k)N~'(¢). 13)

Obviously, we have

H - - —
[H:]F(k)[El E,] - F(k)[E(e) Ex(o)]

a4

Hl(e)
ﬁz(f)

and FT(k)F(k) < I.
We further define the following “auxiliary” system:

x(k +1) = Ax(k) + [H(e) v B, |w(k) + Bu(k)

El(f) Ez(f)

zZ(k) =
®=1 ¢ Dy,

x(k) +

]u(k)

y(k) = Cx(k) + [ Hy(€)  v~'Dyy |(k) + Du(k) (1)

where x(k) € R" is the state, w(k) € RI*® is the exogenous
disturbance, (k) € RP** is the controlled output, y(k) € R" is
the measured output, v > 0 represents the desired disturbance
attenuation level, € is a scaling vector to be tuned, and the other
variables are the same as in (1).

We have the following results.

Theorem 1: Suppose the unforced system of (15) (by setting
u(k) = 0) has unitary H, disturbance attenuation for some
v>0 and ¢ >0, i = 1,2,---,0. Then, the unforced uncertain
system of (1)-(3) (by setting u(k) = 0) is quadratically stable
and has H, disturbance attenuation y for all admissible uncer-
tainty.

See Appendix for proof.

Theorem 2: Consider the uncertain system (1)-(3). Given a
linear dynamic strictly proper output controller such that the
resulting closed-loop system of (15) has unitary H,, disturbance
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attenuation for some y > 0 and € > 0, i = 1,2,-+,0. Then, the
closed-loop system corresponding to (1)—(3) and the same con-
troller is quadratically stable and has H, disturbance attenua-
tion y for all admissible uncertainty.

Proof: Let the controller be of the following state-space
realization:

§(k +1) = A £(k) + B.y(k)
u(k) = C.£(k) (16)

where the dimension of the controller and the matrices A, B,,
and C, are to be chosen. The desired result can be established
by applying Theorem 1 to the closed-loop system of (1) with (16)
and the closed-loop system of (15) with (16). The detail is
lengthy but straightforward, and is therefore omitted. vVvv

Remark 1: Note that the “scaled” H, synthesis problem in
Theorem 2 can be solved by using existing results on discrete-time
H,, control such as those in [10]. More specifically, the scaled
problem can be solved in terms of two algebraic Ricatti equa-
tions and the class of controllers corresponding to the scaled
problem which guarantee both quadratic stability and robust H,
performance can be parameterized.

1V. QUADRATIC STABILITY AND STABILIZATION

Similar to the case of robust H, control, we define the
following auxiliary system for the uncertain system (4), (2), and
the block-diagonal uncertainty (3) as follows:

x(k + 1) = Ax(k) + Hy(e)w(k) + Bu(k)
2(k) = Ey(€)x(k) + Ex(€)u(k)

y(k) = Cx(k) + Hy(e)W(k) + Du(k) a7

where x(k) € R” is the state, w(k) € R* is the exogenous distur-
bance, $(k) € R® is the controlled output, y(k) € R’ is the
measured output, and all other variables are the same as in (15)
except that €, = 1. The reason for setting €, to 1 is that only
v — 1 scaling parameters are needed, adding another one will
not contribute any more.

The following results are derived. The proofs can be carried
out by the same way as for Theorems 1 and 2, and are therefore
omitted.

Theorem 3: The unforced uncertain system of (4), (2), and (3)
is quadratically stable if the unforced system of (17) has unitary
H,, disturbance attenuation for some ¢ >0, i = 1,2,,0—1
and €, = 1.

Theorem 4: The uncertain system described by (4), (2), and (3)
is quadratically stabilizable via a linear dynamic strictly proper
output feedback controller if the closed-loop system of (17) with
the same controller has unitary H,, disturbance attenuation for
some ;> 0,i=1,2,-,0—1land ¢, = 1.

Remark 2: The results above are for block-diagonal real
time-varying uncertainty. For the case of single-block real time-
varying uncertainty, it is claimed in [6] that the result in Theo-
rem 3 is not only sufficient but also necessary. This implies that
the result in Theorem 4 is also necessary and sufficient for
quadratic stabilization of systems with single-block real time-
varying uncertainty. Note that in this case the system (17) does
not involve any scaling parameter.

Remark 3: Similar to Remark 1, the “scaled” H,, synthesis
problem in Theorem 4 can be solved in terms of two algebraic
Ricatti equations, and quadratically stabilizing controllers can be
parameterized.

APPENDIX
PROOF OF THEOREM 1

The following lemma is essential for the proof of Theorem 1.

Lemma A: Let A € R™", He R"*®, E€ RP*", and Q =
QT € R"*" be given matrices. Suppose there exists a symmetric
positive-definite matrix P such that the following hold:

a) HTPH < I, and

b) ATPA + ATPH(I — HTPH1 'H"PA + ETE+ Q<0
Then, we have

[A4 + HF(k)E]'P[A + HF(K)E] + Q<0  (18)
for all F(k) satisfying FT(k)F(k) < I,k =0,1,--.
Proof: Introducing
W(ky =1 - HTPH] "H"PA - [I - HTPH)"*F(k)E

we have
WT (k)W (k) = ATPH[I - HTPH]_IHTPA — ETFT(k)HTPA
— ATPHF (K)E + ETFT(k)[I - HTPH|F(k)E.

Now, considering a) together with the fact that FT(k)F(k) <1,
we obtain

ATPH[I — H'PH] 'H™PA + E'E > E"F"(k)HPA
+ ATPHF (k)E + ETFT(k)HTPHF (k)E.
Consequently, (18) follows from a) and b). vvv
Now we turn into the proof of Theorem 1.

Proof Let B = [H(e),y™'B,]. By Lemma 2.1 in [11], the
unforced system of (15) (obtained by setting u(k) = 0) is stable
with unitary H, disturbance attenuation if and only if there
exists a symmetric positive-definite matrix X satisfying [ —
BTXB > 0 and

— — —_ =1
ATXA — X + ATXB(I — B'XB) B'X4
+ CIC, + ET(€)E((e) <0. (19)
By using the matrix inversion lemma, we can rewrite (19) as
AT[X1 — y2B,B] ~ A AT ()] 4~ X
+CIC, + ET(e)E(€) < 0. (20)
Define
- — — — -1
P=(x"'-y BB =[x -BB+ H(e)AI(o)] -
€2))
By using the matrix inversion lemma again, we obtain
_ 1 —_ — _ -1
(x-' - BB") =X+ XB(I - B'XB) B'X>0. (22)
Since I — BTXB > 0, (21) and (22) give P > 0 and
P~ - Hy(e)HI(e) > 0. (23)
From (23) and further application of the matrix inversion lemma
on (20), we obtain the following:
@) H(e)PH{e) <1, and _ _ _
&) ATPA + ATPH(U — HI ()PH() ' H ()PA +
ET(e)E(e)+ Q0 <0
where
Q = y~2PB,(I + y"*BTPB,]”'BIP - P + CIC,.
Hence, using Lemma A and (14), it follows that
[A + H,F(k)E,\) P[A + HF(K)E] — P

+ v 2PB,[I + v *BTPB,] 'BTP + CTC, <0 (24)
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which implies that quadratic stability of the unforced system of
(1) because the last two terms in the inequality are positive-
semi-definite. In order to establish the H,, disturbance attenua-
tion property, we assume x(0) = 0 and need to show that

J = i [27(k)z(k) — y*wT (k)w(k)] <0,
k=0

whenever w(k) # 0. (25)
The existence of the sum in (25) is guaranteed by the bounded-
ness of w(k) and the quadratic stability of the unforced system
of (1). It is obvious that (25) holds if x(k) = 0 for all k& = 0.
Therefore, we assume x(k) # 0 in the sequel.
Abbreviating 4 + A A(k) by A, and defining

r=[P'+y2B,BF] ' >0 (26)
it is straightforward to show by using the matrix inversion lemma
that (26) and (22) imply

BITB, < vi 2N

and
U(k) = ALTA, — T + y~245TB,[1 — y 2BITB]] "
-BITA, + CTC, <0. (28)
Using x(0) = 0, we have
N
[xT(k + DTx(k + 1) — xT(k)Tx(k)]
k=0
=xT(N+ DIx(N +1) 2 0.
Let

J(k) = 27(k)z(k) = y*wT (k)w(k)
+xT(k + DFx(k + 1) — xT(k)Tx(k)

N
Jy= L [T (0)x(k) = yiwT (kw()
Then, we have

N
Jy= Y J(k) = xT(N + DIx(N + 1).
k=0

Using (27) and (28), it can be verified that
J(k) = xT(k)U(k)x(k) = y*VT(k)[1 — y*B[TB,]V(k) < 0

where

V(k) = w(k) — y"[I — y"2BITB,]” BITAx(k).

Since we assumed that x(k) # 0, we must have J(k) <0 for
some k > 0. Hence, Jy <0 for sufficiently large N, which
implies J < 0. vVvv
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Minimal Periodic Realizations of Transfer Matrices
Ching-An Lin and Chwan-Wen King

Abstract—Periodic controllers designed based on the so-called lifting
technique are usnally represented by transfer matrices. Real-time opera-
tions require that the controliers be implemented as periodic systems.
We study the problem of realizing an Nn, X Nn; proper rational trans-
fer matrix as an n;-input n,-output N-periodic discrete-time system. We
propose an algorithm to obtain periodic realizations which have a
minimal number of states. The result can also be used to remove any
redundant states that exist in a periodic system.

I. INTRODUCTION

It is reported in the literature that linear periodic controllers
may be superior to the linear time-invariant ones for a large
class of control problems [5], [2], {1], [3]. For discrete-time
systems, Khargonekar, Poolla and Tannenbaum {5] proposed a
framework for the design of linear periodic controllers for linear
time-invariant plants. They show that to an niinput n,-output
linear N-periodic system there corresponds an Nn-input Nn,-
output linear time-invariant system and conversely to an Nn ~in-
put Nn-output linear time-invariant system there corresponds
an nyinput n,-output linear N-periodic system. It is asserted [5]
that from an input—output point of view, this correspondence is
isomorphic in that both algebraic and analytic properties of
systems are preserved and hence, the design of periodic con-
trollers can be done using various LTI design techniques. How-
ever, the n-input n,-output N-periodic controller so designed is
“represented” as an Nn-input Nn,-output time-invariant sys-
tem, e.g., an Nn, X Nn; transfer matrix. Real-time operations
require that the controller be realized as a periodic system.
There are straightforward realizations of such a transfer matrix
as an N-periodic system but usually with a large number of
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