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Abstract— To achieve fast and accurate tracking of a wide-
band reference trajectory, the piezoelectric (PZT) actuator
requires a high-bandwidth control system, which is however
restricted by the resonant mode of the PZT positioning stage.
In this paper, we study two resonant compensation techniques
to damp the resonant mode for increased servo bandwidth.
First, we present a feedback control system using a conventional
notch filter (NF). Subsequently, we develop a complex lead
compensator (CLC) using the phase-stabilized compensation
method. Unlike the NF that is aimed at reducing the resonant
peak gain, the CLC specializes in shaping the phase of open-
loop system at the resonant frequency. The analysis shows that
the closed-loop bandwidth achieved by the CLC is around four
times higher than that of the NF without sacrificing the stability
margin. Finally, we propose a multi-resonant filter (MRF) to
suppress periodic tracking errors by significantly attenuating
the gains at specified frequencies in the sensitivity function.
The experimental results verify that the CLC is superior in
disturbance compensation and periodic trajectory tracking as
compared to the NF, and the add-on MRF can greatly reduce
the tracking error.

I. INTRODUCTION

The piezoelectric (PZT) nanopositioning stages are widely

used in industrial applications such as atomic force micro-

scope (AFM) [1]. The PZT actuator can produce extremely

small displacements in the range of subnanometer to a few

hundreds micrometers with nanoscale positioning precision.

Feedback controllers are typically used to compensate for the

nonlinear PZT hysteresis and creep effect, and the mechan-

ical resonant mode and to obtain a high servo bandwidth

for robust and accurate tracking of a wideband reference

trajectory. A thorough literature review on control approaches

for PZT actuators is reported in [2]. For vibration control,

the main approach is to damp the resonant mode. This has

been done by several design methods such as the notch

filter (NF) [3] and the integral resonant control [4]. The

resonant compensator resulted from these design methods

is low-order and thus easy to implement. In this paper,

we develop an alternative resonant compensator named as

complex lead compensator (CLC) to damp the resonant

mode. Unlike the notch filter that is aimed at reducing the

open-loop gain at the resonant peak, the CLC changes the

open-loop phase characteristics at the resonant frequency

such that the resonant mode is not significantly excited by

the reference commands or the input disturbances during

closed-loop operations. Moreover, it is shown that the CLC
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can lead to a higher closed-loop bandwidth than that of the

NF without sacrificing the stability margin, resulting in more

accurate tracking of a wideband reference trajectory.

Tracking control is another control task for the PZT

actuators to drive the position output to track a desired

trajectory for specific applications. For example, in AFM

applications, the most common form of trajectory is to use

a triangular waveform in the X-axis and a linear ramp in

the Y-axis, thus the combination of which in both axes

achieves the desired raster scan motion [5]. Moreover, in

manufacturing applications such as nanoassembly [6] and

power sintering process [7], step reference is used for fast

positioning such as in pick-and-place operations. To achieve

these tasks, traditional proportional-integral-derivative (PID)

controllers are widely used (see e.g., [7], [8]); and higher-

order controllers designed with modern control technologies

are also reported such as repetitive control [9]. In this paper,

we develop a design method by using a multi-resonant filter

(MRF) to achieve desired narrow-band gain attenuations

at specified frequencies in the sensitivity function without

destabilizing the control system. This method can be applied

to achieve precise tracking of periodic trajectories by simply

adding the MRF whose attenuation frequencies are placed at

the harmonics frequencies of the periodic trajectory.

II. PLANT MODELING

Fig. 1 shows the experimental setup of the PZT nanopo-

sitioning stage (P-752, Polytec PI) studied in this paper. It

consists of a flexure-guided moving stage that is driven by

a PZT microactuator with a travel range of 25 µm, and a

capacitive position sensor with a practical resolution of 9
nm to measure the displacement of the moving stage along

the axis. The position sensor output is fedback to a real-

time DSP system (dSPACE-DS1103) on which the feedback

controller is implemented with the sampling frequency of 20
kHz. Subsequently, the control signal is passed through the

PZT voltage amplifier (E-505, Polytec PI) to drive the PZT

actuator.

The system dynamics of the PZT nanopositioning stage

contain the nonlinear PZT hysteresis effect and the linear

model associated with the vibrational dynamics. In our study,

the nonlinear hysteresis is regarded as a bounded input

disturbance to the PZT actuator. The frequency response data

from the PZT control input signal u to the displacement

output y [the measured PZT plant model P (s)] was obtained

and plotted by the dashed lines in Fig. 2. We can see that

the PZT linear dynamics are dominated by two resonance

modes in the measured frequency range of interest. The
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Fig. 1. Experimental setup of the PZT nanopositioning stage.
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Fig. 2. Frequency responses of the linear PZT model P (s).

first mode that has a large damping ratio (as the resonant

peak is insignificant at the resonant frequency 1018 Hz) is

caused by the voltage amplifier due to the capacitive load

presented by the PZT actuator. The second mode has a

relatively large resonant peak (10 dB) at 2721 Hz, which

is caused by the flexibility of the flexure hinge. We note

that the first mode is associated with 180◦ phase drop,

which significantly decreases the phase margin, resulting in

a limited servo bandwidth. Moreover, the second mode may

induce significant vibrations to the stage motion and should

be carefully damped.

By using the complex curve-fitting algorithm [10], a 4th-

order transfer function is identified for the PZT as follows

P (s) = 0.0514 ·
s2 − 29668s + 3.914× 108

s2 + 11290s + 4.085× 107
·

s2 − 11380s + 1.263× 109

s2 + 1730s + 2.919× 108

(µm

V

)

. (1)

The solid lines in Fig. 2 indicate that the identified model

has a close match with the measured model.

III. HIGH-BANDWIDTH FEEDBACK CONTROLLER

DESIGNS

In this section, we develop two resonant compensators

based on the feedback control structure to achieve high servo

u

+ _
P(s)Σ

+

+ yr

d

C(s) F(s)

PZT plant

Σ

Controller

e

Resonant
compensator

Fig. 3. Block diagram of the PZT feedback control structure, where
C(s) is the integral controller, F (s) is the resonant compensator, r is the
reference trajectory, y the output displacement, e the tracking error, and u
the control input. d represents the lumped nonlinear hysteresis effect and
input disturbance.

bandwidth for the PZT nanopositioning stage. First, the feed-

back control structure based on integral control is described.

Subsequently, the well-known notch filter servo control is

shown. Next, we present a complex lead compensator design

method for increased servo bandwidth. Finally, experimental

results are shown to verify the effectiveness of the designed

controllers.

A. Control Structure

The block diagram of the PZT feedback control structure

is shown in Fig. 3, where C(s) is an integral controller to

achieve high-gain feedback control, which is given by

C(s) =
ki

s
, (2)

where ki is the integral gain. The controller F (s) is the

resonant compensator, which is obtained by different design

techniques as will be shown later. The control objective here

is to achieve the maximum closed-loop servo bandwidth, and

guarantee the minimal stability margin, that is, phase margin

> 40◦, and gain margin > 6 dB.

B. Notch Filter Servo Control

First, we design the resonant compensator F (s) in Fig. 3

using the conventional notch filter, which is given by

Fnf(s) =
s2 + 2ζn2ωns + ω2

n

s2 + 2ζn1ωns + ω2
n

, (3)

where ωn = 2π2721, ζn1 = 0.3, and ζn2 = 0.04. Moreover,

the integral controller gain of (2) is maximized to be k i =
1000 subject to the required stability margin.

The frequency response functions (FRFs) of the notch

filter based control system is shown in Fig. 4. We can see that

the notch filter significantly reduces the gain of the second

resonance peak at 2721 Hz. However, the associated phase

lag of the notch filter decreases the phase margin. Thus, the

closed-loop bandwidth cannot be greatly increased for the

sake of maintaining the desired phase margin.

C. Complex Lead Compensator Servo Control

In our particular case, we observe that the first resonance

mode caused by the voltage amplifier has a large damping

ratio of 0.9; and additionally its resonance frequency at

1018 Hz is inherently not sensitive to the load variations

which are considered as the major uncertainties in our study.

This means that the first resonance mode is relatively stable
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Fig. 4. Frequency response of notch filter based control system. (a) Open-loop FRF = PCF nf . The notch filter decreases the gain of the resonance

peak at 2721 Hz and results in phase margin = 43 ◦, gain margin = 7.04 dB; (b) Closed-loop FRF = PCFnf /(1+ PCFnf ). The maximum bandwidth
achievable is 630 Hz; (c) Sensitivity FRF = 1/(1 + PCFnf ). The gain of the resonance peak at 2721 Hz is damped to 0 dB.
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Fig. 5. Frequency response of complex lead compensator based control system. (a) Open-loop FRF = PCF clc . The complex lead compensator not only
cancels the first resonance mode but also phase-stabilizes the second resonance mode. The phase margin = 58 ◦, gain margin = 7.0 dB, and the phase
at the second resonance frequency is shaped as −360 ◦ + 25◦@2721 Hz; (b) Closed-loop FRF = PCFclc/(1 + PCFclc). The maximum bandwidth

achievable is significantly increased to be 2512 Hz; (c) Sensitivity FRF = 1/(1+PCFclc). The gain of the resonance peak at 2721 Hz is further damped
to −8 dB; and the gains at low frequencies are also smaller than those in Fig. 4(c), implying higher disturbance rejection capability.

compared to the second resonance mode that is sensitivity

to the load variations.

Hence, it is feasible to use a complex lead compensator

whose zeros are set to cancel the poles of the first resonance

mode. In this way, the gain roll-off and phase lag due to

the first resonance mode are completely compensated; and

thus a larger integral gain can be applied to increase the

bandwidth without sacrificing the stability margin. However,

the complex lead compensator inversely produces the prob-

lem of increasing the gain of the second resonance peak. It

is interesting to find that the second resonance mode can

be compensated simultaneously using the phase-stabilized

control method [11]. More specifically, the poles of the

complex lead compensator should be designed to secure the

phase of the second resonance peak within −360◦ ± 90◦ in

the open-loop system. Note that this method differs from

the notch filter that dedicates to the gain reduction of the

resonance peak. The complex lead compensator is given by

Fclc(s) =
wp

wz
·
s2 + 2ζclcωzs + ω2

z

s2 + 2ζclcωps + ω2
p

, (4)

where ωz = 2π1015, ωp = 2π4000, and ζclc = 0.85.

Moreover, a larger integral controller gain ki = 6100 in (2)

is now applicable subject to the required stability margin.

Note that compared to the lead compensator with real poles

and zeros that offers the equal maximum phase lead, the

complex lead compensator in (4) has a smaller ratio of the

high-frequency gain asymptote to the low-frequency gain

asymptote [12]. This property can avoid the amplification

of the high-frequency portion of the sensor noise.

The frequency response functions of the complex lead

compensator based control system is shown in Fig. 5. The

obtained specifications of the control system with NF and

CLC will be summarized later in Table II, which indicates
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Fig. 6. Impulse response. Dashed lines: 5 V impulse input disturbance d;

Solid lines: output displacement y. The NF based control excites the second
resonance mode. The CLC based control does not excite the resonance
mode, resulting in faster settling time.
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Fig. 7. Triangular waveform tracking with notch filter control. Dashed
lines: Triangular reference; Solids lines: Output displacement.

that the CLC can achieve a four times higher closed-loop

bandwidth while satisfying the required stability margin.

D. Experimental Results

The above designed notch filter and complex lead com-

pensator are implemented on the PZT nanopositioning stage,

respectively. First, Fig. 6 shows the experimental result of

impulse input disturbance rejection (by artifically injecting

a 5 V impulse to the control input). We can see that the

CLC control does not excite the resonance mode. The result

verifies the sensitivity FRFs as shown in Figs. 4(c) and

5(c), from which the notched gains at the second resonant

frequency implies less resonance excitation. Secondly, we

compare the triangular waveform tracking in Figs. 7 and 8,

respectively. It is clear that the CLC has smaller tracking

errors than those of NF in all cases of reference frequencies.

Detail performance index will be summarized later in Table

III.
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Fig. 8. Triangular waveform tracking with complex lead compensator con-
trol. Dashed lines: Triangular reference; Solids lines: Output displacement.

IV. MULTI-RESONANT FILTER DESIGN FOR IMPROVED

PERIODIC TRACKING CONTROL

In this section, we develop an add-on multi-resonant filter

for improved periodic tracking performance. Experimental

results are presented to demonstrate the significant improve-

ment of the tracking performance when the MRF is added

on the baseline control system.

A. Design Concept

Fig. 9 shows the block diagram of the MRF, which is

connected in parallel with the baseline controller for easy

implementation. The baseline control system is assumed to

have basic stability margin and performance.

The design criteria here is to shape the gains of the

sensitivity function at the harmonics frequencies of the

periodic reference trajectories as small as possible. As a

result, the tracking error e(t) = r(t) − y(t) will be reduced

for a given r(t). More specifically, from Fig. 9, we can derive

the sensitivity function from the tracking error e(t) to the

reference signal r(t) as follows

S(s) =
e

r
=

1

1 + PCF (1 + M)

=
1

1 + PCF
·

1

1 + T0M
= S0 · SM (5)

where

T0 =
PCF

1 + PCF
(6)

Note that S0 and T0 are the sensitivity function and the

closed-loop function of the baseline control system, respec-

tively. The equation (5) shows that the overall sensitivity

function S(s) is the multiplication of two subsystem S 0 and

SM , which implies that the multi-resonant filter M(s) can

be designed based on the pseudo-plant T0 such that SM is

shaped to a desired curve for reducing the tracking error

within some frequency ranges provided SM is stable [13].
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TABLE I

PARAMETERS OF THE MULTI-RESONANT FILTER

i ωi (rad/s) ϕi ζi mi

1 2π200 −0.385 3.98 × 10−4 0.25

2 2π600 −1.215 1.33 × 10−4 0.026

3 2π1000 −2.068 1.19 × 10−4 3.88 × 10−4

4 2π1400 −2.883 5.68 × 10−5 1.06 × 10−4

To provide narrow-band high gains at the harmonics

frequencies of the periodic reference trajectory, the MRF

with the following form is used

M(s) =

n
∑

i=1

mi
s[ωicos(ϕi) − sin(ϕi)s]

s2 + 2ζiωis + ω2

i

, (7)

where n is the number of the harmonics, ωi is the harmonics

frequency of the reference trajectory, ζi is the damping ratio

with ζi ∈ (0, 1), mi is a positive gain, and ϕi is the phase

angle determined by

ϕi = arg

[

T0(jωi)

]

∈ [−π, π]. (8)

Note that the key feature of the MRF of (7) lies in that

the filter zeros are specifically placed at 0 and ωictan(ϕi),
which can lead to slight influence of the stability margin

for a tiny mi, and additionally achieve minimal sensitivity

gains at the harmonics frequencies (see our analysis results

in [13]). Now we give the formulae of mi and ζi, which are

explicitly expressed by the design specifications ζi and Di

as illustrated in Fig. 11(c),

ζi =
∆i(ωi + 0.5∆i)

4ω2

i

, (9)

mi = (10Di/20 − 1)
2ζi

|T0(jωi)|
, (10)

where ∆i is the frequency difference between the two points

which are approximately 0.3Di away from the notch at the

harmonics frequency ωi, and Di (unit: dB) is the desired

reduction ratio at ωi. Note that choosing too large ∆i or Di

may destabilize the control system; in contrast, reducing ∆ i

or Di diminishes the effect of the MRF.

For demonstration of the design, we suppose the base-

line controller is the feedback controller with the CLC as

designed in Section III.C and the triangular waveform is

of fundamental frequency of 200 Hz. Then, the MRF can

be easily obtained according the above results. We choose

n = 4 to further compensate for the first 4 odd harmonics of
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Fig. 10. Frequency response of the feedback controller CF clc(1 + M ).

the triangular waveform. The designed MRF parameters are

listed in Table I and the frequency response of the resulting

overall controller CFclc(1 + M) is shown in Fig. 10.

The frequency response functions of the control system

with the CLC/MRF is shown in Fig. 11, which indicates that

the stability margin is almost maintained and the MRF fur-

ther reduces the sensitivity gains at the first 4 odd harmonics

frequencies of the triangular waveform. Table II summarizes

the specifications of the developed controllers. We can see

that the CLC/MRF control achieves the highest closed-loop

bandwidth with the desired stability margin.

B. Experimental Result

The MRF is implemented by simply plugging into the

CLC control system and the experimental results of triangu-

lar waveform tracking is shown in Fig. 12. It is clear that the

MRF greatly reduces the tracking errors as compared to those

in Fig. 8. Table III summarizes the root mean square (RMS)

values of the tracking error. We can see that the controller

with CLC/MRF reduces the RMS tracking error by more than

67% relative to the controller with CLC only. Moreover, we

also verify the performance when a maximum payload of 1
kg is placed onto the positioning stage. The results in Table

III show that the RMS tracking error is only increased by

5.6% in the worst case.

V. CONCLUSION

We have studied two resonant compensation techniques

and a multi-resonant filter design method for high-bandwidth

control of a PZT nanopositioning stage. First, we present

the notch filter that is aimed at reducing the resonance

peak gain. In contrast, the complex lead compensator is

developed by shaping the phase of open-loop system at the

resonant frequency. Although the two techniques can damp

the resonance mode for reduced vibrations, it is shown that

the CLC can provide a much higher closed-loop bandwidth.

As a result, the experimental results verify the superiority of

the CLC in hysteresis and input disturbance compensation,

and periodic trajectory tracking. In order to further reduce

the tracking error, we also develop a multi-resonant filter that

can provide extra gain attenuations in the sensitivity function
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Fig. 11. Frequency response of the CLC based control system with the add-on MRF. (a) Open-loop FRF = PCF clc(1+M ). The MRF does not degrade

the stability margin significantly. (b) Closed-loop FRF = PCFclc(1 + M )/(1 + PCFclc(1 + M )); (c) Sensitivity FRF = 1/(1 + PCFclc(1 + M )).
The gains at the first 4 harmonics of the triangular waveform are further reduced.
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TABLE II

COMPARISON OF STABILITY MARGIN AND CLOSED-LOOP BANDWIDTH

Compensator Phase margin Gain margin Bandwidth

NF 43◦@329 Hz 7.04 dB@640 Hz 630 Hz

CLC 58◦@527 Hz 7.0 dB@1530 Hz 2512 Hz

CLC/MRF 46◦@662 Hz 6.0 dB@1500 Hz 2620 Hz

at specified frequencies. The MRF is of add-on feature for

easy implementation and only slightly degrades the stability

margin of the baseline control system. The effectiveness of

the MRF is also verified by the experimental results.
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