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Abstract

In this paper, we consider the robust H., filtering
problem for both continuous and discrete-time linear
uncertain systems with energy bounded exogenous
noise inputs and structural uncertainties satisfying
some general integral quadratic constraints (IQCs).
We apply the well-known S-procedure and show that
the robust Ho, filtering problem can be effectively
solved using linear matrix inequalities (LMIs).

1. Introduction

One of the very popular signal estimation algorithms
in signal processing is the H filtering which mini-
mizes the £o norm of the corresponding estimation
error. The well-known Kalman filtering is one of the
celebrated H, filtering approaches widely used in var-
ious fields of signal processing and control. A com-
mon feature of the H; filtering algorithms is that they
all assume the exogenous input signals have known
statistics (typically the input signals are assumed as
zero mean white noises) and the system under con-
sideration has known dynamics described by certain
well-posed model. These assumptions limit the appli-
cation scope of the H; filtering technique when there
are uncertainties in either the exogenous input sig-
nals or the system model. It has been known that
the standard Kalman filtering algorithms will gen-
erally not guarantee satisfactory performance when
there exists uncertainty in the system model; see e.g.
[1].

Hoo filtering has different time and frequency do-
main properties to the Hy filtering. The exogenous
input signals in H., filtering are assumed belong-
ing to L]0, oo] signal space instead of the strict
white noises. With H,, filtering, the Ho, norm of
the operator that relates the exogenous input signals
with a desired output is minimized. Therefore, the
magnitude of the power spectrum of the correspond-
ing estimation error is lower than that of using H,
filtering. Although H., filtering doesn’t minimizes
the variance of the corresponding estimation error,
there are still application situation that the H,, fil-
tering instead of the H, filtering is more appropriate.
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Ome of such applications is reported in [2] for seismic
signal deconvolution. There are further indications
that H, filtering may find applications in fault de-
tection and radar systems. Meanwhile, minimizing
‘Hoo norm may guarantee better filtering performance
when there exist uncertainties in the exogenous input
signals or the system model; see e.g. [3] for example.

Several results have been obtained about robust
Hoo filtering for continuous and discrete time linear
dystems with exogenous noise input and parametric
uncertainty; see [4, 5, 6, 7] for example. These results
are obtained using the ARE approach. The problem
of robust H,, filtering contains two aspects: H fil-
tering analysis and H filtering synthesis. The anal-
ysis aspect is to determine the worst-case Ho, perfor-
mance when a filter is given while the synthesis aspect
is to design a suitable filter such that the worst-case
Hoo performance is satisfactory. The ARE approach
in [4, 5, 7] involves a conversion from the robust Heo
filtering problem to a “scaled” H, filtering one by
converting the norm-bounded uncertainty into some
scaling parameters. The conversion used there signifi-
cantly simplifies the robust H, filtering problem and
makes it possible to use the standard H, filtering
results. However, besides the traditional computa-
tion problem with the ARE approach, the conversion
above introduces the following disadvantages: 1) The
scaling parameters enter the AREs nonlinearly; 2)
the norm-bounded uncertainty assumption can only
describe limited applications.

In this paper, we consider a new approach to the
robust H, filtering problem for continuous and dis-
crete time uncertain systems. The systems considered
are subject to an energy bounded exogenous noise
input and several uncertainties described by the in-
tegral quadratic constraints (IQCs) which are more
general than the norm bounded structure. Similar to
[4, 5, 7], the robust H, filtering problem also involves
two aspects, namely, the H filtering analysis and the
H o filtering synthesis. We apply the S-procedure to
show that the robust H, filtering problem can be
solved using several linear matrix inequalities (LMIs).
It is interesting to see that the analysis problem can
be solved using a single LMI which is jointly linear
in terms of a positive-definite matrix for Hoo filter-
ing performance, the scaling parameters and the M,



filtering performance bound; the synthesis problem
is more complicated which involves two LMIs with
one jointly linear in a positive-definite matrix, the in-
verses of the scaling parameters as well as the Ho,
filtering performance bound and the other jointly lin-
ear in a positive-definite matrix, the scaling parame-
ters as well as the H filtering performance bound.
However, we show that the two LMIs are jointly lin-
ear in all of the three set of variables in special cases.
Our results naturally reduce to those in {4, 5, 7] when
norm-bounded uncertainty assumption is enforced.

This paper is organized as follows: Section 2 states
the the robust H, filtering problem, section 3, the
robust Hy, filtering analysis; section 4, the robust
Hoo filtering synthesis; and the concluding remarks
are given in section.5.

Due to space limitation, we delete all of the proofs
from this paper. For details of these proofs and an
example, see [8].

We use the following notational table in this paper:

Notation Continuous Discrete
oz (t) (1) z(t+1)
ST eI | L Ne@iPae [ S0, el
2. Problem Statement

Consider the following uncertain linear system:

)+ Z Hyii(t
+ ZHZzéz

0z(t) = Axz(t) + Bw(t (1a)

2(t) = Cr(t) + Dyw(t (1b)

y(t) = Caz(t) + Dow(t) + Z Hyi&i(t)  (1c)

i=1

where z(t) € R" is the state, w(f) € R? the exoge-
nous noise input which belongs to £5[0, ), 2(t) € R"
the output to be estimated, y(t) € R"™ the measured
output, and &;(¢) € R*: the uncertain variables satis-
fying the following IQCs:

S5 lleml?

as T — oo,

< S ||Buz(t) + Eaiw(t) + Esif(t)|f7,

i=1,2,...,p (2)

with
ey =&l @) ... & "

Also, A, B,C4,(C5, D, and D, are constant matrices
of appropriate dimension. Hy;, Ho;, Hsi, Eq;, Eo
and Ej3; are constant matrices. Without loss of gen-
erality, we assume that Hy; € R™Fi, Hy; € R7%ki,
H;; € RTl‘Xk‘, Ey; € Rkixn, Ey; € R*:%¢ and Es; €
R‘k,»xz:)=1 Ici.
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Remark: Several special cases of the system (1) have
been treated in the literature. For example, [4, 5, 6,
9, 7, 10, 11, 12, 3] considered the following system:

ozr(t) = (A+ AA)z(t) + Buw(t) (3)
2(t) = Cy2(t) (4)
y(t) = (C2 + AC)z(t) + Daw(t) (5)
with norm-bounded uncertainty
][5l o

where FT(#)F(t) < I, ¥t > 0. Another widely used
system uncertainty description in He, analysis in-
volves the so-called linear fractional uncertainty (see,
e.g., [13]) where the following system is considered

oz(t) = (A+ AA)z(t) + Buw(t) (7)
2(t) = Crz(t) (8)
y(t) = Caz(t) + Daw(t) (9)
with one-block type uncertainty
AA = HF(t)(I - E3F(t)) ' Ey,
FTHF#) < I, V>0 (10)

However, to our knowledge, there is no existing Hoo
filtering result available for linear systems with linear
fractional uncertainty.

It is straightforward to see that the aforementioned
norm-bounded and one-block type uncertainties are
special cases of the IQCs (2) with p = 1.

Consider the following filter:

8:cf(t) = Afa:f(t) + ny(t)
zf(t) = Cfl‘f(t) + ny(t)

where z¢(t) € R" is the estimated state, z¢(t) € R"
the estimated output, y(t) is the measured output of
(1) and Af, Bf,Cy and Dy are constant matrices of
appropriate dimension to be chosen.

Define the output filtering error as

e(t) = 2(t) - z5(1),

then the filtering error dynamics is given by

(11a)
(11b)

(12)

P
0we(t) = Aoxe(t) + Bew(t) + Y Hyjei(t)(13a)

=1

e(t) = Cozo(t) + Dow(t) + Z Hy;ei(t)(13D)

i=1

where

rey=| 70 | (14)

z5(t)



4 01 . _[ B
Ae= [ BsCy Ay ] b Pe= { By D, ] ()
C, = [01 -D;Cy — Cf]; D,=D; — Dsz(l@)

Hle = [ Hl

BfHB } ; Hzc = H2 - Dng (17)

with simplified notation
Hl = [Hu . Hlp]; Hz = [Hgl PP H2p]"

H3 = [H;n P H:}p] (18)

Remark: Tt is obvious that robust H,, state estima-
tion problem is a special case of the above robust
Ho filtering problem with D; =0, Hy =0, Dy =0,
Cy=1Iand Cf =1

3. Analysis of Robust H,, Filtering

The main purpose for designing the robust H, filter
is to minimize the induced £, norm from w(t) to e(t).
However, we are also concerned about the stability of
the augmented system (13). In this paper, we adopt
the following stability notion:

Definition 1 The filtering error dynamics (13) is
called bounded-state stable (BS stable) if for any z.(0) €
R and any w(t) € L,]0,00), there exists M > 0
such that

lze®l <M, t20 (19)

The robust H., filtering analysis problem asso-
ciated with the uncertain system (1) is as follows:
Given v > 0 and a filter of the form (11), determine
if the error dynamics (13) is BS stable for w(t) =0
and satisfies the following condition:

83 lle@®I* <+°S7 |lw®)?, as T — o0,2.(0)=0

(20)

for all admissible uncertainty satisfying the IQCs (2).
For notational convenience, we define:

ET =B}, ... ET); Ef =[E], ... ET) (21)
ET =B}, ... E)] (22)
J = diag{m1Tx,,.- ., 7pIk,} (23)

where 71,...,7, are scalars. J > 0 if and only if
>0,1=12,...,p.

Applying the S-procedure, we have the following
result:

Lemma 1 Given the system (18), condition (20) holds
for all admissible uncertainties satisfying the IQCs (2)
if there emist a positive definite matriz P = PT ¢
R"*" and scaling parameters T1,...,T, > 0 such that
the following condition holds:
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For the continuous-time case:

[4 I
QIZP(Aexe + Bew + Z Hliegi) + Z Ti(”[Eli O]Tﬂ
i=1 i=1

+EByw + Bzl = |l&])*)

p
+”Ccme + Dew + ZHZicEilF - 72““)”2 < 0,
i=1
Vz. € R™™,w e R, e RMi=1,2...,p,
with [z7 w® 71T £0 (24)

For the discrete-time case:
P
(Aeze + Bow + Z Hy:6:)TP(Acze + Bow
i=1

p
+ZH1ie£i) - TZPTG

i=1

Y
+3 " n(llBxi 0)z. + Eziw + Esi|* — l&:11)

i=1

P
H|Ceze + Dew +Y ) Haolil2 = vl < 0,

=1
Yz, e R weRY,EG eRM i=1,2...,p,
with [z7 w” €T]T #0 (25)

Remark: If the uncertainties are described by quadratic
constraints:

6@ < |Buz(t) + Baiw(t) + Bz ()],

1=12,...,p, (26)

then Lemma 1 naturally leads to asymptotic stability.
Using lemma 1 and denoting

E.=[E; 0] (27)

we obtain the following theorem on robust H filter-
ing analysis for continuous-time systems:

Theorem 1 (Continuous-time) The following condi-
tions are all equivalent and they guarantee the solu-
tion to the robust H., filtering analysis problem as-
sociated with the uncertain system (1) and the filter

(11):

(i) There ezist P=PT >0 and 7 > 0,...,7, > 0
such that (24) holds;

(ii) There exist P = PT > 0 and J > 0 in (23)
solving the following LMI:

ATP + PA,+ ETJE:. +CTC,
BTP+ EJJE, + DTC,
HEP + HI,C + E{ JEy,



PB,+ELJE, + C'D,
-1+ DTD, + EJJE,
HI.D + E] JE,

PHy, +CTHy + Ef,JE;
DZHZQ + E,ZTJE;}
—-J + H],Hy. + E] JE;

<0

(28)

(iii) There exist P = PT > 0 and J > 0 in (23)
solving the following LMI:

ATP+PA, PB, PH,, CT' ELJ

BTp -1 0 DI EIJ
Hrp 0 ~J HI EIJ | <0

C. D, Hy,, -I 0

JE, JE, JBEy; 0 —J
(29)

(iv) There exists J > 0 in (23) such that the fol-
lowing auziliary system is asymptotically stable
and the Heo-norm of the transfer function from
w(-) to é(-) is less than 1:

do(t) = Agio(t) + [y Be Hyed "Vir(t)
. C. .

e(f) = [ Jl/ZElc ]mc(t)
. [ VD, Hpod 7V

,‘,,‘1']1/21;)2 J1/2E3J-1/2
Moreover, the set of all J’s satisfying (1) is conves..

(30)
] a(t) (31)

Similarly, we have the following theorem on robust
Ho filtering analysis for discrete-time systems:

Theorem 2 (Discrete-time) The following conditions
are all equivalent and they guarantee the solution to
the robust Heo filtering analysis problem associated
with the uncertain system (1) and the filter (11):

(i) There exist P = PT >0 and 70 > 0,...,7 >0
such that (25) holds;

(ii) There exist P = PT > 0 and J > 0 in (23)
solving the following LMI:

ATPA,— P+ ETJE. +CTC,
BTPA,+ EJJE:. + DFC.
HT PA, + H].C.+ ETJE;.

ATPB.+ ELJE,+CTD,
—¥*1+ BTPB. + DI'D. + E] JE,
HT PB.+HID,+ EfJE,

ATPHy, + CT Hy + E%;JE;(
B(TPH].C + D;FHZC + E;JE;(
~J + Hi’;Pch + HZTCHQe + E':TJE;;

<0

(32)
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(iii) There exist P = PT > 0 and J > 0 in (23)
solving the following LMI:

ATPA, - P ATPB,
BTPA,  ~4*I+ BTPB,
HLPA, HT.PB,
C. D.
JEy. JE,

ATPH,,  CT ELJ
BTPH,, DT EIJ
~J+HIPH,, HL ETJ | <0
Hye -I 0
JEj 0 -J

(33)

(iv) There exists J > 0 in (23) such that the fol-
lowing auziliary system is asymptotically stable
and the Hso-norm of the transfer function from
w(-) to é(-) is less than 1:

Fo(t+1) = Aee(t) + [y 1Be HiJ V%i(t) (34)

R Ce R
)= pirg, |20
+ [ 77'D, Hy J~1/2

L2, JURR, g2 W(t)(35)
Moreover, the set of all J’s satisfying (iv) is convex.

4. Synthesis of Robust H,, Filters

For the synthesis problem, we need the following as-
sumptions:

(A1) The nominal system matrix A is quadratically
stable;

(A2) (4,C,) is detectable.

The H,o filtering synthesis problem associated with
the uncertain system (1) is as follows: Gwen v > 0,
find a filter of the form (11) such that the correspond-
ing error dynamics (13) is BS stable and satisfies the
following condition:

Solle@* < +*Sgllw(®If, as T — co,z.(0) =0
(36)
for all admissible uncertainties satisfying the IQCs
(2)-
It is straightforward to see that the auxiliary sys-
tem (30)-(31) or (34)-(35) is the closed-loop system
of the following auxiliary open loop system:

0E(t) = AZ(t) + [y™'B HyJ/?|w(t)

)= g, |20

(37a)



~1 ~1/2
v D] HQJ / P
+ [ ﬁyvljl/zEl2 Jll/zEBJ—l/Z w(t>
-I
+ [ 0 ] u(t) (37b)
y(t) = Coi(t) + Dy HJ Vi) (370)
with controller
Oz ¢(t) = Apzs(t) + Bry(t) (38a;
u(t) = Crzs(t) + Dyy(t) (38b)

Notice that the robust H, filtering synthesis prob-
lem of the original systems (1) with filter (11) is con-
verted into the standard He, control synthesis prob-
lem of the auxiliary open loop system (37) with con-
troller (38). It is interesting to see that the auxiliary
controller (38) is exactly the same form as the filter
(11) which is to be designed. Therefore, instead of
considering the original robust Ho filtering synthesis
problem, we can tackle a standard H, control syn-
thesis problem which has readily applicable results;
see [14] for example. Once the controller matrices
are determined, we can directly use these matrices as
desired filter matrices. This point suggests the follow-
ing theorem which is the main result for the synthesis
problem:

Theorem 3 Given v > 0. Denote by Ns any ma-
triz whose columns form a basis of the null space of
[Cy Day Hj). Then the robust Ho filtering synthesis
problem is solvable if there exist symmetric matrices
R,S € R"*™ and J > 0 in (23) such that the follow-
wng LMIs hold:

For the conlinuous-time case:

[-%RC ];31 <0 (39)
84 ] v
{? é:zo(u)

For the discrete-time case:

.[4%3-”—!-—]])37: < 0 (42)

[W!UHASDI c HNSW <0 (43)

0|1 cT | D, 0 [T
R I]
[ I s >0 (44)
where
Ape = AR+ RAT RET
RrC = E\R —J-1
Ann = | ARBAT-R ARET
ED =1 ERAT —-J'+ERET
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ATS+8A 8B SH;
Asc = BTS I 0
HTS 0o -J
ATSA-S ATSB ATSH,
Asp=| BTSA —~*I+BTSB BTSH,
HTSA HTSB —J+ H{SH
T T
B HJ G 57
B=|, py|» C=|Dl EjJ
27 HI ETJ
2
| =T 0 |- 0
Dl—[ 0 _J—1]7D2—|:0 _]]

Remark: LMI (39) is jointly linear in R,J~! and 42
while LMI (40) is jointly linear in S, J and +?. There-
fore, LMIs (39) and (40) are not jointly linear in J.
However, in two special cases, they are jointly linear
in J.
Case 1.

Suppose p = 1, i.e., J = 7 I. This is called the
“single uncertainty block” case. In this case, we left-
and right-multiply (39) by

diag{J/%,J'/2, 1,1},
then, the LMI (39) is equivalent to the following:

ARJ +RJAT RJET |JV2B HJ-\/?

E\RJ —1 |JY2E, E3J71/?
Jl/?BT Jl/ZEéP —",’ZI 0 <0
J-V2HT J-U2EF| 0 —J-!
(45)

Following Schur complement, the LMI (39) is further
equivalent to the following:

AR+ RAT +~"*BB"J + H\H]
E\R+~72E,BTJ + EsHT

RET + 4—2BETJ + H ET
T+ BEl I+ EE] | <0 (49

where R = RJ. Similarly, the LMI (42) is equivalent
to the following:

ARAT - R+~7*BB"J + H HY
ETRA 4+~ %E,BTJ + EsHY

ARET + v 2BETJ + H\ET
~I+~y2EyE]J + E3ET

where R = RJ. Then, LMIs (46) and (40) for continuous-
time systems as well as LMIs (47) and (43) for discrete-
time systems are jointly linear in J.
Case 2.

Assume F7 = 0. That is, the uncertainty variables
&i(t) are independent of the state variables. Left- and
right-multiplying (39) by

diag{I,J,1,J},

] <0 (47



the LMI (39) is equivalent to

[AR+RAT 0 | B
0 ~J | JB, B
BT BT —p2r o | <0 (¥
HT EfJ| 0 —J ]

Similarly, the LMI (42) is equivalent to the following:

[ ARAT—-R 0 B H ]
0 ~J | JEy; E3
BT BT =2 0 <0. (49)
HT ETJ| 0 —J

Again, LMIs (48) and (40) for continuous-time sys-
tems as well as LMIs (49) and (43) for discrete-time
systems are jointly linear in J.

Remark: Assumep=1,Ey =0,FE3 =0,Hy =0,D; =
0,D; = 0, LMIs (39)-(41) for continuous-time sys-
tems and LMIs (42)-(44) for discrete-time systems
naturally reduce to AREs which are exactly the same
form as in [4, 5], see [4, 5] for details about the cor-
responding AREs.

5. Conclusion

In this paper, we have provided an LMI approach to
the robust Hy, filtering problem for linear systems
with uncertainty described by general IQCs. Our
approach has several advantages over the standard
ARE approach. Namely, the LMI approach is com-
putationally efficient due to the recent advancement
in convex optimization [15]; The scaling parameters
enter the LMIs linearly for the individual LMIs and
joint linearly for all LMIs in the special cases; and the
IQCs are very general in describing uncertainties.
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