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Abstract.  Integral quadratic constraints (IQC) arise 
in many optimal and/or mhnst control problenls. The 
IQC approach can he viewed AS a generalization of the 
classical multiplier approach in the ahsolute stahility 
theory. In this paper, we study the relationship he- 
tween the two approaches for robust stability analysis. 
The key result shows that for many applications, the 
existence of an IQC is equivalent to the existence of a 
multiplier. Because the multiplier approach iq typically 
simpler and more intuitive, this result alggests that the 
multiplier approach may be more useful than the 1QC 
approach in many applications. 

1 Introduct ion 

Integral quadratic constraints (IQCs) often arise in ro- 
bustnerr analysis of linear and nonlinear dynamical 
systems. They a e  used as a convenient tool for de- 
scribing parametric uncertainty, time-delays, unmod- 
eled dynamics and nonlinearity of the system, a5 well 
as design objectives such ns LQG cost or H, perfor- 
mance. 

The terminology of IQC was formally introduced by 
Yakuhovich [21, ZZ] in the 70's for mhLqt stability 
analysis of systems subject to  complicated perturb* 
tions. The underlying idea, however, had been around 
since the seminal work hy Popov on absolute stability 
in early 60's [15]. Popov's idea of using a quadratic 
conqtraint to "overhound" .sectorid nonlinearity led to  
a frequency domain condition for absolute stability in 
terms of a multiplier function. The ahsolute stability 
theory developed in the 60-70:s offers a rich class of 
multipliers for robustness analysis with various non- 
linear functions. Strong connections between multipli- 
ers and the network realization theory are well e s t ah  
liyhed. Further, a Lyapmov function is asiciated with 
each multiplier. See, e.g., Brockett and Willems (41, 
Narendra and Taylor 1141, Desoer and Vidynsagar 151, 
Safmov [17], Willem [ZO] and Vidyasagar 1181 for de- 
tails. bfany of the CIRwical papers on absolute stahil- 
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ity can he found in an edited 'hodk hy Aggarwal and 
Vidyasagsr 111. 

Generalized from the mdtiplier approach, the IQC ap 
proach is able to  treat a larger clas of uncertainty 
and nonlinearity. Many IQCs are collected in a paper 
by Itanter and iliegretski [16]. The exmples where 
IQCr apply include real and complex uncertainties, 
faqt and slow t ime-vqing parameters, time-delays, 
nonlinearity, H, optimination constrain*, etc. The 
so-called Khan-Yaknhovich-Popov ( K W )  Lemma 
12, 201 plays a vital role in the analysis of IQCs. h 
cent development in the lQC approach incorporates 
the theory of linear matrix inequality (LMI) to derive 
more advanced robust stability and robust control re- 
sults; see, e.g., Boyd et. d. 131, Gahinet et. al. [lo], 
Feron et. al. 161, Haddad and Bernatein [l l] ,  How and 
Hall [lZ], and F'n et. al. [9]. The advantageof the Lhll 
approach is that niuch more complicated uncertainty 
can he handled wing convex optimization, and hence 
it diffen sharply from the traditional almlute.stabi1- 
ity theory where the main goal was to  obtain simple 
graphical tests. 

The purpose of this paper is to study the following con- 
verse problem: To what extent does the IQC approach 
generaliae the mnltiplier approach? In other words, we 
would like to  know under what conditions the existence 
of an IQC implies the exktence of a multiplier. This 
problem is motivated by the fact that the multiplier 
npproach is simpler and more intuitive. So we want 
to know when we can apply the simpler approach. We 
give a technical Condition under which the existence of 
an IQC implies that  of a multiplier. Surprisingly, it 
t u n s  out that  this technical condition is satisfied for 
most application?. 

This paper is organized as follows: Section 2 introduces 
the IQC approach. Section 3 reviews the classical mul- 
tiplier approach. Section 4 contains the main result 
of the paper. Section 5 gives some disci~ssions on the 
main result. Section 6 concludes the paper. 



2 IQC Approach 

Consider the interconnected system in Figme 1 which 
is also described by the following equations: 

x = A z + B u  
y = Cz+ Du 
2 = I+V 
1' = r + w  . .  . ,  

.:~; , 
. .  w =  4) (1) 

where A(.)  6 A which is a set of linear or nonlinew 
dynamic operators to be specified later. Denote 

. .  G ( s )  = C(s1- A)- 'B + D (2) 

and =%me A to he asymptotically stable in the sequel. 

u I 
' G  

I A -  

Gf 

1 - 1  

Figure 1: Interconnected Feedhack System 

The  feedback block A(.) is a-sumed to satisfy m IQC 
which is comtnicted via a j i l ter given by 

GI(.-) = C,s(nI - Af)-lBf + Df  (3) 
where Af is asymptotically stable. I t  is A30 assumed 
that  A is a connected set mntdning the zero operator. 

The  IQC used in this paper is then described by the 
following ineq,,ality: 

V A E A (4) 

where z( jw) .  w ( j w )  are Fourier transforms of r(t):  w ( t ) ,  
respectively, and 

O ( S )  = Gj(s)&Gr(s) (5) 

We now introduce a notion of stability, absohite total 
stability, for robrlst stability analysis with IQC. This 
stability notion is stronger than asymptotic stability 
and L2 BIB0 stability. 

Definition 1 The system (1)  i s  called totally stable 
[or simply called stable) if there ezists some constant 
p such that for all r. v E L z [ O ,  oc) and the initial state 
1(0), the rrsponse signals w ( t )  and z ( t )  (and hence all 
other signals) are well-defined at all t 2 0 ,  and the 
following holds: 

l - ( & ( t ) x ( t )  + w' ( t )w( t ) )d t  

5 p z'(O)z(O) + i w ( r ' ( t ) v ( t )  + . r ' ( t )u( t ) )dt)  ( 6 )  

Further, a family ofsystems of theform (1) is callednh 
soliitely totally stable (or simply called absolutely sta- 
ble) if there ezists a eommon p > 0 such that (G) holds 
fop every member system 

( 

The following result serves the forindation of the IQC 
approach (see [16]). 

Theorem 1 (The  IQC Theorem)  Given a set of o p  
emtors A for the feedback block of the system (1) .  the. 
system is absolutely stable i f  there ezists some O ( s )  of 
the / o m  (5) and a constant L > 0 such thnt both (4) 
and the following condition are satisfied: 

3 Multiplier Approach 

Let I= briefly review the classical multiplier approach 
to absolute stability analysis. The  following result can 
he faimd in 15, 18, ?]. We use U to denote the set of 
all asymptotically stable square transfer matrices with 
an asyniptotidy stable inverse. 

Lemma 1 Consider the system in Figure 1 with A 
being a set ofLz[O,m) -+ Lz[O,oc) opemtors. S u p p s e  
there ezist a multiplier M (s) of the following f o r m :  

M ( s )  = M;(~)M*(s), l1. i l (s)~M~(.~) E U (8) 

and a constant e > 0 m h  that thr following two pas- 
sivity conditions are satisfied: 

1: ~ + - ( j ~ ) ~ ( j ~ ) ~ ( j ~ ) ~ ~  2 0; 

V z E &[O, CO), A E A (9) 
M' ( jw )G( jw )  + C * ( j w ) M ( j w )  < -eI (10)  

Then, the system in Figure 1 is absolutely stable. 

Remark 1 The physical interpretation of the lemma 
above is clearly given in Figure 2. It is obvious to see 
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that Figures 1 and 2 are identical, pmvided that 6 = 
&fly. i = M z ,  0 = &flu, i. = M2r, li = M 2 v  and 
6 = hbw we taken. The conditions in (9)-(10) simply 
mean that the lower block of Figure 2 is passive and the 
negated upper block is strictly passive. 

Lemma 2 Gomider the system i n  Figure 1 with A 
being (1 a e t  o f L 2 ( 0 , m )  - L2[O:co) operators. Suppse 
the= exists (1 multiplter M ( B )  oj  the j o m  (8) and a 
constunt L > 0 such that the follozuing conditiorw am 
satisfied: 

M(jw)  + A f * ( j w )  5 - e l  (17) 1: (Re[u'(jw)hf(jw)(w(jw) - ~ ( j w ) ) ]  

-eu* ( jw)u( j" ) )  dw 2 0, 
w 0. V a E L z [ O , m ) ,  A E ' A ,  w = A o ( G o u )  (18) 

&fz(s) fir; (.?) 
. .  Then, the system in Figure 1 is absolutely stable. 

. ,  Proof: 
sificiently clcse to 1, we have from (18) 

Suppose (17)-(18) hold.. For any T < 1 hut 

Figure 2: Transformed Feedback Systeni 1: Re[z*(jw)M(jw)(~(jw) - ~ z ( j w ) ) ] d w  2 0 

for d z 6 &[O,m); A E A. Ako, (17) implies 

M * ( j w )  (&I)  + (&I) M ( j w )  5 - - e l  1 - T  

w 
++ a Using Lemma 1 on Figure 3, we conclude that the sy> 

tem in Figire 3 is absolutely stable. Hence, so is the A o G - T I  
system in Figure 1. 

Figure 3: Transformed Feedback Systeni 

Now let IS mnqider a modified version of Lemma 1. 
This modification is obtained hy converting Figure 1 
into Figure 3, where T E [O. 1) is an arbitrary parame- 
ter. It can he verified easily that the signds in Figure 3 
are given by 

(r  - A ~ G ) . =  (a+ a) = (1 - T)i.+ ( I  - 7)e (11) 

( I - G o A ) o ( C + a )  = G o ( l - ~ ) i  , 
+ G o  (1 - r ) O  (12) 

In  comparison, the sign& in Figure 1 are given by 

( I - A o G ) o u  = r + A o u  (13) 

1-; v = -  ' A o v  

( I - - G o A ) o y  = G o ~ + G o A o u  (14) 

For any r,u E Lz[O,m), if we take 

" 1  
(15) r = -  

1 - 7  1 - 7  
then 6.5 E .CC,[~.OO) and 

Remark 2 Note that (17) is  inplied by (18) bemuse 
A c0ntain.q the zero opemtor. But we state it to make 
it ezplieit. 

4 IQC VS. Multiplier 

We are now ready to establish a relationship between 
IQCs and multipliers. To this end, we consider a more 
general type of multipliers than ( 8 ) .  Indeed, we d o w  

M ( s )  = M;(S)M*(s) .  (19) 
where M l ( s )  m d  Mz(s)  are asymptotically stable. 
That is, we do not require M l ( x )  and h&(s) to he in- 
vertihlle. In particular, we allow them to he "tall" to 
take the advantage of larger dimensions. But we note 
that they can not he "wide" due to the condition (17). 

Also, let us e x p m  

(I6) 
Hence, the absolute stability of Figure 3 implies that 
of Figwe 1. 

Applying Lemnia 1 to Figure 3, we obtain the following 
result. equivalent. 

The key technical condition we require is that R ( p )  5 
0 (negative senlidetinite) for all w. We emphasize that 
mwt IQCs experienced in applications satisfy this con- 
dition; see Section 5 for discussions. We show that in 
this chse an IQC and a relaxed multiplier in (19) are 

a = a + 5 ;  1 J = $ + S  
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Theorem 2 Consider the system in Figugure 1 with the 
assumption that A is n set of C2(O;m) + C2[0,m) 
opemtors. Suppose there ezist some multiplier M ( a )  
of the fonn (19) and some cnnstmzt e > 0 such that 
(9)-(10) are satisfied. Then, (4) and (7) hold with the 
following O ( s ) :  

which can realized in the f o n n  of (5) with 

/ _ m _ l l . ( ~ * ~ ~ + ~ * ~ + ~ * ~ + ~ + r ~ ) u d w ~ ~  (28) 

The difference between the two integrals above yields 

Since R 5 0, the above implie? 
1--1 

where llGllm is the H ,  norm ofG(s).  

Convemely, suppose (4) and (7) hold for some e > 0 
and some O(s) of.the f o m  (5) with R ( j w )  5 0 for  all 
w E (-m,m). Then, (17)-(18) hold for 

M ( s )  = 2(G' (s )F(s )  + R(rr)) (23) 

which can be realized in the fonn of (19) with 

which is the same as (18) with M(a) given by (23). I t  
is a trivial matter to verify tha t  M ( s )  = Mi(a)Mz(s) 
for M ( n )  in (24). 

Remark  3 The result above shows that the e-tenee 
of an IQC i s  equivalent to an multiplier i f  the IQC 
is restrited to have negative semidefinite R ( j w ) .  Y'hr 
advantage of the  multiplier i s  that it is much smaller 
in  dimension and henee in gene& easier to search fm. 

Proof of Theorem 2. Siippase there exist M (s) of 
the form (19) and some constsnt L > 0 such that (9)- 
(10) are satisfied. Using the a(.) in (21), it is trivially 
verified that (4) and (7) correspond to (9) and (10). 
respectively. Also, i t  is easy to check that this O(s) = 
G;(s)OGf(s) for the Q and Cf(s) defined in (22). In 
particillar, Gp(s) is asymptotically stable because both 
M ~ ( s )  and &(s) are. 

Conversely, snppase (4) and (7) hold for some a(.*) in 
the form of ( 5 )  with R(jw)  5 0 for all w. Using ( Z O ) ,  
we rewrite (4) and (7) as follows: 

~ ~ ( z ' Q z + z * F w + w ' F * z + w * R w ) d w 2  0 (25) 

G'QG + G'F + F'G + R 5 -<I (26) 

Take any 16 E &[O, m). It follows that z = G o U E 
Lz[O,m) and w = A o G o r r  E f2[0,cc). Then, (25)- 
(26) become 

j_ql(u*G*QGlc+ u'G'Fw+w'F*Gs 

+w'Rw + ~ii*u)dw 2 0 (27) 

Remark 4 Observe that the fimt part of Theorem 2, 
which generalizes Lemma 1 t o  allow a mukiplier M(s) 
with '%all" M i ( s ) ,  i s  trivially proved using the IQC 
Theorem, although the use of such a multiplier s e e m  
to  be difinrlt to justify using Figure 2 bemuse hf;(.s) 
ore not invertible. 

Corollary 1 [SI Suppose A is a set of cousal nnd 
asymptotically stable LTI  operators containing the zero 
operator. Then, the following two conditions, both 
guaranteeing the absolute stability of the  system in Fig- 
ure I, have the implicotion that i)=>ii). 

i). l ' h m  ezisls S(s) of the f o n  (5) and some e > 0 
such that (4) and (7) hold and that R ( j w )  5 0 
for all w E (-m,m); 

ii). ?here mists a multiplier M ( s )  of the f o n n  (IQ) 
such that 

Remark 5 The problem studied in the cnrollary above 
i s  commonly known m the structured singular value 
poblem when A is specially structured. It i s  known 
19, 131 that the multiplier approach gives a less con- 
servative test for robustness analysis than the so-called 
D - G scaling method given in 171. In fact, the D - G 
scaling method amounts t o  a special multiplier; see de- 
taib in 18, 131. 
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5 Discussions 

As we see from Theorem 2 that the technical condition 
for the existence of a multiplier is that R( jw)  5 0. In- 
deed, mast IQCs used in applications satisfy t h i y  condi- 
tion. To see this, we consider a few examples although 
many more can be foiind in the literature (see, e.g., 
[161). 

Example 1: Popov Criterion. 

The well-known Popov Criterion [I51 considers aaingle- 
input singleoatpot system as in Figure 1 with C ( s )  = 
C ( s I - A ) - ’ B  (without the D term) and A being a.%t 
of nonlinear functions,satisfying 0 5 =(-A(=)) 5 e 2  
for some constant c > 0. The Popov Criterion aserrs 
that such asyatem is absohitelystableif (l+ka)(G(a)+ 
c-’) is SPR for some constant k 2 0. The function 
(1 + ks) is called a multiplier. 

The function Q(s) for the associated IQC is given by 

) (30) = ( - ( I  + ks) -2c-’ 
0 -(1 + k.7). 

Example 2: Limit Cycles of a Digital Quan- 
tizer [19]. 

Consider a digital qiiantieer described by 

z(n) < -1 
w(n)  = -sat(z(n)) = -z(n) .  lz(n)l 5 1 { ‘1 z(n) > 1 

(31) 

It follows that z (n)w(n)  5 0 for all n. We may model 
this a? a simple p-ive device. However, this descriy 
tion is too conservative in general. To overconie this 
difficiiltr, w e  let H ( z )  he any stable function with L, 
norm less than or equal to 1, i.e., 

x 

where h(n) is the impulse response corraponding to 
H(z). In addition, i t  is required that 1 + N ( I )  is in- 
vertible. Then, the IQC is given by 

Example  3: Constant Uncertain Parameters 

Consider the case 

w = A z =  block diap{q,I~,,.--,q~I.,}=, 

q ; E ( - l ;  11; i = l ,  . . . ; p  (33) 

where q. are all constant uncertain parameters. Let us 
take any 

D(s )  = block diag(Dl(s), . . . ~ D p ( s ) } ;  
V ( s )  = blockdiag(K(s),--.~V,(s)} (34) 

where D,(a)  and V,(a) are square matrices of dimension 
k;, and 

D ( j w )  = o ’ ( j w )  > 0;  V ( j w )  = -V.(jw); 
VwE( - -cc ,oc )  (35) 

We can build an IQC with the following e(.?): 

provided that D(b) and V ( s )  are such that the *(s) 
above can he  expres-d as in (5 ) .  

We see in all the examples above, the term new) j 0. 

6 Conclusions 

In this paper, we have studied the relationship between 
the IQC approach and the miiltiplier approach. The 
main reiilt is that these two approdes are equivalent 
under a fairly mild condition. It should be pointed out 
that the piu-pcee of this paper is not to undermine the 
significance of the IQC appmach. Itather, we hope that 
the work of this paper provide some new insight into 
these two approaches and can motivate more research 
in this area. 
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