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Abstract. Integral quadratic constraints {IQC) arise
in many optimal and/or robust control problems. The
IQC approach can be viewed as a generalization of the
classical multiplier approach in the absolute stability
theory. In this paper, we study the relationship be-
tween the two approaches for robust stability analysis.
The key result shows that for many applications, the
existence of an IQC is equivalent to the existence of a
multiplier. Because the multiplier approach is typically
simpler and more intuitive, this result suggests that the
multiplier approach may be more useful than the 1QC
approach in many applications.

1 Introduction

Integral quadratic constraints (IQCs) often arise in ro-
bustness analysis of linear and ponlinear dynamical
systems. They are used as a convenient tool for de-
scribing parametric uncertainty, time-delays, unmod-
eled dynamics and nonlinearity of the system, as well
as design objectives such as LQG cost ar H,, perfor-
mance.

The terminology of IQC was formally introduced by
Yakubovich [21, 22] in the 70's for robust stability
apalysis of systems subject to complicated perturba-
tions. The underlying idea, however, had been around
since the seminal work by Popov on absolute stability
in early 60's [15]. Popov’s ides of using a quadratic
constraint to “overbound” sectorial nonlinearity led to
a frequency domain condition for absolute stability in
terms of a multiplier function. The absolute stability
theory developed in the 60-70°s offers a rich class of
multipliers for robustness analysis with varicus non-
linear functions. Strong connections between multipli-
ers and the network realization theory are well estab-
lished. Further, a Lyapunov functicn is associated with
each muitiplier. See, e.g., Brockett and Willems {4],
Narendra and Taylor [14], Desoer and Vidyasagar {5],
Safanov {17], Willems [20] and Vidyasagar [18)] for de-
tails. Many of the classical papers on absolute stabil-
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ity can be found in" an edited book by Aggarwal and
Vidyasagar {1].

Generalized from the multiplier approach, the IQC ap-
proach is able to treat a larger class of uncertainty
and nonlinearity. Many IQCs are collected in a paper
by Rantzer and Megretski [16]. The examples where
1QCs apply include real and complex uncertainties,
fast and slow time-varying parameters, time-delays,
nonlinearity, H., optimization constraints, etc. The
so-called Kalman-Yakubovich-Popov (KYP) Lemma
[2, 20] plays a vital role in the analysis of IQCs. Re-
cent development in the 1QC approach incorporates
the theory of linear matrix inequality (LMI) to detive
more advanced robust stability and robust control re-
sults; see, e.g., Boyd et. al. [3], Gahinet et. al [10],
Feron et. al. [6], Haddad and Bernstein [11], How and
Hall [12], and Fu et. al. [9]. The advantage of the LMJ
approach is that much more complicated uncertainty
can be handled using convex optimization, and hence
it differs sharply from the traditional absolute -stabil-
ity theory where the main goal was to obtain simple
graphical tests,

The purpose of this paper is to study the following con-
verse problem: To what extent does the IQC approach
generalize the multiplier approach? In other words, we
would like to know under what conditions the existence
of an IQC implies the existence of a multiplier. This
problem is motivated by the fact that the multiplier
approach is simpler and more intuitive. Sc we want
to know when we can apply the simpler approach. We
give a technical condition under which the existence of
an IQC implies that of a multiplier. Surprisingly, it
turns out that this technical condition is satisfied for
most applications.

"This paper is organized as follows: Section 2 introduces
the JQC approach. Section 3 reviews the classical mnl-
tiplier approach. Section 4 contains the main result
of the paper. Section 5 gives some discussions on the
main result. Section 6 concludes the paper.



2 1QC Approach

Consider the interconnected system in Figure 1 which
is also described by the following equations:

& = Azx-+ Bu

y = Cx+Du

z = y+v

iU = r+w

w = Afz) (28]

where A(-) € A which is a set of linear or nonlinear
dynamic operators to be specified later. Denote
G(s)=C(sI—A)'B+D (2)

and assume A to be asymptotically stable in the sequel.
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Figure 1: Interconnected Feedback System

The feedback block A{-} is assumed to satisfy an 1QC
which is constructed via a filter given by

GJ(S)=Cf(sI—-Af)_]Bf+DI (3)

where Ay is asymptotically stable. It is also assumed
that A is a connected set containing the zero operator.

The IQC used in this paper is then described by the
following inequality:

2(jw)

/_ r[z‘(jw) w* (ju) B (juw) [ 2w ] >0

VAEA (4)

where z(jw), w(jw) are Fourier transforms of z(t), w(t),
respectively, and

®(5) = Cj(x)8C(s) (5)

We now introduce a notion of stability, absclute totai

stability, for robust stability analysis with IQC. This

stability notion is stronger than asymptotic stability
and Ly BIBO stability.
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Definition 1 The system (1) is called totally stable
{or simply called stable) if there erists some constant
p such that for all m,v € L£2[0.0¢) and the initial state
x(0), the response signals w(t) and x(t) (and hence all
other signals) are well-defined at all ¢t > 0, and the
Jollowing holds:

[o m(;r:' ()} + w' (£)w(d))dt
<o (7 @at0)+ [0 Grrte) 45 o0 at) 6)

Further, a family of systems of the form (1) is called ab-
solutely totally stable [or simply called absolutely sta-
ble) if there exists a common p > 0 such that (6} holds
Jor every member system.

The following result serves the foundation of the IQC
approach (see [16]).

Theorem 1 (The IQC Theorem) Giver a set of op-

erators A for the feedback block of the system (1), the

system is absolutely stable if there exists some ®(s) of

the form (5) and o constant ¢ > ( such that both (4)

and the following condition ere satisfied:

G(jw)
I

[G"(w) I]P(jw) [ ] +el €0, ¥ |w| < oo {7}

3 Multiplier Approach

Let us briefly review the classical multiplier approach
to absolute stability analysis. The following result can
be found in [5, 18, ?]. We use I to denote the set of
all asymaptotically stable square transfer matrices with
an asymptotically stable inverse.

Lemma 1 Consider the system in Figure I with A
being a set of L3{0,00) — £3[0,00) eperators. Suppose
there exist a mulliplier M(s) of the fellowing form.:

M(s) = M{(s)Mz(s), M1(s), Ma(s) eUd  (8)

and a constant ¢ > 0 such that the following two pas-
stvity conditions are satisfied:

[ 7 Relz" () M{jw)w(iw)jdw > 0,

Vze L3[0,00), A€ A (9)
M*(ju}G(juw) + G~ (jw)M (jw) £ —el (10)

Then, the system in Figure 1 is absolutely stable.

Remark 1 The physical interpretation of the lemma
above is clearly given in Figure 2. It is obvious io see



thet Figures 1 and 2 are identical, provided thet §j =
My, 2 = Mz, 9 My, ¥ = Myr, i = Mou and
1w = Mpw are taken. The conditions in (9)-(10) simply

mean that the lower block of Figure 2 is passive and the

negated upper block s strictly passive.
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Figure 2: Transformed Feedback System
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Figure 3: Transformed Feedback System

Now let us consider a modified version of Lemma 1.
This modification is obtained by converting Figure 1
into Figure 3, where 7 € [0,1) is an arbitrary parame-
ter- It can be verified ‘easily that the signals in Figure 3
are given by

{—AocG)o(it+ D)
(I—GodA)o(iy+8)

(1- 7+ (17} (11)
Go(l—1)f |

+Go(l—7) (12)

In comparison, the signals in Figure 1 are given by
(I-AcG)ou = r+Aow (13)
(I-GoA)oy = Gor+Golou (14)

For any r,v € L;[0, 0c), if we take

F= 1iTT‘; D= 1—’TAOU (15)

then 7.7 € £3[0,cc) and .
u=1d+9 y=g+9o (16)

Hence, the absolute stability of Figure 3 implies that
of Figure 1.

Applying Lemma, 1 to Figure 3, we obtain the following
result.
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L.emuma 2 Consider the system in Figure 1 with A
being a set of L]0, 00) — Lg[0, c0) operators. Suppose
there exists a multiplier M{s) of the form (8) and a
constant € > ( such that the following conditions are
satisfied: -

Mjw) + M™(jw) < —el
f  (Relu () M () () — ()]

17}

—eu”(jw)u(jw)) dw = 0,
Vuelf0,00), A€CA, w=A~Ao(Gou) (18)

Then, the system in Figure 1 is absolutely stable.

Proof:  Suppose (17)-(18) hold.. For any =< 1 but
sufficiently close to 1, we have from (18)

[ Relem M) o) - ralio)idw 2 0
for all z € £3(0,00), A€ A. Also, {17) implies
.y 1 1 . 3
woGe) (7251) + (T257) M) < -5
Using Lemma 1 on Figure 3, we conclude that the sys-

tem in Figure 3 is absolutely stable. Hence, so is the
system in Figure 1. ]

I

Remark 2 Note that (17) is implied by (18) because
A contains the zero operator. But we state it to make
it explicit.

4 IQC vs. Multiplier

We are now ready to establish a relationship between
IQCs and multipliers. To this end, we consider a more
general type of multipliers than (8). Indeed, we allow

M(s) = M3 (5)Ma(s), (19)

where M,(s) and M3z(s} are asymptotically stable.
That is, we do not require M (s) and M;z(s) to be in-
vertible. In particular, we allow them to be “tall” to
take the advantage of larger dimensions. But we note
that they can not be “wide” due to the condition {17).

)

The key technical condition we require is that R{jw) <
0 (negative semidefinite): for all w. We emphasize that
most IQCs experienced in applications satisfy this con-
dition; see Section 5 for discussions. We show that in
this case an IQC and a relaxed multiplier in (19) are
equivalent.

Also, let us express

Q(s)
F*(s)

F(s)

&(s) = R(s)

(20}



Theorem 2 Consider the system in Figure ! with the
assumption that A is a set of L£3(0,00) — L]0, c0)
operators. Suppose there ewist some multiplier M(s)
of the form (19) and some constant ¢ > 0 such that
(9)-(10} are satisfied. Then, (4) and (7) hold with the

following ®(s):
_ (e M)
q’(‘s)_(hldlgl(is) 0 )

which can realized in the form aof (5) with

I 0 i —'—“lé“m 00

Gs(s) = | Mi(s) 0 ;@ 0 0 I
Ma(s) 0 I

2

0
(22}

(21)

where ||Glloo is the Ho, norm of G(s).

Conversely, suppose ({) and (7) hold for some e > 0
and some B(s) of the form (§) with R(jw} < 0 for all
w € (—oo,00). Then, (17)-(18) hold for

M(s) = 2{G*{s)F(s) + R(2)}
which can be realized in the form of (19) with

Mi(s) = 2G4 (s) (Gg'*) ) i Ma(s) = &G (s) (?)
(24)

(23)

Remark 3 The result above shows thaet the eristence
of an IQC is equivalent to an multiplier if the 1QC
is resirited to have negative semidefinite R(jw). The
advantege of the multiplier is that & is much smaller
in dimension and hence in general easier to search for.

Proof of Theorem 2. Suppose there exist M(s) of
the form (19) and some constant e > 0 such that (9)-
(10} are satisfied. Using the ®(s) in (21}, it is trivially
verified that {4) and (7) correspond to (9} and (10},
respectively. Also, it is easy to check that this ®(s)
G3(5)8G¢(s) for the & and G(s) defined in (22). In
particular, G;(s) is asymptotically stable because both
Mi(s) and My(s) are,

Conversely, suppose {4) and (7) hold for some ®(s) in
the form of (5) with R{jw) < 0 for all w. Using (20),
we rewrite (4) and (7) as follows:

[ ("Qz + 2" Fu+ w' F 'z + w*Ru)dw > 0 {25)
—oc
G'QG+ G F+ FG+R< —€l (26)

Take any u € L£;3[0,00). It follows that z = Gon €
L3[0,0c) and w = Ao Gou € L3[0,0¢). Then, (25)-
(26) become

L0
f (WG QGu+ v G " Fu+ w F*Gu

+w* Rw + en*uydw = 0 27
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j (G QG+ G F+ F*G+ R+el)udw < 0 (28)
The difference between the two integrals above yields
o
f ("G Flw — u) + (w —u)* F*Gu
+w* R — u* Ru — ex™u)dw

/-00 (w™(G"F 4+ R)(w —u) + (w — )" Iw — u)

—oa

4{w — u)"(F*G + R)u — euu)dw
> 0

Sinee I € 0, the above implies

f (W (G™F + R)y(w —u)
Hw —u} (F*'G+ R)u— ew u)dw = 0

which is the same as (18) with AM(s) given by (23). It
is a trivial matter to verify that M(s) = M {s)Mz(s)
for M;{s) in (24).

Remark 4 Observe that the first part of Theorem 2,
which generalizes Lemma 1 to allow a multiplier M(s}
with “tell” M;(s), is trivially proved using the 1QC
Theorem, although the use of such a multiplier seems .
to be difficult to justify using Figure 2 because M;(s)
are not invertible.

Corollary 1 [8] Suppose A is a set of causal and
asymptotically stable LTI operators conlaining the zero
operator. Then, the following two conditions, both
guarantesing the absolute stability of the system in Fig-
wre 1, have the implication that i}==>ii}.

i). U'here erists ®(s) of the form (5) and some ¢
such that (4) and (7) hold and that R(jw)
Jor all w € (—o0,00);

>0
<0

ii). There exists a multiplier M(s) of the form (19)
such that

Ml — A(ju)G (jw)]

HI - AGL)CUL M Gy +el <0 (29)

Remark 5 The problem studied in the corollary above
is commonly known as the structured singular value
problem when A is specially structured. It is known
{9, 13] that the multiplier approach gives a less con-
servative test for robustness analysts than the so-calied
D — @ scaling method given in [7]. In fact, the D — G
scaling method amounts to a special multiplier; see de-
tails in (8, 13].



5 Discussions

As we see from Theorem 2 that the technical condition
for the existence of a multiplier is that t(jw} < 0. In-
deed, most IQCs used in applications satisfy this condi-
tion. To see this, we consider a few examples although
many more can be found in the literature (see, e.g.,

[16))-
Example 1: Popov Criterion.

The well-known Popov Criterion [15] considers a single-
input single-output system as in Figure 1 with G(s} =
C(sI —~A)~1B (without the D term) and A being a set
of nonlinear functions satisfying 0 < z(—A(z)) < e2?
for some constant ¢ > 0. The Popov eriterion asserts
that such a system is absolutely stable if (1+4s)(G{s)+
¢~1) is SPR for some constant k > Q. The function
{1+ ks) is called a multiplier.

The function ®(s) for the associated IQC is given by

N 0 —(1+ ks)~ .
B(s) = (r(1+ks) ¢ ) {30)

21

Example 2: Limit Cycles of a Digital Quan-
tizer [19]-

Consider a digital quantizer described by

1. z(n) < —1

w(n) = —sat(z(n)) = { ~#(n), fz(n)| < 1

_ -1 z(n) > 1
(31)

It follows that z{n)w(n) < 0 for all n. We may model
this as a simple passive device. However, this descrip-
tion is too comservative in general. To overcome this
difficulty, we let H(z) be any stable function with L,
norm less than or equal to 1, i.e.,

S < 1 (32)

where h(n) is the impulse response corresponding to
H(z). In addition, it is required that 1 + H(2) is in-
vertible. Then, the IQC is given by

e 0 (14 H)
®(2) (—(1+H‘) 42+H+H*))

Example 3: Constant Uncertain Parameters

Consider the case

w = Az = block dia.g{q;[kh‘ -
ge[-1,1, i=1,---,p

S aple, } 2,
(33)
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where ¢; are all constant uncertain parameters. Let us
take any

block diag{D1(s),---, Dp{8)};
block diag{V1(s),- -+, V,(s)}

il

(34)

where Di(s) and V;(s) are square matrices of dimension
k,‘, and

D(jw} = D*(jw) > 0; V{jw)=-V"(ju);

¥ w € (—oe, 00) (35)
We can build an IQC with the following ®(s):
_{ D(s) V(s)
®ls) = (‘V"(s] -'—D(s}) (36)

provided that D(s) and V(s) are such that the ®(s)}
above can be expressed as in (5).

We see in all the examples above, the term fi{jw) < 0.

6 Conclusions

In this paper, we have studied the relationship between
the IQC approach and the multiplier approach. The
main result is that these two approaches are equivalent
under a fairly mild condition. It should be pointed out
that the purpose of this paper is not to undermine the
significance of the IQC approach. Rather, we hope that
the work of this paper provides some new insight into
these two approaches and can motivate more research
in this area.
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