Exploiting Structures of Nonlinear Parametric Perturbations for Robust Stability

Minyue Fu
Department of Electrical and Computer Engineering
University of Newcastle, N.S.W. 2308 Australia

Abstract. The research on robust stability of uncer-
tain systems has been undertaking for a number of years.
We now seem to have a good understanding of the so-
called linear (or affine) perturbations. The progress for
tackling nonlinear perturbations has been relatively slow
due to obvious difficulties. One approach to nonlinear
perturbations is to convert the robust stability problem
into a certain type of nonlinear programming problem.
The deficiencies of this approach are the numerical inef-
ficiency and the lack of analytical insights.

This paper is meant to emphasize the advantages of
exploiting special structures of nonlinear perturbatious
for robust stability. This is motivated by the fact that
in many practical situations nonlinear perturbations are
parameterized in a simple manner, such as uncertain-
ties in the zeros, poles and gains of a transfer function,
serial interconnections of perturbed subsystems, and un-
certain time-delay constants. We exam these commonly
used structures of nonlinear perturbations and provide
efficient tests for robust stability.

1 Introduction

Inspired by the seminal work of Kharitonov on Hur-
witz invariance of the so-called interval polynomials 1},
there has been significant progress in the parametric ap-
proach to robust stability analysis. In particular, the
so-called affine perturbation problem, i.e., the robust sta-
bility problem of families of polynomials with coeflicients
subject to affine perturbations, has been deeply studied.
On oue side, many so-called eztreme-point results have
been developed. For example, Kharitonov’s result for in-
terval polynomials [1] and many Kharitonov-like results
[2,3,4]. In recent papers by Rantzer [5,0], some elegant
necessary and sufficienl conditions are provided for a sta-
bility region to hold extreme-point results. On the other
side, for affine perturbations and/or stability regions for
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which extreme point results do not hold, other numeri-
cally efficient results are available. The well-celebrated
edge theorem by Bartlett, Hollot and Lin {7] and its varia-
tions [8,9,10] for polytopes of polynomials and quasipoly-
nomials give solutions in the parameter space. The fre-
quency sweeping techniques, initially introduced by Ar-
goun [11] and Dasgupta [12), now have become very pop-
ular due to both its numerical efficiency, simple frequency
domain interpretation, and, perhaps most importantly,
its ability to compute the robust stability margin (i.e.,
the maximum size of perturbations, in certain sense, for
preserving stability). For example, Barmish in [13] gave
a frequency sweeping technique to check robust stabil-
ity of a polytope of polynomials. A different frequency
sweeping technique was given in [14] by the author to ob-
tain the robust stability margin which is the maximum
size of a polytope of polynomials for preserving robust
stability. This technique was recently improved by Tsyp-
kin and Polyak [15] who obtained an elegant closed-form
expression for the robust stability margin.

Despite of the significant achievement in the affine per-
turbation problem, the progress in tackling nonlinear
(and multilinear, in particular) perturbations has been
much less successful. One approach to this problem is to
treat it in its broadest generality, as is done in [16,17).
In [16], Vicino, Tesi and Milanese considered a very gen-
eral class of nounlinear perturbations and proposed to
compute the robust stability margin by using a nonlin-
ear programming algorithim technique called branch and
bound. The numerical features of the branch and bound
techuique was intensively studied by Balakrishnan, Boyd
and Balemi [17). 'I'his approach, although appealing due
to its universality, has two limitations: First of all, it
is often computationally intensive, especially when the
number of parameters is large and/or the degree of poly-
nomials is high; Secondly, it does not provide much an-
alytic insight into the problem and its solution, i.e., the
relationship between robust stability and the parame-
ters cannot be revealed. An alternative approach is to
cousider particular parameterizations reflecting specific



forms of structural information supplied by the model-
ing process. This allows verification of robust stability
and computation of robust stability imargin computation-
ally less demanding. Examples of this approach include
[18,19,20,21], which treat different types of ultilinear
perturbations by exploiting their specific multilinear de-
pendence; and [22], which accounts for a special class of
nonlinear perturbations.

This paper is meant to emphasize the importance of
exploiting special structures of nonlinear perturbations
for robustness analysis. Several special structures will
be discussed in detail:

¢ Uncertain real zeros, poles and gains [22].

For systems with independent parameter perturba-
tions in real zeres, poles and gains, we explain that
it is necessary and sufficient to check certain one-
dimensional lines in the parameter space to deter-
mine the Hurwitz invariance of the family of sys-
tems. A striking phenomenon about these line seg-
ments is that their descriptions are independent of
the parameter set and the multiplicities of the zeros
and poles.

o Value set characterization for cascaded plants
[22]). Lots of physical plants consist of a cascade of
subplants which may involve independent parame-
ter perturbations. Furthermore, parameter pertur-
bations in each subplant are usually in simple forms
while their compound effects might be highly com-
plex. Suppose each subplant admits afline perturba-
tions, then the value set of the plant trausfer func-
tion will be shown to be determined also by cer-
tain one-dimensional line segments in the parame-
ter space. In this case, however, these line segients
are “frequency dependent,” i.e., they move in the
parameter space when the plant trausfer function is
evaluated at different frequencies, or complex points
in general. Despite of this frequency dependence fea-
ture, these line segmeuts are simply characterized,
and very useful in plotting value sets and, conse-
quently, in determining robust stability.

¢ Time-delay systems with an uncertain time-
delay constant [23]. Uncertain time-delay cou-
stants are another type of nonlinear perturbations.
Robust stabitity analysis of time-dclay systems with
uncertain time-delay coustants is known to be dif-
ficult. However, for the case when the plaat trans-
fer function consists af a single uncertain time-delay
constant, we show that the maximum time-delay
for preserving robust stability can be simply deter-
ntined, each in the case when the plant has addi-
tional afline perturbations and/for some additional
known time-delay constants.
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The results above are to be detailed in the sections to
follow.

2 TUncertain Real Zeros, Poles and Gains

For illustrative purposes, let us consider a simple exam-
ple of uncertain plant described by the following transfer
function:

. s+z .
Gls,q)= K —ot 2+ 1
(s-9)= K (st p)(s+m) )
with q := (K, z,p1,p2) € Q, and
Q= {[1,2]x[1,2] x [2,4] x [3,4] . (2)

Wlen a unity feedback is applied to the above plant,
the closed-loop stability is determmined by the following
characteristic polynomial:

s, q) =+ (pa+2pm)st+ (g)f +2pipa+k)s + pips + 2k

(3)
Nonlinear perturbations are obviously observed in the
above polynomial. Thus, checking robust stability seens
a difficult task. lHowever, the technique we are going to
present here, which was derived in [22], will tell us that
the family of polynomials

Ms, Q)= {p(s,9),0 € Q} (1)

is robustly stable (i.e., Hurwitz invariance) if and only
if p(s,q) is stable for all ¢ on the edges of Q and on the
following four line segments:

{(N" 2% piyp2) i3 < py=pe <4}, K727 = 1,2, (5)

Note that checking robust stability on a single line seg-
ment is a simple numerical task.

The class of parameter perturbations to be considered
are generalized to allow the following transfer function:

{s+ 2 )M v '(s + Zm)um
(5 + p‘)l’l .. .(s + pn)l’n

(s, q) = K H{(s) {6)

where
qi= (K, 21, 2 Pyt Pa) (7)
is the parameter vector which belongs to the following
hyperrectangle
() = [_l_\iy [\.] X [;hil] X oo X []!,npn] + (8)

Considering the above uncertain plant with feedback
controller (/(s), our objective is to determine whether
the closed-foop system is robustly stable, i.e., whether
the characteristic equation

L+ C(s)U(s,q) =0 (4)

his zeros within the open left half plane for all ¢ € ().



Given the bounding set Q as in (8), we denote by
0*Q a k-dimensional boundary of Q. Note that a k-
dimensional boundary of @ is a k-dimensional hyper-
rectangle obtained by setting all but £ components of
q at their extreme values, and that there are 2€C¥,, .|

k-dimensional boundaries. We define the following afline
line in RMH™+1;

L={q:q€ Rn+m+l7‘h === ‘ln;rnt+l}- (10)

In the result below the term open projection is used.
Consider a k-dimensional boundary 8*Q of . Note that
there are (n + m + 1 — k) elements of q fixed at extreme
values on this boundary. Modify L by fixing these (n +
m + 1 — k) parameters in ¢ to the extreme values as they
assume in 8*Q. Then the intersection of the interior
of 8¥Q and this modified affine line is called the open
projection of L on 3*Q.

We then have the following result:

Theorem 1. [22] Consider the family of transfer func-
tions described in (6)-(8) and a controller C(s), then the
closed-loop system is stable for all ¢ € @ if and only if it
is stable on the following line segments of Q:

(a) all the edges of Q and

(b) the open projections of the affine line L in (10) on
all k-dimensional boundaries 3*Q of Q with K = .
or K, 2 < k < n+m, except those for which the
Jollowing condition holds:

Yo=Yy (11)

1€V, i€V,

where ¥, (resp. ¥,) is the subset of {1,---m}
(resp. {1,---n}) associated with 9*Q such that z;
(resp. p;) is a variable for alli € ¥,, (resp. i€ ¥, ).

We now return to the example in (1)-(2). Notice that in
this case the critical subset of Q consists of all the edges
of @ plus the line segments in (5). Therefore, according
to Theorem 1, the robust stability of the closed-loop sys-
tem is achieved if and only if it is stable for all ¢ on the
edges of ) and the line segments in (5).

The following result [22], derived from Theorem 1,
gives an edge result for real zero-pole-gain perturbations.

Corollary 2. Consider the family of transfer funclions
described in (6)-(8) and a controller C(s). Suppuse that
the zeros and poles are non-overlapping, i.c., the open
inlervals (li';")'(lfj'i;l')' 1 <1 <m, 1 <5< n, donol
overlap. Then, lhe closed-loop system is robustly stable
if and only if it is stable on every edge of Q.
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3 Value Sets of Cascaded Uncertain Plants

A general description for the transfer function of a cas-
caded uncertain plant is given by

4
G(s,q) = Go(s) I ] pi(s @)™ (12)

=1

where Go(3) represents the unperturbed part of G(s,¢),
pi(8,4;) is the ith perturbed polynomial, k; denotes the
multiplicities of p(s, ¢;) and is allowed to be negative for
capturing perturbations in the denominator of G(s, ¢), ¢
is the paraineter vector of pi(3,¢;), and ¢ = [¢1,- -, q¢,
which belongs to the following bounding set

Q::QIX"'XQe, (13)

is the parameter vector of the cascaded plant. The de-
pendence of the polynomials p;{s, ¢;) on g; is assumed to
be affine, i.e.,

pi(s,4i) = pio(s) + Pi(s)a (14)
where pjp(s) is the nominal part and P;(s) is a polynomial
madtrix.

For example, the cascade of

stqi

Gi(s,q1) = ——

1(8,q1) P

and )

Gof8,¢2,q3) = - -
28, 42, 43) Ti Bt @)+ 0)
gives
1

G(s,q) = pn 1(3+‘11)(82+33+(12)—1(34"‘13)"1 . (15)

The value set of G(s,¢),¢ € @, evaluated at s = sp, is
defined to be

G(SO)Q) = {G('SO:_‘I) ‘g€ Q} . (16)

Note that the value set of each p;i(s,qi),¢; € Qi is a
convex polygon with edges corresponding to the edges of
Qi.

We first cousider a special case where every ¢; is a
scalar, i.e., g, < qi € G,t=1,---,¢ In this case, a
general description for G(sp, ¢) is given by

4
G(so,q) = A [ (i + o + 58" (17)

i=1

where A is a complex constant, «; and f; are real con-.
stonts. It is assumed that if #y = 0 and k; < Oy then
the interval [rL. + a;,§ + «a;] does not contain zero, i.e.,
(/(s0,@) is bounded. 1t is also assumed in the above



that ¢; does not vanish in the evaluation, which is just
for simplicity.

Similar to the previous section, the following afline line
in R plays an important role:

Loi={g=plB1-- B ~far-+al 1 ~c0 < p< 0(0}-

18)
Theorem 3. [22] Consider the hyperrectangle () in R*
and the complez function G(so,q) in (17). Suppose
G(s0,Q) 1s bounded, then there exists a collection of line
segments in Q from which G(sg,(Q)) is mapped. These
line segments consist of

(a) all the edges of Q and .

(b) the open projections of the affine line L in (18) on
all k-dimensional boundaries 8*Q of Q,2 < k < ¢,
except those for which the following condition holds:
Let Wy be the subset of {1,2,---€} associated with
3*Q such that q; is a variable for all i € Yy, then,
either

(1) Bi =0, for some i € ¥y, or
(i) Tiew, ki = 0.

Remark: In order to illustrate this theoremn, espe-
cially conditions (b — i) and (b — it), we consider the
following example:

(1 +1+37)
(2 4+ 2435 gz +4)
Then projections on the interior of @ and the faces ¢, =
g, or @ and the faces g2 = g, or §; are excluded by the
restriction (i) above; likewise the projections on the faces
at which g3 = g, or g3 are excluded by (ii). Thus for this
example the edges comprise the critical set.

We now return to the general case where ¢; are not
restricted to scalars. In this case, a result very similar
to Theorem 3 also holds. This is due to the fact that
the boundary of each value set p:-“'(so, ()) is determined
by the edges of ); which are obtained by fixing all but
one parameters in ¢;. Denote by Qf the collection of all
those £-dimensional boundaries of Q obtained by allow-
ing only one free parameter in each ;. Then, we have
“the following result:

G(SO» q) =

Theorem 4. (22] Given the cascaded uncertain plant
in (12). Then, the boundary of the value set
G(s0,@Q) io contained in the union of the bounduries of
G(30,0'Q),0'Q € Q. The latter can be determined by
Theorem 3.

4 Uncertain Time-delay Constant

Consider a single-input-single-ontput feedback. system
with open loop transfer function described hy

W.(s) = C(s5)G(s)e™" (19)
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where C(3) is the transfer function of the controller,
G(s)e™?", the transfer function of the plant, and ™",
the uncertain time delay of the plant. In fact, G(3) may
include the known portion of the time delay. That is, the
total time delay can be T = Ty + 7 with Tg absorbed in
G/(s8). Moreover, G(s) may consist of known time delays.
The plant is subject to either parametric, unparametric
uncertainties or both, and therefore, a general model for
G(s) is given by

G(s) = K[G(s,q) + AG(s)] (20)

or
G(s) = KG(s,q)[L + L(s)) (21)

where K € R and ¢ = [q4,"++,q¢ € R represent para-
metric uncertainties, and AG(s) and L(s) characterize
additive and multiplicative unparametric uncertainties,
respectively. The parameter vector ¢ usually lies in a
bounding set ¢ similar to (13). On the other hand,
AG(s) and L(s) are bounded as follows:

|AG(jw)| € ye(w) ' (22)

and

|L(jw)| < 7B(w) (23)
for some positive number 4 which represents the size
of the unparametric uncertainties, and a(w) and f{w)
for frequency weightings. 1t is further assumed that the
closed-loop system is HHurwitz stable when 1 = 0,

The robust stability problem now is to determine the
maximum time delay, Tmax, such that the stability of the
closed-loop is preserved for all admissible uncertainties
and all 0 < 7 < Tyax.

The result given below comes from the work [23] where
various types of parametric and unparametric perturba-
tions are considered and graphical methods are described
for determining Tyax. To highlight the basic ideas for
computing T,ax, We consider a special case and a general
case.

Case 1: Uncertain Gain

We first consider a simple case where the open-loop
plant is expressed by

G(s)= KGols), 0< K <K<K  (24)

i.e., only the gain is uncertain,

Define Q to be the set of critical radian frequencies at
which the Nyquist plot of WY(s) = C(8)Go(s) intersects
the ring

RU/K,I/K)={c:ce C1/K <|e| <1/K}, (25)

and denote by #(w), for each w € Q, the angle from
WO(jw) to the negative real axis in the clockwise direc-
tion. Notice that the set Q2 is often a simple interval.

Then, we have
. Blw (2
Tiax = DN ——=, 26
nmax wen w }



Case 2: General Case
Consider the general case where G(s) is given by either
(20) or (21) with G(s,¢) by the following:

N(s,q) _ No(s) + Tty iNils)
D(s,q) — Do(s) + TfgaiDi(s)’

G(s,q) = €Q,

(27)
where No(s) and Dg(s) are nominal polynomials (or
quasipolynomials if G(s) include additional known time
delays), and Ni(s), Di(s),i = 1,2, -+, { are perturbation
polynomials (or quasipolynomials).

We define the following value sets:

W(jw, Q) = C(jw)G(jw, Q) , (28)
and

W(jw,Q,7) = {e:c=C(w)lG(jw,q)+ AG(jw)],
g€ Q,|AG(w) < va(w)}  (29)

for additive perturbations, or

W(jw,Q,7) = {e:e=Ciw)Glw, gL+ L(jw)),
g € Q,|L(Gw)| < 1B(w)} (30)

for multiplicative perturbations.

The computation of Tmax basically involves plotting
the value sets W(jw,Q,7). Once these value sets are
plotted, Tmax can be obtained by checking whether
they intersect the ring R[1/K,1/K] and computing 6(w)
which is the minimum angle from W(jw,Q,7) to the
ring, similar to Case 2.

The determination of W(jw,@,7) takes two steps.
The first step is to plot W(jw, Q). Notice that G(s, q) is
not a simple affine function of ¢, brute force searching of
the boundary of W(jw, @) could be a difficult numerical
task. However, this difficulty can be avoided by using a
recent result in [24] which proved an edge result for un-
certain plants like G(s,q). More specifically, the result of
(24] shows that the boundary of W(jw, Q) is determined
by the edges of (). Therefore, the value set W{jw,Q)
can be simply plotted.

The second step is to “blur” the boundary of W(jw, Q)
to obtain the boundary of W(jw, @,7) according to (22)
or (23), which can be done easily.

To illustrate these ideas, we consider the following ex-
ample which involves an uncertain time constant and
multiplicative perturbations:

. 1 , .
G(s) = K [m + A(J(S)] (31)
with
0.5=< K <1, 05<a< 15, (32)
. 0.02 o
8G) <\ (33)
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Figure 1: Plot for the example in Section 4

and C(8) = 1. The method described above is applied,
and we obtain a sequence of value sets W(jw,@Q,7), as
shown in Figure 1. The corresponding Tiax is calculated
to be 0.40 which occurs at w = 0.96.

%Y  Conclusion

In this paper, we have discussed several nonlinear pertur-
bation structures for which robust stability can be rela-
tively simply tested. These structures include uncertain
real zergs, poles and gains; cascaded uncertain plants
with each subplant admits afline perturbations in nu-
merator and/or denominator; and uncertain time-delay
systems with an uncertain time-delay constant. Fur-
ther investigations are needed to discover new important
structures of perturbations for robust stability analysis.
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