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Abstract. Tlie research on robust stability of uncer- 
tain systems has been undertaking for a number of years. 
We now seem to have a good understanding of the so- 
called linear (or affine) perturbations. The progress for 
tackling nonlinear perturbations has  been relatively slow 
due to obvious difficulties. One approach to nonliiiear 
perturbations is to convert the robust stability problem 
into a certain type of nonlinear programining probleni. 
The deficiencies of this approach are the nuirierical iuef- 
ficieiicy and the lack of a d y t i c a l  insights. 

This paper is meant to emphasize the advairtages of 
exploiting special structures of nonlinear perturbations 
for robust stability. This is motivated by the fact that 
in many practical situations nonlinear perturbations are 
parameterized in a simple manner, such as uncertain- 
ties in the zeros, poles and gains of a transfer function, 
serial interconnections of perturbed subsystems, and un- 
certain time-delay constants. We exam tliese coinnionly 
used structures of nonlinear perturbations and provide 
efficient tests for robust stability. 

1 Introduction 

Inspired by the seminal work of Kharitoiiov on Ilur- 
witz invariance of the so-called interval polynonrials [I] ,  
there has been significant progress in the parainetric si)- 
proach to robust stability analysis. I n  particular, the 
so-called afine perturhliun problerri, i.e., the robust sta- 
bility problem of Cainilies of polynoiirials with coeflicieirts 
subject to affine perturbations, Iias beeir deeply studied. 
On one side, maiiy so-called extreme-poitit trsults have 
been developed, Por example, Klioritonov's result for in- 
terval polynomials [ I) and inany Klraritonov-like results 
[2,3,4]. In  recent papers by 1l.aiitzer [5,6], seine elegarit 
necessary and sullicient coirclitioiis are provided for a sta- 
bility region to hold extreme-point results. On the otlicr 
side, for alliiie perturbatioiis aiid/or staldity regioiis lw 

wliicli extreme point results do not hold, other numeri- 
cally efficient results are available. The well-celebrated 
edge theorem by tlartlett, Hollot and Lin [7] and its varia- 
tions [8,9,10] for polytopes of polynomials and quasipoly- 
nomials give solutionis i n  the parameter space. The frz- 
quency sweeping techniques, initially introduced by Ar- 
goun (11) and Dasgupta (121, now have become very pop- 
ular due to both itsnurnericai efficiency, simple frequency 
doinain interpretation, and, perhaps most importantly, 
its ability l o  computle the robust stability margin (i.e., 
tlie maxiniuin size of perturbations, in certain sense, for 
preserving stability). For example, Barmish in [13] gave 
a frequency sweeping technique to check robust stabil- 
ity of a polytope of polynomials. A different frequency 
sweeping technique was given in [14] by the author to ob- 
tain the robust stability margin wliicli is the maximuin 
size of a polytope of polynoniials for preserving robust 
stability. This tecliiiique was recently iiiiproved by Tsyp- 
kill and Polyak [I51 who obtained an elegant closed-forin 
expression for the robust stability margin. 

Despite of tlie significant achievement in the affine per- 
turbation probleni, I.he progress in  tackling nonlinear 
(and niultilinear, in particular) perturbations has been 
inuch less successful. One approach to this probleiii is to 
treat it i n  its broadest generality, as is done in [lG,17]. 
In [lS], Viciiio, ' h i  and Milanese considered a very geii- 
cral class of iioiilinear perturbations and proposed to 
coiiipute tlie robust titability margin by using a noidin- 
ear prograiniiiiiig algoritlini leclinique called branch utrd 
lourd. 'I'lie nuinerica1 features of the branch and bound 
tecliiiique was iiitcirsively studied by Dalakrishnan, floyd 
and llalenii [ 171. 'l'liit; approacli, although appealing due 
to its universality, has two limitations: First of all, it 
iti often coinpiitationally intensive, especially when the 
iiuiiibcr of parameters is large and/or the degree of poly- 
iioiriisls is Iiigli; Secondly, it does not provide muclr an- 
iilytic iiisiglit into tlie probleiii airtl its solution, i.e., the 

tert, caiiriol IN irvealcd. A n  altcrnative approach is to 
coiisitlw particiilar ~isrrtuicte~izatio~is reflecting specilic 

i c I ~ L i o i i ~ l i i i t  I ie~wcei i  IObtISb  e&al,ility and the paraiiie- 
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Corms of structural information supplied by the aiotlel- 
ing process. This allows verification of robust slabilily 
and computation of robust stability margin coinpiitatioii- 
ally less demanding. Examples of this approach iiiclude 
[18,19,20,21], which treat different types of riiulliliriear 
perturbations by exploiting their specific iriiilliliiiear de- 
pendence; and [22], wliich accouiits for a special class of 
nonlinear perturbations. 

This paper is meant to emphasize the imporla~~ce of 
exploiting special structures of lionlinear perlurbatioits 
[or robustness analysis. Several special structures will 
be discussed in detail: 

Uncertain real zeros,  poles a n d  gaitis [22]. 
For systems with indepeiideiit parailleter pert i r r l m  

tions in real zeros, poles and gains, we explain that 
it is necessary and suficieiit to check certain oire- 
dimensional lilies in the parameter space to clcler- 
mine the Hurwitz invariance of the faiiiily of sys- 
tems. A striking phenomeiioii about these liiie seg- 
ineiits is that their descriptions are indepeiideiit of 
tlie parameter set and tlie inultiplicitics of the zeros 
aid poles. 

Value set characterization for cascaded plaiits 
[22]. Lots of physical pla.iits consist of a cwcatle of 
subplants which may involve iiidependent paraiiie- 
ter perturbatiotls. Furtliermore, parameter pertur- 
bations in each subplant are usually ia siniple foriiis 

while their compound effects might lie liiglily CUIII- 

plex. Suppose each subplant adinits aflinc per111rl)a- 
tions, tlieii tlie value set of the plant trader fuiic- 
tion will be shown to be deteriniiietl also by cer- 
tain one-dimensional liiie segincnts i n  tlie paraiiic- 
ter space. In this case, however, these h ie  segiiieiits 
are “frequency dependent,” i.e., they move iii the 
parameter space when the plant transfer functioii is 
evaluated at different frequencies, or coniplcx poiiit.s 
in general. Despite of iliis frcqueiicy tlcpciitleirrc lea- 
ture, these line segments are simply cliaracteriml, 
and very useful in  plotting value scls aiid, coiise- 
queatly, h i  dctcriniiiiiig robust stability. 

Time-delay sys tems with an uncertain t h e -  
delay constant (231. Uncertain tiiiw-tlcliiy coli- 
staiits are ailother Lype of uunlinc?ar perturbatioiis. 
Kobust stability aiialysis or time-dc:l~iy sybter~rc w i t h  
uncertaiii tinie-delay coiistaiits is kiiowii to be tl i l-  
ficult. liowever, for llie case wlien Ihc pla i i t  triilis- 

fer function consists of a single uncertain Ciil\e-deliLy 
constant, we sliow that tlie iiiaxiiniiiii tiiiie-dvliiy 
lor preserviiig robust stability can be siiiiply clib~cr- 
Iiiiiied, each iii the ciisc wlieii the plsiit  liib iiddi- 
tioiial allilrc perturba~ions iriicl/or soiiie i d d i l i o i i i d  

know 11 ti [tie- tlclay const ituls. 

The results above a.re to be detailed in the sections to 
folioW. 

2 Uncertoaiii Real Zeros, Poles and G a i n s  

For illustrative piirj)oses, let us coiisitler a siiiiple CXBIII- 

ple of uiicertiiiii plant. tlcscribetl by tlie followiiig t rader  
fu iic t io ii: 

( 1 )  
s t z  . 

(s t y 1 ) 2 ( 3  + 1b2) 
G ( s , q )  = li 

with q := ( ~ L , Z , ~ J I , ~ P ~ )  E (2, ant l  

C) = [1,2] x [ l ,2 ]  x [2,4] x [3,4] . (2) 

Wlieii a ui i i ty  feeclback is applied to tlie above 1)1ii1it, 
tlie closed-loop stability is deteriiiiiietl by tlie followiiig 
characteristic polynomial: 

p ( Y ,  q )  = S‘ t (112 t 2IJi )5‘l t (11; t 21)ip2 t k)s  tPfP;, t zk .  
( 3 )  

Noiiliiiear perturbittioils are obviously observed in  tlie 
itt)ove polytioiiria.l. Tlius, checking robust stability seeii~s 
a tlillicult task. IIowever, the technique we are going l o  
present liere, wliiclr was derived i n  [22], will tell us tha t  
the faiiiily of polyiioiriials 

(‘1) P ( S , Q )  := { P ( s l q ) , q  E 8) 
is robustly stable (i.e., l lurwitz invariance) if and oiily 

if p(s, y) is stable for all (1 011 the edges of Q antl oil the 
lollowillg four liiic segnieats: 

{ ( / < * , z * , p I , p ~ )  ::I 5 p i  = 1’2 5 (I}, f i * , z *  = 1,2. (5)  

Note khat clreckiog robust staldity OII a siiigle hie seg- 
ureiit is a simple irunierical task. 

The class of paraiiieter pertiirbations to be consitled 
are generalized to allow tlie following t r a d e r  functioii: 
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Given the bounding set Q as in (8), we denote by 
DkQ a k-dimensional boundary of Q. Note that a k -  
dimensional boundary of Q is a k-dimensional Iryper- 
rectangle obtained by setting all but k componeiits of 
q at their extreme values, and that there are 2kC~t, ,I t l  
k-dimensional boundaries. We define the following alliiie 
line in Rntrnt1: 

In the result below the term open projection is used. 
Consider a k-dimensional boundary DkQ of Q. Noh tlial 
there are ( n  + rn + 1 - k )  elements of q fixed at extraitie 
values on this boundary. Modify L by fixing thcse ( a  -+ 
m + 1 - k) parameters in q to the extreme values as they 
assume in akQ. Then the intersection of tlie interior 
of akQ and this modified affine line is called the open 
projection of L on akQ. 

Theorem 1. [22] Consider the family of trunsfer func- 
tions described in (6)-(8) and a controller C(s), Iheic the 
closed-loop system is stable for a11 q E (2 if and only if if 
is stable on the following line segments of (2: 

We then have the following result: 

all the edges of Q and 

fhe open projections of the a@ne line L in (10) on 
all k-dimensional loundaries akQ of (2 wilh li = 
or k, 2 5 k 5 n + m, except those for which ttre 
following condition holds: 

where 9, (resp. 9") i s  the subset of { l , - . . m }  
(resp. { 1, . n} )  associuted with akQ such that t i  

(resp. pi)  is U variuble for all i E @,, (resp. i E qM). 

We now return to the example in (1)-(2). Notice that iit 
this case the critical subset of Q consists of all the edges 
of Q plus the line segments in ( 5 ) .  Therefore, accordiirg 
to Theorem 1, the robust stability of the closed-loop sys- 
tem is achieved if and only if it is stable for all q 011 the 
edges of Q and the line segments in (5). 

The following result (24, derived froiir 'l'l~coreiii 1, 
gives an edge result for real zero-pole-gain pertiirbatioee. 

Corollary 2 .  Consider lhe futirily of trcrirsfcr. furrc:tiotis 
desciilecl in (G)-(b) and a coirlroller C ( s ) .  Suppuse t 1 i d  

ttre zeros uird poles are rioir-ouerlrl~pii'irly, i.e., Ltre oixii 

overlup. ?'hen, ltre closed-loop systeiu is robustly strtble 
if aid only if il is stable on every edge of Q. 

b 2 ~ ~ l ' V U k '  ( & , T ; ) , ( p  ,fii)* 1 < 1 < 131, 1 < j < 71. lh> tl0l 
f 

3 Value Sets of Cascaded Uncertain Plants 

A geneial descriptioii for the transfer fuiictioir of a cas- 
caded uncertain plant is given by 

i=l 

where Gds)  represents the unperturbed p y t  of G(s, y), 
pi(s ,  q;) is the ith perturbed polynomial, ki denotes the 
mulliplicities of p i ( s ,  q;) and is allowed to be negative for 
capturing perturbations in the denominator of G(s ,  a ) ,  q; 
is the parameter vector of p;(s, qi), and q = [ql , - * , qc], 
wliiclr belongs to the followitig bounding set 

is the parameter vector of the cascaded plant. The de- 
pendence of the polyiiiomials pi( s, 4;) on 4; is assuiiied to 

be affine, i.e., 

where pio(s) is the nominal part and P,(s) is a polynomial 
niatrix. 
For example, the cascade of 

aiid 1 

gives 

The value set of G( s, y), y E 9 ,  evaluated at  s = SO, is 
delined to be 

G(solQ) =  so,^) : (1 E Ql (16) 

Note that tlie value set of each pi(S,qi),qi E Qi is a 
convex polygon with edges corresponding to the edges of 

We first colmider a special case where every qi is a 
scalar, i.e., 4. < qi :; q,,  i = l , . . . , e  . In this case, a 
geeeral descriptioii for (;(sol q )  is given by 

9;. 

-1 - 

L 3  I 

where A is a coiuplex CoiistiLiit, a, aid PI are real COII- 

the interval [a, t q , ( j ,  t crl] clocs not contain zero, i.e., 
( : ( s g , Q )  is I)ountletl. It is also assumed in the above 

~lai~bs. 1~ is  iffiiifiulllcd L h d L  if 13, = 0 and kt < 0 ,  tlwrl 
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that qi does not vanish in the evaluation, which is just 
for simplicity. 

Similar to the previous section, the following aflinp line 
in R' plays an important role: 

LG := { q  p[p1 . * - p #  1. [ai : -CO < p < CO). 
(18) 

Theorem 3.  [22] Consider the hyperrectangle C) in It' 
and the complex function G(s0,q) in (17). Suppose 
G(s0, Q )  is bounded, then there ezisls a collection of line 
segments in Q from which G(s0, ( Q ) )  is mapped. These 
line segments consist of 

(a) all the edges of Q and 

(b) the open projections of the nflne line LG in (18) 011 

all k-dimensional boundaries O k Q  of Q , 2  5 k 5 I ,  
except those for which the Jollowing condition holtls: 
Let gk be the subset of { 1 , 2 , . .  e t ? }  associated t u i t h  
O k Q  such that qi is a variable for all i E q k l  fhen, 
either 

(i) pi = 0, for some i E gk; or 
(ii) &qk ki = 0. 

Remark :  In order to illustrate this tlicorein, espc- 
cially conditions ( b  - i) and (6 - ii), we consider the 
Tollowing example: 

Then projections on the interior of Q and the faces qI  = 
g1 or q1 and the faces q2 = g2 or q2 are exclrtded hy the 
restriction (i)  above; likewise tlie pro,jcct.ions on the hcps 
at which 43 = or q3 are excluded by (ii). Thus for this 
example the edges comprise the critical set. 

We now return to the general case where (I; are not 
restricted to scalars. In  this case, a. result very siniilar 
to Theorem 3 also holds. This is titie to the fa.ct that 
the boundary of each value set pki (so ,  Qi) is determined 
by the edges of Q;  which are obtained by fixing all h i t  
one parameters in q;. Denote by CZ' the collection of all 
those l-dimensional boundaries of Q obtained by allow- 
ing only one free parameter in  each (2;. 'l'licn, we have 
the following result: 

Theorem 4. [22] Given the cnscndd trncertain plant 
in (12). Then, the boundary oJ the vnluc set 
G'(s0, Q )  is containcd it* the uniett *.f the lmim1arle.Q ../ 
G(sO,acQ),acg E 0'. The  lntter can be determined 6g 
Theorem 3. 

4 U n cer t ai 11 Ti in e- d el ay CO 11s tan t 

Consider a single-inpu t-siiigle-ott tpu t fee(lback- syfilcwi 
with open loop transfer futictioii t1cscril)ctl by 

W,(s) = C(.T)G(n?)r-8T ( I ! ) )  

where G ( s )  is the transfer function of the controller, 
G'(s)e-',, the transfer function of the plant, and e--57, 
the uncertain time delay of the plant. In fact, G(s )  niay 
include the known portion of the time delay. That is, the 
total tinie delamy can be T = 370 4- T with TO absorbed it i  

C(s). Moreover, G(s) may consist of known time dehys. 
'rhe plant is subject to either parametric, unparametric 
uncertainties or both, and therefore, a general model for 
G(5) is given by 

G(s) = K ( G ( s , q )  + AG(s)] 

G(a) = f{(?(s,q)[l t L(s) ]  

(20) 

(21) 
or 

where f i  E R a . 1 ~ 1  q = [ ( I I , . . . , ~ ! ]  E R' represen1 para- 
irietric uncertainties, and AG(s) and L ( s )  characterize 
additive and multiplicative unparametric uncertaiiities, 
respectively. The pa.ra.meter vector (I usually lies i n  a. 
bounding set Q sirnilax to (13). On the other hand, 
AG(s) and L ( 5 )  are bouiided as follows: 

IAG(jw)l5 r 4 w )  (22) 

IL(jw)l 5 r P ( w )  (23) 
and 

for some positive number 7 which represents the size 
of the unparametric uncertainties, and a(o) and o ( w )  
for frequency weightings. It, is further assunied that the 
closed-loop system is Hurwitz stable when r = 0. 

'flit! robust stability problem iiow is to determine tile 
maximum time delay, r,,,, such that the stability of t,lie 
closed-loop is preserved for all adrnissible uncerhinties 
and all 0 L: r < T,,,,,. 

The result given below conies from the work 123) where 
vatiorifi types of parametric aad unpa.rainetric perturba- 
tions are considered and graphical methods are described 
for determining T , " ~ ~ .  To highlight the basic ideas for 
computing T ~ , , ~ ~ ,  we consider a. special ca.se and a general 
case. 

Case 1: Uncertain Gain 
We first consider a simple case where the open-loop 

plant is expressed by 

G(.q) = I<Go(5) ,  0 < 5 fi' 5 I? (24) 

i.e., only tlic ga.in is nncerlaiit, 
1)efrrie Q to be the sct of critical radian frequencies a.t 

which the Nyquist plot of IY"(s) = C(s)GU(s) intersects 
the ring 

(25)  R [ l / K ,  l/K] = { c :  c E C ,  l / f <  5 IcI 5 l/K}, 
ancl deriotr by H(w). for cad i  w E R, the angle from 
IV'(jw) to the negative real axis it1 the clockwise tlirec- 
tion. Notice that the sct 11 is oftell a simple interval. 
'l'hen, we have 

(26) 
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Case 2: General Case 
Consider the general case where G(R) is givcn by either 

(20) or (21) with G(s ,q )  by the following: 

where &(a) and &(s) are nominal polynoniials (or 
quasipolynomials if G(s) include additional known time 
delays), and Ni(s ) ,  Di(s) ,  i = 1,2,4 - 1 ,  C are perturbation 
polynomials (or quasipolynomials). 

We define the following value sets: 

W j w l  9)  = C ( j @ ( j w ,  9 )  , (28) 

and 

W ( j w ,  Q ,  7) = {c : c = C ( j w ) [ c ( j w ,  q )  t AG(jw)], 
q E Q ,  lAG(jw)l i r a ( w ) )  (29) 

for additive perturbations, or . 
W ( j w ,  Q,r) = { c  : c = C ( j w ) G ( j w ,  q)[1 t W u ) ] ,  

q E Q ,  l W w ) l  I rD(w)) (30) 

for multiplicative perturbations. 
The computation of T,,, basically involves plotting 

the value sets W ( j w , Q , r ) .  Once these value wts are 
plotted, T,”,, can be obtained by checking wlietlier 
they intersect the ring R[l/Kl I/&] and computing @(U) 

which is the minimum angle from W ( j w , Q , r )  to tlie 
ring, similar to Case 2. 

The determination of W ( j w ,  Q , 7 )  takes two steps. 
The first step is to plot W ( j w ,  Q). Notice that c(s, q )  is 
not a simple afline function of q 1  brute force searching of 
the boundary of lV(jw,  Q) could be a difficrilt numerical 
task. However, this dilliculty can be avoided by using a 
recent result in [24] which proved an edge result for un- 
certain plants like G(s,g). More specifically, tlie result. of 
[24] shows that the boundary of W ( j w l  Q )  is dctermiiiecl 
by the edges of Q .  Therefore, the value set W ( j w , Q )  
can be simply plotted. 

The second step is to “blur” the boundary of IY( j w ,  Q )  
to obtain the boundary of W ( j w ,  Q ,  7) according to (22) 
or (23), which can be done easily. 

To illustrate these idens, we consider the following PX- 
ample which involves an uncertain time constatit and 
inultiplicative p6rturbations: 

(31  ) 

(33) 

-4 -3 -2 -1  0 1 2 3 4 

Re 
Figure 1: Plot for the example in Section 4 

and C(s)  = 1. ‘rlw metliod described above is applied, 
and we obtain a sequence of value sets W ( j w , Q , 7 ) ,  as 
shown in Figure 1. The corresponding T , , , ~ ~  is calculated 
to be 0.40 whicli occurs a t  w = 0.96. 

t, Coilclusion 

In this payer, we have discussed several nonlinear pertur- 
bation structures fix which robust stability can be rela- 
tively fiimply tested. These structures include uncertaia 
real zerqs,, poles and gains; cascaded uncertain plants 
with each subplnirt admits afline perturbations i i i  I I U -  

merntor and/or denominator; and uncertain time-delay 
systems with an uncertain time-delay constant. Fur- 
ther investigations are needed to discover new important 
structures of pertu~rbatio~s for robust stability analysis. 
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