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Abstract: The paper studies the formation merging problem for a leader-follower network. That
is, how to control a team of agents called followers so that they are merged with a team of agents
called leaders to form a larger globally rigid formation. Under the premise that a group of leaders
move in a globally rigid formation with their synchronized velocity known to the followers, we
show that the followers can asymptotically merge themselves to the formation for arbitrarily
initial configurations. Each follower selects its neighbors and also its control law according to
the target formation they aim to achieve and thus it allows directed and time-varying switching
topologies. It is shown that a globally rigid formation can be merged asymptotically for the
leader-follower network in a setup with directed and time-varying graphs if and only if every
follower frequently has a joint path from at least a leader.
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1. INTRODUCTION

Multi-agent systems represent a group of autonomous a-
gents communicating locally with each other and cooper-
ating to execute a task. Formation control is a significant
research problem of multi-agent systems. In recent years, it
has received much attention due to its broad civil (Leonard
et al. (2007)) and military applications (Murray (2007)).

In the paper, we consider a leader-follower network and the
formation merging problem in 3D. By formation merging
we mean two sub-formations of agents are merged to
form one single globally rigid formation. In the paper,
we assume that a group of agents called leaders moves
as a whole in a globally rigid formation while the other
group of agents called followers are initially in an arbitrary
configuration. The objective is to control the followers in
a distributed way so that they asymptotically merge into
a single globally rigid formation with the sub-formation of
leaders. The work is mainly motivated by the necessity of
performing some basic operations such as rejoint/split ma-
neuvers of distributed formations in a distributed manner.

One way to address the formation merging problem is
to figure out how many new distance constraints should
be imposed for agent pairs in the two groups in order
to form a single globally rigid formation and then work

⋆ The work was supported by National Natural Science Foundation
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sity K.P.Chaos High Technology Development Foundation.

out a distributed control law for the agents to meet these
new distance constraints asymptotically. Considering the
inter-agent distance constraints, graph rigidity is a basic
requirement because if the sensing graph is not global-
ly rigid, then there are non-congruent formations whose
inter-agent distances satisfy the specified values (Anderson
and Yu (2011); Cao et al. (2011)). From this perspective,
Eren et al. (2004) consider merging two globally rigid
formations to get a single globally rigid one in both R

2 and
R

3; Yu et al. (2006a) aim to control the merging efficiently
and optimally in the sense of minimizing the number of
added distance constraints; and Yu et al. (2006b) extend
the idea to merge more than two (minimally) rigid forma-
tions to obtain a single (minimally) rigid formation. For
directed graphs, the concept of persistence is introduced
for merging two sub-formations (Hendrickx et al. (2008)).
However, it becomes challenging in analyzing the stability
of formations in a directed graph setting (Cao et al. (2008);
Guo et al. (2010)).

Another way to address the formation merging problem
is to consider the displacement constraints between agent
pairs and use relative positions measured in their own local
frames to design a linear control law for the purpose as for
formation control by linear coordination laws (Lin et al.
(2004, 2013b); Han et al. (2013)). In Lin et al. (2013b)
and Han et al. (2013), a complex Laplacian based control
law is introduced to address formation control problems in
the plane under a directed and fixed topology, for which
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no global knowledge of reference frame is required. Lin
et al. (2013a) extend this idea to solve formation control
problems in d-dimensional space.

Borrowing these ideas, we aim to solve the formation
merging problem by exploring procedures for control law
design as well as necessary and sufficient conditions for
asymptotic formation merging. In practical applications,
switching of an information flow graph may be induced by
some unpredictable changes in the system. So we consider
the scenario of directed and switching topologies in the
paper. To our best knowledge, there is rare work address-
ing formation control problems in a switching topology
setting. In this paper, to make the problem solvable, the
neighbors of each agent are selected to meet a certain
convexity assumption according to the target formation
they aim to achieve. Then a distributed control law is pro-
posed for formation merging with the control parameters
designed based on the specific target formation. A nec-
essary and sufficient condition for solving the problem of
asymptotically merging a group of followers with a group
of leaders to form a globally rigid formation is obtained.
That is, every follower should frequently have a joint path
from at least a leader. The analysis of the asymptotic
merging behavior in a switching topology setting mainly
relies on graph Laplacian and an idea similar to the one
based on joint spectral radius for switched systems.

Notation: R denotes the set of real numbers. 1n repre-
sents the n-dimensional vector of ones and In represents
the identity matrix of order n. The symbol ⊗ denotes the
Kronecker product.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Preliminaries

A directed graph G = (V , E) consists of a non-empty finite
set V of elements called nodes and a finite set E of ordered
pairs of nodes called edges. A walk in a graph G is an
alternating sequence

W : v1e1v2e2 · · · vk−1ek−1vk

of nodes vi and edges ei such that ei = (vi, vi+1) for every
i = 1, 2, . . . .k − 1. We say that W is a walk from v1 to
vk. The length of a walk is the number of the edges in the
walk.

Let R ⊂ V be a subset of nodes in G = (V , E). A node
v ∈ V − R is said to be reachable from R if there exists
a walk from a node in R to v. Moreover, R is said to be
closed in G if any node in R is not reachable from V −R.

When the edge set in a directed graph changes over time,
we call it a time-varying graph, denoted as G(t) = (V , E(t)).
For a time-varying graph G(t) = (V , E(t)), a node v is said
to be uniformly jointly reachable fromR ⊂ V if there exists
T > 0 such that for all t, v is reachable fromR in the union
graph G([t, t+T ]), whose edge set is the union of the edge
set of G(t) over the time interval [t, t+ T ].

A configuration in R
3 (or simply called a configuration

in this paper) of a set of n nodes is defined by their
coordinates in the Euclidean space R

3, denoted as p =
[pT

1 , . . . , p
T

n]
T, where each pi ∈ R

3 for 1 ≤ i ≤ n. A
framework in R

3 (or simply called a framework in this

paper) is a graph G equipped with a configuration p in R
3,

denoted as F = (G, p).

We say that two frameworks (G, p) and (G, q) with G =
(V , E) are equivalent, and we write (G, p) ∼ (G, q), if ‖pi −
pj‖ = ‖qi − qj‖, ∀(i, j) ∈ E . We say that two frameworks
(G, p) and (G, q) are congruent, and we write (G, p) ≡ (G, q)
(or simply p and q are congruent, p ≡ q), if ‖pi−pj‖ = ‖qi−
qj‖, ∀i, j ∈ V . A framework (G, p) is called globally rigid if

(G, p) ∼ (G, q), ∀q ∈ R
3n ⇔ (G, p) ≡ (G, q).

Denote by Ni the set of neighbors of node i. For a directed
graph, the Laplacian matrix L ∈ R

n×n is defined as
follows:

L(i, j) =











−wij if i 6= j and j ∈ Ni

0 if i 6= j and j 6∈ Ni
∑

k∈Ni

wik if i = j.

where wij > 0 is called the weight on edge (j, i). According
to the definition, L satisfies L1n = 0.

A square matrix E ∈ R
n×n is called stochastic if it is

nonnegative and every row sum equals 1, i.e., E1n = 1n.
And the product of stochastic matrices is also stochastic
(Lin (2008), page 34). For an n×n nonnegative matrix E,
the associated graph G(E) consists of n nodes v1, . . . , vn
where an edge leads from vj to vi if and only if the (i, j)-
th entry of E is not zero.

2.2 Problem statement

In the paper, we study the control problem of formation
merging. That is, under the premise that the leaders are
already in a globally rigid formation, how do we control
the followers such that they are merged with the leaders to
form a globally rigid formation? The paper aims to solve
the formation merging problem in a directed and switching
topology setting. That is, the information flow graph for
the followers is directed and switches over time. As a
first step towards the general formation merging control
problem, we assume in the paper that the target formation
of followers entirely lies in the three-dimensional convex
hull spanned by the leaders.

We consider a leader-follower network, with m leaders
labeled a1, . . . , am and n followers labeled b1, . . . , bn in
three dimension. Let zi denote the 3D position of agent
i. We consider a target configuration pa = [pT

a1
, . . . , pT

am
]T

in R
3m for the leaders and a target configuration pb =

[pT

b1
, . . . , pT

bn
]T in R

3n for the followers, where each pi ∈ R
3

for i = a1, . . . , am, b1, . . . , bn. We assume that agents do
not overlap each other in the target configuration.

We say the leaders are in a globally rigid formation pa
if it holds for all t that zi(t) = A(t)pi + c(t) for i =
a1, . . . , am where A(t) at any time t is a unitary matrix
corresponding to a rotation and c(t) is a vector in R

3

representing a translation. Moreover, we say the whole
network asymptotically reaches a globally rigid formation
[pT

a, p
T

b ]
T if it holds that zi(t) → A(t)pi + c(t) for i =

a1, . . . , am, b1, . . . , bn.

Since at least four agents are required to form a formation
in 3D, we assume m ≥ 4. Suppose the m leaders are in a
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globally rigid formation pa and is governed by the following
dynamics

żi(t) = vr(t), i = a1, . . . , am (1)
where vr(t) is a common reference velocity, which is also
known to the followers.

Remark 2.1. If vr(t) is not known to all followers but par-
tial followers, then vr(t) can be available to all followers by
some consensus schemes, such as (Wieland and Allgower
(2009)). We do not focus on the velocity consensus problem
in this paper, so we assume that the synchronized velocity
vr(t) is known to the followers.

Consider a single integrator model for the followers, i.e.,

żi = ui, i = b1, . . . , bn (2)

where ui ∈ R
3 represents the velocity control input of

follower i. Define the aggregate state zb =
[

zT

b1
, · · · , zT

bn

]T

,

as a column vector in R
3n. Suppose each follower i has

an onboard sensor allowing it to measure the relative
positions of its neighbors. We use a time-varying graph
G(t) = (V , E(t)) to describe the sensing topology, where
V = Va∪Vb with Va = {a1, . . . , am} and Vb = {b1, . . . , bn},
and an edge (j, i) ∈ E(t) means that zj − zi is available
to agent i at time t. Without loss of generality, we assume
that every leader does not have an incoming edge from any
others. Moreover, it is assumed that the system is under
a dwell-time constraint, i.e., the interval between any two
switching instants is greater than a constant.

3. MAIN RESULTS

In this section, we first provide a procedure for the design
of formation control law and next present stability analysis
for the formation merging control problem.

3.1 Control design

We consider the following control law for each follower i,

ui = vr(t) +
∑

j∈Ni(t)

kij(t)(zj − zi), (3)

where Ni(t) is the neighbor set of follower i at time t
and kij(t) are control parameters that will be designed
in the following. To make the problem addressable, we
assume that if agent i has neighbors at time t, then its
neighbors are selected so that the convex hull spanned by
{pj : j ∈ Ni(t)} contains pi in the target configuration
p = [pT

a, p
T

b ]
T. We call it the convexity assumption.

Remark 3.1. To meet convexity assumption, each follower
i disregards all the neighbors if their convex hull does
not contain i in the target configuration. Technically,
the communication range can be increased so that the
followers can find neighbors to meet this assumption.

Next we present a procedure for the design of kij(t)’s and
for simplicity, we omit t in all the statements unless it
is necessary. As it is assumed that agents do not overlap
in the target configuration, then to meet the convexity
assumption an agent cannot have only one neighbor. So
there four possible cases and we provide a procedure for
the design of kij ’s for these four cases.

(i) If an agent has no neighbor, then the control law (3)
degenerates to

ui = vr(t).

(ii) For the case that an agent’s neighbors form a one-
dimensional convex hull in the target configuration, we
first consider that agent i has only two neighbors, say i1
and i2. Then it can be obtained that

pi = α1pi1 + α2pi2 , (4)

where α1 =
‖pi2

−pi‖

‖pi2
−pi1

‖ and α2 =
‖pi1

−pi‖

‖pi2
−pi1

‖ . It is clear that

α1, α2 > 0 and α1 + α2 = 1. Second, if agent i has more
than two neighbors, then we can take any two of them
containing pi and obtain the same formula as (4), i.e.,

pi = αl
1pil

1
+ αl

2pil
2

where l enumerates all possible combination of two neigh-
bors containing pi. Then, consider a convex combination of
these representations for pi. That is, using γl’s that satisfy
γl ∈ (0, 1) and

∑

l γ
l = 1, we can have

pi =
∑

l

γl(αl
1pil

1
+ αl

2pil
2
) :=

∑

j∈Ni

αjpj .

It is certain that αj > 0 for all j ∈ Ni and
∑

j∈Ni
αj = 1.

For this case, we take kij = αj for j ∈ Ni.

(iii) For the case that an agent’s neighbors form a two-
dimensional convex hull, we first consider that agent i
has only three neighbors, say i1, i2, and i3, and they
form a triangle in the target configuration. Suppose the
coordinates of pi1 , pi2 , and pi3 are as follows:

pi1 = (xi1 , yi1 , zi1), pi2 = (xi2 , yi2 , zi2), pi3 = (xi3 , yi3 , zi3).

Denote x = [xi1 , xi2 , xi3 ]
T, y = [yi1 , yi2 , yi3 ]

T and z =
[zi1 , zi2 , zi3 ]

T. We let Si1i2i3 denote the area of the triangle
formed by pi1 , pi2 and pi3 and it can be calculated by the
following formula:

Si1i2i3 =
1

2

√

S2
1 + S2

2 + S2
3

where S1 = det[x, y,13]
T, S2 = det[y, z,13]

T, S3 =
det[z, x,13]

T. Then it can be obtained that

pi = α1pi1 + α2pi2 + α3pi3 (5)

where α1 =
Sii2i3

Si1i2i3

, α2 =
Si1ii3

Si1i2i3

, and α3 =
Si1i2i

Si1i2i3

. It is

true that α1, α2, α3 > 0 and α1 + α2 + α3 = 1. Second,
if agent i has more than three neighbors, we can do the
similar procedure as for case (ii) to get the representation
for pi in terms of all its neighbor’s coordinates, i.e.,

pi =
∑

j∈Ni

αjpj

where αj > 0 for all j ∈ Ni and
∑

j∈Ni
αj = 1. We then

take kij = αj for j ∈ Ni.

(iv) Similarly, for the case that an agent’s neighbors form a
three-dimensional convex hull, we first consider that agent
i has only four neighbors and these four neighbors, say
i1, i2, i3, i4, form a tetrahedron containing pi inside in the
target configuration. Denote by Vi1i2i3i4 the signed volume
of the tetrahedron formed by pi1 , pi2 , pi3 , pi4 . It can be
calculated by the following formula:

Vi1i2i3i4 =
1

6
det([pi2 − pi1 , pi3 − pi1 , pi4 − pi1 ]

T).

Then it can be obtained that

pi = α1pi1 + α2pi2 + α3pi3 + α4pi4 , (6)

where

α1 =
Vii2i3i4

Vi1i2i3i4

, α2 =
Vi1ii3i4

Vi1i2i3i4

, α3 =
Vi1i2ii4

Vi1i2i3i4

, α4 =
Vi1i2i3i

Vi1i2i3i4

,
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for which αi > 0 and α1 + α2 + α3 + α4 = 1. Second,
if agent i has more than four neighbors, we can do the
similar procedure as for case (ii) to get the representation
for pi in terms of all its neighbor’s coordinates, i.e.,

pi =
∑

j∈Ni

αjpj

where αj > 0 for all j ∈ Ni and
∑

j∈Ni
αj = 1. We then

take kij = αj for j ∈ Ni.

Remark 3.2. With the convexity assumption, αj > 0 and
∑

j∈Ni
αj = 1. This is important for the stability analysis

as otherwise it becomes very challenging due to possibly
negative weights in the interaction control law.

3.2 Stability analysis

In this section, we present stability analysis for the system
under the proposed control law (3).

Let L(t) be the Laplacian matrix for the graph with
weights kij(t)’s associated to edges (j, i)’s at time t. Under
the control laws (1) and (3), the overall system can be
described as

ż = −(L(t)⊗ I3)z + 1m+n ⊗ vr(t), (7)

where z is the aggregated state of all zi’s. By our assump-
tion on the information flow graph G(t), we know that L(t)
has the following form

L(t) =

[

0m×m 0m×n

Llf (t) Lff(t)

]

. (8)

Also, by the design procedure given in Subsection 3.1, we
know that L(t) satisfies

(L(t)⊗ I3)p = 0 and L(t)1m+n = 0. (9)

The following result shows that p = [pT

a, p
T

b ]
T is a stable

equilibrium formation for the leader-follower system under
the proposed control law.

Theorem 1. Suppose the leaders are in the globally rigid
formation pa. Then

z∗(t) = (Im+n ⊗A)p+ 1m+n ⊗ (c+

∫ t

0

vr(τ)dτ),

where A is a unitary matrix and c is a constant vector
determined by the leaders, is an equilibrium solution of
system (7). Moreover, it is stable.

Proof: Let y = z − 1m+n ⊗
∫ t

0 vr(τ)dτ . Then system (7)
can be transformed to

ẏ = −(L(t)⊗ I3)y. (10)

To show z∗(t) is an equilibrium solution of system (7),
it remains to show y∗ = (Im+n ⊗ A)p + 1m+n ⊗ c is an
equilibrium point of system (10). From (9) we can get

(L(t)⊗ I3)[(Im+n ⊗ A)p+ 1m+n ⊗ c]

= (L(t)⊗A)p = (Im+n ⊗A)(L(t)⊗ I3)p = 0.

Hence, y∗ is an equilibrium point of system (10).

Next, we show that z∗(t) is stable, which is equivalent
to show y∗ is a stable equilibrium point of system (10).
Suppose the switching time is t0, t1, t2, . . .. Consider any
t > 0. Without loss of generality, say t is in the interval
[ti, ti+1]. Thus, the transition matrix can be written as

Φ(t, ti) = exp(−(L(ti)⊗ I3)(t− ti)) (11)

and the solution of system (10) can be described by

y(t) = Φ(t, ti)Φ(ti, ti−1) · · ·Φ(t1, t0)y
0

for an initial state y0. Note that every transition matrix
in the above formula is stochastic (Lin (2008), page 51)
and recall that the product of stochastic matrices is also
stochastic. It follows that every state yi(t) is a convex
combination of y0a1

, . . . , y0am
, y0b1 , . . . , y

0
bn
. That is,

yi(t) =
m
∑

j=1

αaj
y0aj

+
n
∑

k=1

αbky
0
bk
, (12)

where αaj
≥ 0 (j = 1, . . . ,m), αbk ≥ 0 (k = 1, . . . , n) and

∑m

j=1 αaj
+
∑n

k=1 αbk = 1. For any arbitrary ǫ > 0, we
choose δ = ǫ. Suppose

(∀i) ‖ y0i − y∗i ‖≤ δ.

Since y∗ is an equilibrium point, then from (12) it follows
that

y∗i =
m
∑

j=1

αaj
y∗aj

+
n
∑

k=1

αbky
∗
bk
.

Thus, we have for every i,

‖ yi(t)− y∗i ‖ =‖
m
∑

j=1

αaj
(y0aj

− y∗aj
) +

n
∑

k=1

αbk(y
0
bk

− y∗bk) ‖

≤
m
∑

j=1

αaj
δ +

n
∑

k=1

αbkδ = δ = ǫ

and the conclusion follows. �

The next result presents a necessary and sufficient graph-
ical condition to ensure that a globally rigid formation
of [pT

a, p
T

b ]
T can be asymptotically merged in the leader-

follower network.

Theorem 2. Suppose the leaders are in the globally rigid
formation pa. A globally rigid formation of [pT

a, p
T

b ]
T can

be asymptotically merged under the distributed control
law (3) if and only if every follower is uniformly jointly
reachable from Va.

The proof requires a lemma from graph theory.

Lemma 3. (Beineke and Wilson (1997), page 87) Let E be

a nonnegative matrix and denote e
(k)
ij the (i, j)th entry of

Ek. Then e
(k)
ij > 0 if and only if the associated graph G(E)

has a walk from node vj to node vi of length k.

Proof of Theorem 2: (⇐) Suppose the graph switches
at t0, t1, t2, . . .. Recall the dwell-time constraint, which
means that there exists a τD > 0 such that ti+1 − ti ≥
τD for all i ≥ 0. Moreover, we can always find a τm > τD
large enough such that ti+1 − ti ≤ τm for all i ≥ 0. When
there are no switching in [ti,∞] for some i, we can choose
any τm > τD to construct virtual switching instants.

If every follower is uniformly jointly reachable from Va, by
the definition there exits a T > 0 such that for all t in the
union graph G([t, t + T ]) every follower is reachable from
Va. Now we generate a subsequence {tmk

} of the sequence
{ti} as follows:
(1) Set m0 = 0.
(2) If tm0

+ T ∈ (ti−1, ti], set m1 = i.
(3) If tm1

+ T ∈ (ti−1, ti], set m2 = i.
(4) And so on.
Thus, for the transformed system
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ẏ(t) = −(L(t)⊗ I3)y(t),

we have at the subsequence of time instants tmk
,

y(tmk+1
) = Ψ(tmk

)y(tmk
) (13)

where Ψ(tmk
) =

[

exp
(

−
∫ tmk+1

tmk
L(t)dt

)]

⊗ I3. Denote by

Ξ the set of all Ψ(tmk
)’s derived above. We regard the

above evolution as a discrete-time switched system and
for simplicity we rewrite (13) as

y(k + 1) = Ψ(k)y(k) with Ψ(k) ∈ Ξ. (14)

Note that, due to the special structure of L(t) described
in (8), Ψ(k) has the following form

Ψ(k) =

[

I3m×3m 03m×3n

Ψlf (k) Ψff (k)

]

.

Next we show that for all Ψ(k) ∈ Ξ, ‖Ψff(k)‖∞ is
uniformly upper-bounded by a constant σ < 1. For any
L(t), we can decompose it as −L(t) = −D(t)+E(t) where
D(t) is a diagonal matrix and E(t) is a nonnegative matrix
with all diagonal entries zero. Thus,

Ψ(k) =

[

exp

(

−

∫

tmk+1

tmk

D(t)dt

)

exp

(

∫

tmk+1

tmk

E(t)dt

)]

⊗ I3.

We denote E =
∫ tmk+1

tmk
E(t)dt and it is noted that

E = E(tmk
)(tmk+1 − tmk

) + · · ·+E(tmk+1−1)(tmk+1
− tmk+1−1).

By the condition that every follower is uniformly jointly
reachable from Va, we can then know that every follower
is reachable from Va in the associated graph G(E). Then,
considering the equality

exp(E) = I + E +
E2

2!
+ · · ·

and the fact that exp
(

−
∫ tmk+1

tmk
D(t)dt

)

is a positive

diagonal matrix, we can infer by Lemma 3 that each row
of Ψlf (k) has a nonzero entry because each row in the
corresponding block of exp(E) has a nonzero entry. On
the other hand, as shown in Theorem 1, we know that
Ψ(k) is a stochastic matrix. The above two conclusions
together imply that ‖Ψff(k)‖∞ < 1. Moreover, recall that
τD ≤ ti+1 − ti ≤ τm. And with the fact that L(ti)’s are
taken in a finite set as there are only a finite number of
graphs with different connectivity, it follows that there is a
positive constant σ < 1 such that ‖Ψff(k)‖∞ is uniformly
upper-bounded by σ.

Since by assumption that the m leaders are kept in a
globally rigid formation pa, from (14) we then have

yb(k + 1) = Ψff(k)yb(k) + Ψlf (k)y
∗
a, (15)

where yb is the aggregated state of yi’s associated to the
followers and y∗a = (Im ⊗ A)pa + 1m ⊗ c for a constant
unitary matrix A and a constant vector c, representing
the fixed globally rigid formation of the leaders. Due to the
fact that ‖Ψff(k)‖∞ < 1 we can obtain that I − Ψff(k)
is invertible. Then system (15) has a unique equilibrium
point y∗b = (In ⊗ A)pb + 1n ⊗ c. So by the coordinate
transformation q(k) = yb(k)− y∗b we get

q(k + 1) = Ψff (k)q(k). (16)

Thus, to show whether a globally rigid formation [pT

a, p
T

b ]
T

can be asymptotically merged, it is necessary to show that
q(k) asymptotically converges to 0. Since we just showed

that ‖Ψff(k)‖∞ is uniformly upper-bounded by σ < 1, it
follows straightforward that q(k) asymptotically converges
to 0. So we can reach the conclusion that

lim
j→∞

yb(tmj
) = y∗b .

Now let us look at the evolution of the continuous state
yb(t) in the interval between any two consecutive switching
instants. From the proof of Theorem 1, we know that for
any t ∈ [ti, ti+1) and any arbitrary ǫ > 0

‖yi(ti)− y∗i ‖ ≤ ǫ ⇒ ‖yi(t)− y∗i ‖ ≤ ǫ.

Therefore, it is known that limt→∞ yb(t) = y∗b . And the
conclusion follows.

(⇒) We prove it in a contrapositive way. Assume that
there exists a follower, say bi, that is not uniformly jointly
reachable from Va. That is, for any T > 0 there exists
t∗ ≥ 0 such that in the union graph G([t∗, t∗ + T ]), bi is
not reachable from Va. Let Θ be the set including all such
followers that are not reachable from Va in G([t∗, t∗ + T ]).
Then it can be known that Θ is a closed set in G([t∗, t∗ +
T ]). So the states of these followers at t ∈ [t∗, t∗+T ] remain
in the convex hull of their states at t∗ and do not converge
to form a globally rigid formation with other agents. �

4. SIMULATION

In this section, we present a simulation to validate our
theoretic results. We suppose there are 8 leaders who are
moving in a globally rigid formation (a cube in 3D) as
shown in Fig. 1. Consider 12 followers and we expect the
leader-follower network achieves the target formation as a
whole (Fig. 1).
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Fig. 1. A target formation for a leader-follower network
with 8 leaders and 12 followers.

Denote the set of leaders by Va = {1, 2, . . . , 8} and
denote the set of followers by Vb = {9, 10, . . . , 20}. The
followers can select its neighbors by verifying the convexity
assumption at any time t. But for simplicity of simulation,
we consider fixed topologies as shown in Fig. 2. It can be
checked that every follower is uniformly jointly reachable
from Va for the time-varying graph G(t) by taking T = 3. A
simulation result is given in Fig. 3 where several snapshots
at different time are presented. From the simulation we see
that the followers can start at any initial positions and are
asymptotically merged with the leaders to form a target
formation.

5. CONCLUSION

This paper studies the formation merging control problem
under directed and switching topologies for a leader-
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Fig. 2. A periodic switching graph G(t) that switches
among three different topologies G1, G2 and G3.
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Fig. 3. The followers are asymptotically merged with a
formation of leaders to form a larger target formation.

follower network. A distributed control law is proposed for
this purpose with the control parameters designed based
on the specific target formation of the whole network. We
introduce a rule for the selection of neighbors also based on
the target formation to meet a convexity assumption. With
the introduction of this convexity assumption, we present
a necessary and sufficient condition for asymptotically
merging a group of followers with a group of leaders
to form a globally rigid formation. One possible future
research is how to deal with the formation merging control
problem when the convexity assumption is relaxed.
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