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Finite test of robust strict positive realness
LIN XIEf and MINYUE FU%

The paper is concerned with the problem of testing the robust strict positive realness
(SPRness) of a family of rational functions with both the numerator and the
denominator dependent on the same set of parameters. We show that this problem
can be solved by using a series of Routh tables. In other words, the robust SPRness
of the whole family can be tested by performing only a finite number of elementary
operations (arithmetic operations, logical operations and sign tests).

1. Introduction

It is well known that the problem of strict positive realness (SPRness) plays an
important role in many system analysis and design problems. Examples range from
absolute stability analysis for linear systems with uncertain/nonlinear perturbations
in Siljak (1969), to the convergence study of adaptive controllers in Goodwin and Sin
(1984). There are already several papers on the SPRness of rational functions with
uncertain parameters. A family of rational functions called interval plant was
considered in Dasgupta (1987) and it is shown that the robust SPR of this family of
rational functions is equivalent to the SPR of 16 special members. This result is
extended by Vicino and Tesi (1991) to the SPR problem of a real shifted family of
interval transfer functions. Chapellat er al. (1989) strengthened the condition of
Dasgupta (1987) such that the number of functions needing to be checked is reduced
to eight. Dasgupta et al. (1991) considered a family of rational functions with the
denominator and the numerator multilinearly or linearly dependent on two in-
dependent sets of parameters. It is shown that the whole family is robustly SPR if and
only if the rational functions associated with the extreme values of the parameters are
SPR. A more general case is considered by Fu (1992), where the transfer function is
allowed to have both independent multilinear parameters and dependent linear
parameters in numerator and denominator. It is shown that only certain extreme
points and edges of the parameter set need to be tested for the SPRness of the whole
family. However, the remaining problem is to find an efficient method for checking the
SPRness of a family of rational functions involving a single uncertain parameter.

This paper considers the same problem as did Fu (1992) as mentioned above.
Following some recent papers on finite decidability of stability and other related
problems, we show that the SPRness of the whole family can be determined by using
a series of Routh tables which involve only a finite number of elementary operations
(i.e. arithmetic operations, logical operations and sign tests). The structure of this
paper is as follows: in § 2 we formulate the robust SPR problem and recapture the main
result of Fu (1992) and results for testing the positivity of polynomials. The main result
is given in §3 and its computational aspects are discussed in §4.

Received 21 August 1994. Revised 18 July 1995.
t Department of Electrical Engineering, The University of Newcastle, N.S.W., 2308,

Australia.

0020-7179/96 $12:00 © 1996 Taylor & Francis Ltd



888 Lin Xie and Minyue Fu

2. Problem formulation and preliminaries
Definition (Narendra and Taylor 1973): A rational function

G(s) = % (1)
is called positive real (PR) if: G(s) is real for real s, and Re G(s) = 0, V Re[s] > 0.

Suppose that G(s) is not identically zero. Then G(s) is called strictly positive real
(SPR) if G(s—e¢) is PR for some ¢ > 0. Further, a family of rational functions is said
to be robustly SPR if every member of the family is SPR.

Consider the following parametrized rational function:

N(s,q,,9,)

G(S, qn’ qd’ qb) = D(S q q )
sYa> 4o

b/(q,.9,) 5 Z [bio+0:1(q,-4,)]°

IngE

= _ i @
a4, 49,5 Z la;+ a1 (94 4,)] 5
=0 i=0

where a,, and b,, are the coefficients of the nominal parts of the denominator and
numerator, respectively; a,,(-) and b,,(-) represent uncertainties in the coefficients.

9,€0, < R, q,€0,eR", q,€0, = R™;0,,0,,0,
are given bounding sets. It is assumed that:
(@) a;(q4 9q,) are multilinear functions of ¢, and linear functions of ¢,
(b) b.(q,,q,) are multilinear functions of ¢, and linear functions of ¢,
() Q,, Q,and Q, are hyperrectangles, all containing the origin
(d) the leading coefficients a,,,+a,,(q,, q,) and b,,,+b,,,(4,,» ¢,) do not vanish for
any qn € Qns qd € Qd’ qb € Qb'
Below, let
q= (qns 94> qb)’ Q = Qn ® Qd S Qb (3)

and denote the set of vertices and the set of edges of a hyper-rectangle H by V(H) and
E(H), respectively. We also define two subsets of Q as follows:

Qeage = V(Q,) ® V(Q,) ® E(Q,) “4)
Q,=WMQ,)® V@)@ V@, ®)
and define the set of admissible rational functions as
G =1G(59,:92:9) 4, € C>4:€ > 4, € O} (6)
or in short
49 =1{G(s,9):q€ 0} (7

Then we have the following result.

Lemma 1 (Fu 1992): Given the family of rational functions 4 in (6) satisfying
assumptions (a)~(d), 9 is robustly SPR if and only if G(s, q) is SPR for every q€ Q .4,
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This result shows that it is sufficient to test a certain number of edges of 0. To
check the SPRness of an individual rational function, W€ have the following result.

Lemma 2 (Ioannou and Tao 1987): Assume that G(s) is a real rational function, not
identically zero for all s. Then G(s) is SPR if and only if

(a) G(s)is analytic in Re [s] =0, 1ie. D(s) is strictly Hurwitz
(b) Re [G(w)] > 0,Vowelo, )
(o) lim Re[G({o)] > 0 whenr*=0

|l

(i) lim w? Re[G(iw)] >0 when r* =1, 0T

eol—-0

(iii) lim Re[G(@)] >0, lim GEJ:)") >0 whenr*=—1

|w|—-© |00

where r* is the relative degree of G(5)-

Remark 1: Condition (ci) above is actually implied by (b). We list it here simply for
convenience.

In order to produce 2 finite test, we need to use the Cauchy index.

Definition 1 (Gantmacher 1960): The Cauchy index of areal rational function R(x)
in a real interval (a,b) is denoted by I PR(x) and defined by the difference between the
number of jumps of R(x) from — X to + oo and that of jumps from + 00 to — 0,
where a and b are real numbers Of + 0.

The Cauchy index can be computed by using Sturm’s theorem (Gantmacher 1960)
which involves constructing 2 Routh table (Gantmacher 1960). We will only be
interested in 17, R(x) in this paper. We also point out that the test of Re [G(w)] > 0,
Yw [0, 00) can be converted into @ Cauchy index problem, then be carried out by
constructing a Routh table (Jury 1970).

3. Main results
First we need a robust version of Lemma 2. For the robust SPRness of a family of
rational functions, We give the following result.

Theorem 1: Consider the family ofrationalfunctions (7); then % is robustly SPR if and
only if the following conditions hold:

(a) D(s,q") 1S strictly Hurwitz, for some q° € Qeage
(b) Re[N(o.gIRe [D(jo, P1+1m [N(o, 91 Im (DG, 9] >0, Yoel, ©), Vq€
edge

(¢) @ lim Re[G(w, 9] > 0,Vqg € Qeage ifr* =0, 0r

|w|—=©

(i) lim w?Re[G(w, 9] > 0,Yq € Qeage ifre=1,0r

lwl»oc
i) lim Re[GGo. @) > 0 and lim G(Jj“” D 0.Vge Qe I =""1
|w|—>0 ||

where r* is the relative degree of G(w, q).
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Proof:

Necessity. This follows directly from lemma 2, by noting that

0, 9)) = XNG2. DIRe (Do, )]+ i (i, g 11 (Do, g)]
Re[Gli, g)] = (Re[DGo, g))*+(Im [D(jor, g1 ©

Suﬁcz’ency. Assuming that conditiong (@—(c) hold, we neeqd to show that ¥ s
robustly SPR. From Lemma 1, we need only to show that G(s,q) is robustly SPR for
EVEry 4€ 0, y4e- Suppose that there exists some 4€ Q4,0 such that G{(s,9) is not SPR.
Then, from (8) and Lemmga 2, the only possibility is that G(s,§) is not analytic in
Re[s]>0, je. D(s, §) has roots in the closed right half plane (CRHP). Note that the
€t Q.gee 1S connected set. Then from the continuity of the Toots of D(s, ¢) with
Tespect to g, there must be another ge Oeige and G e R, such that D(jid, §) = 0, which
means that

Re [N, §IRe [D(jo, 91+1m [N, §)] Im [D(a, §)] = o

Clearly this Contradicts (5). So D(s,q) is analytic in Re [s1>0, vge Oeige-
Consequently, G(s,q) is SPR for allge O.qge and, by Lemma 1, this is equivalent to
that G(s, q) is SPR for aJ| q€Q. O

Now we concentrate on checking condition () in Theorem L, ie. whether the

parameters in ¢, anqd 4, to their vertices)

D¢ 2 [eo+ Acy] s’ ~

- 0 i A<Ai<] (€)
YA Y [dyt d, s
i=0 =0

where / represent the free barameter in Q,. From (9) it follows that

Re[g(jo, Al>0
if and only if

P(,l,co):=/12Re(NlD;")+iRe(A{,D§"+MD5*)+Re(A{,D5*)>0, Vwe0, 00), defz, J]

Below, we will derive a finjte algorithm for checking (10); see the Appendix for
proof.

Lemma 3—Key lemma: Denote
P(A,w) = a;(w) /12+a2(a))/1+a3(a)) (11)

where a(w), i = 1,2,3, are real polynomialg in w. Then P(A,0) > 0, Vie[, 4] and
Yoelo, + 0) if and only if the Jollowing conditions holg-

(@ a,(+ 0) A%+ a,( + ) A+a,(+ 0) > 0, Yie[l ]

) a,(w) 22+ ay(®) A+ ay(w) > (

a(w) A2+ a,(w) A+ a3(w) >0, VYope [0, + o0)
(©) 2ay(w)+ ay(@) (A+ 1) + 2ay(w) A1 > 0, whenever aX(cy) — 4a,(w) ay(w) = 0
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From Lemma 3 and the following result, it will become clear that the SPRness of
an edge can be tested with a finite number of elementary operations.

Lemma 4 (Fu 1993): Given two real polynomials ry(w) and ry(), the following two
statements are equivalent:

(@) ry(w) > 0, whenever r(w) = 0, for every we(— o0, + o0)

+oo ’:1(60) o fl(w) 72(0))
®) I ry(w) =l= ry(w)

where iy (w) is the derivative of r(w) with respect to @.

The application of Theorem 1, Lemma 3 and Lemma 4 leads us to the following
two theorems.

Theorem 2: Define
fi=a—4a,a;, f= 2a,+ a,(h+ 1) +2a, A (12)

Then the transfer function in (9) is SPRVY1€[4, 7] and Yo € R if and only if the following
conditions hold:

(a) Dy(s) is strictly Hurwitz

(b) condition (b) in Lemma 3 is satisfied

A _ K@)
@) R@)

(©)

@) () ‘;—m >0, if r* =0 (i.e.m = n)

Gi) ¢, d, —Cpsd,>0,ifr*=1(G1em=n—1)
(lll) Cn dn_cn+l dnfl > 0

Can1 2 g , ifr*=—1(eem=n+1)

d,
Proof: It is obvious that condition () is the same in both Theorems 1 and 2. From the
definition of P(4, w)in (10), it is clear that condition (b) in Theorem 1 holds if and only
if conditions (a)—(c) in Lemma 3 do. Note that condition (¢) in Lemma 3 is the same
as condition (¢) in Theorem 2 (due to Lemma 4). Also, condition (a) in lemma 3 is
implied by condition (c) in Theorem 1. Therefore, it suffices to show that condition (c)
in Theorem 1 is equivalent to condition () in Theorem 2. To this end, we obtain
from (9) that

(1) ey )™ 4 (= 1) 6 dy s (0) 4 (1) €y ()
gl 4) = (— 1) &Gw) + ...

(13)

and analyse three cases:
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(a) r* = 0. In this case

lim Re[g(jo, )] = <
o]0 dn
(b) r* = 1. This implies that
|1}m o?Re[g(jo, )] = cn—ldn—;; Cn-2dy -0

(¢) r* =—1. This gives

Ca dn —Cnt1 dn—l

d? j

jo d

n

lim Re[g(jow, )] =

|w]—o00

>0,

o]0

It is therefore clear that condition (¢) in Theorem 1 is equivalent to condition (d) in
Theorem 2. O

In view of Lemma 1 and Theorem 2, we have the following general result (the proof
is omitted due to its triviality).

Theorem 3:  Similarly to that of (9)—(12), we define
hy = =4y ay,  foy = 205+ ay(A+ 1)+ 2a,, AT (14)

where j denotes the jth edge of Qeage- Then G in (7) is robustly SPR if and only if the
Jollowing conditions hold:

(a) zn: a(q°) s is strictly Hurwitz for some ¢° e "o, ® EQ,)

=0

(b) ReG(jw,q) >0, YqeQ,, wel0, + )

+oof1M — +wﬁj(w)fz‘j(w)

© e = )

where n, = p,2Pn*?a*P0™Y s the number of edges in Q
NIAC)) g _

(d) (@) g 0, Vg€Q.pe if r* =0, or

(11) bn—l(q) an—l(q)_bn—2(q) an(q) > 07 quQedge’ if‘r* = 17 or
@@ —b,u@a, @) >0
(i huola) _

a,(q)

J=1,...,n,

edge

’ quQedgea if.r* =-1.

4. Computational aspects

We now briefly examine the computational requirement of the algorithm in
Theorem 3. Note that there are all together 2*»*?a+2» vertices and Dy 2PntPatP7D) edges
in ¢. To check Theorem 3(a), one Routh table of degree n is needed. In Theorem 3(b)
a Routh table of degree 2 is required for each vertex. As for Theorem 3(¢), two Routh
tables of degree 2n are needed for each edge, one for each Cauchy index. In addition,
some simple computation is needed for Theorem 3(d), i.e. we have to determine
whether, for each edge of Q,,,., a portion of a parabola stays positive.

Note that a Routh table of degree # requires O(n?) calculations; the complexity of
the algorithm is O(n?) in terms of 7.
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5. Implementation and example
In this section we deal with the issue of implementation for our results. Firstly, we
give an algorithmic form of Theorem 3.

Algorithm: Denote n, = 2(n*7at?) p = p 2Putpatey=b,

Step 1. Check if

n

Z a(q’)s’

i=0
is strictly Hurwitz, where ¢° can be any convenient point in Q. If not, the family ¢ in
(7) is not robustly SPR.

Step 2. Construct a Routh table to check if Re G(jw, q;) >0, for all ¢,€Q,,i =1,
2,...,n,. If not, ¢ is not robustly SPR.
Step 3. For each edge, say the jth edge, of Qeqges Construct £, and f, and the

corresponding Routh tables to check if the two Cauchy indices in condition (c) of
Theorem 3 are the same, i = 1,2,...,n, If not, % is not robustly SPR.

Step 4. Find r* and Check if condition (d) in Theorem 3 is true for all g€ Qg If all
are true, then ¢ is robust SPR; otherwise, % is not robust SPR..

To demonstrate the algorithm above, let us look at the following example, which is a
typical one-port network.

Example: Assume that

N(s. 4., 4,)
G(s, 990 qb) = D(S q )b
sy

represents the impedance of the circuit in the Figure, where C, = 1, C, =1, R, = 3,
R,=6,L, =01g,+1and R, = 2¢, + 8 in per unit values, [91,9,]€ 0,0 =[0,1] x[0, 2]
represent some uncertain parameters in R, and L,. It is tedious but straightforward to
check that
N(s.4,.9,) = (0119, +1) 2¢,+10) s + ((0-1g, + 1) 2q, + 11) + 4¢, + 16) s
+@8q,+34)s+2¢g,+11 (15)
D(s,q,) = (0-1g,+ 1) s>+ (0-1g, + 3) s>+ 4s+ 1 (16)
No g, is involved. As can be seen, the numerator is multilinear in ¢, and ¢g,, and the

denominator is linear in g,.

G,

R,

AAA
vVVv
AAA
\A A4
[S)

¢

Ry T

A one-port network.
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Now, we want to test the robust SPRness of (15) and (16), following the algorithm
above.

Step 1. Taking ¢° = (0,0), we have

Y af(g’)s' = s*+3s*+4s+1

=0
which is tested to be Hurwitz by a Routh table.

Step 2. There are four vertex points for (¢;, ¢,), given by

0,0), (1,0), (0,2), (1,2) a7
Since
Re G(jw,q,) >0

<g(w?q)=ReDReN+ImDImN >0 (18)

it follows that Re G(jow, ¢,) > 0 if and only if g(w?, ¢;) has no real zeros. The number
of positive real zeros 7, of g(w?, ¢;) can be found by

wg' (@ q,)
=L s 22 19
e g0t q) (19)

Rewriting
+o0 wg' (0 q,) oo 820 "l —g, 0" P4

s =I'7 — — (20)
g(e*, q,) g1 @ — 8y 0" P+

It is known that (Gantmacher 1960)

n—1__ n—3
pefn® “En® X _, oq 1)
810" — 8@t

where & is the sign variations of the first column of the Routh table below:
glO’ gll’ ng’

8200 8215 220 - (22)
8300 831> 832

where g;) = (850811 —810821)/8200 831 = (820812 810822)/ 820> -+
For g, = (0,0), we have

g(@?,(0,0)) = 100° + Tw* + 76c0* + 11 (23)

The Routh table (Table 1) shows that n, = 6—2x3=0; ie. Re(G(o, q,) > 0.
Similarly, the Routh tables show that Re (G(jw, ¢;)) > 0 at all other vertices.

Step 3. There are two edges in Q.. being ¢, =0, ¢,€[0,2] and ¢, = 1, ¢,€[0,2].
Accordingly, we have

fiy(@0®) = 0*(4w® —1-60" + 56:4799w* — 52-8) (24)
(@) = 2000° +24:7999w* + 147-60* 422 (25)
fiy(@?) = 0%(5760° —1-9199w* +84-96»* —78) (26)

foo(@?) = 2400° +3120" + 186-8” + 26 (27)
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10-0000 —7-0000 76-:0000 —11-0000
30-0000 —14-0000 76-0000 0
—2:3333 50:6667 —11-:0000 0
637-4286 — 654286 0 0
50-4272 —11-0000 0 0
73:6178 0 0 0
—11-:0000 0 0 0
Table 1. Routh table for the vertex ¢, = (0,0).
A, B, A, B,
4 4 5:7600 5:7600
12 —467-7760 17-2800 —891-5200
0-5333 —158:8726 0-6400 —225-0211
—844-0000 —1-8819 x 10* —1-5254 x 103 —3-5250 x 10*
369383 573011 557921 862924
74:9022 12679 x 10* 111-5985 2:3269 x 10*
52-8000 52:800 78-0000 78-0000
Table 2. First columns of four Routh tables.
We only need consider the zeros of f,(w?)/@® and f,(®?)/w®. Denote
R U VL N ) (o Vo U Y o o8)
] c

@) T (@) of

we readily construct Routh tables with the first columns listed (Table 2). It is apparent
that the numbers of sign variations are all the same for 4, and B,,j = 1,2. The result
shows that all the edges are SPR.

Step 4. Clearly, r* = 0, and condition (di) is involved, which does not need to be
checked; see Remark 1.

6. Conclusion

The results above address the SPR problem of a family of rational functions. We
have provided a finite algorithm which can test the robust SPRness by using only O(n*)
elementary operations, where n is the degree of the rational functions. Thus, the
commonly used value set approach, or frequency sweeping, is obviated. Although our
results are for the Hurwitz stability region, an extension of the results can be obtained
for more general stability regions, such as the unit circle or other circular regions which
are of importance to filter designs (Tesi et al. 1993). This can be done by using the
bilinear transformation which converts the circular regions to the open left plane. For
more general stability regions, similar results can also be developed, provided that the
region can be converted into the open left half plane by using the so-called strongly
admissible rational function (see Sondergeld 1983 for a definition).

Appendix
Proof of Lemma 3: For each weR, consider two cases according to the value of
a,(w).
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Casel: a,(w) # 0. In this case P(4,w) is part of a parabola with two end points & =
a,A*+a,A+a, and ¢ =a,A*+a,A+a, This parabola attains its minimum or

maximum value at 1° = —a,/2a, with the corresponding
4a,a,— a2
P @) =—"222
( ) 4a,

So, we need to show that, under conditions (@) and (b)
P(A,@) >0, VYie[i A]and Yoel0, + )

if and only if (c) is true. For this purpose we consider two subcases.
Subcase 1: a;(w) < 0. In this case, A° corresponds to the maximum of P(/,w).
Therefore
min P(A, w) = min (¢, &) > 0
A

will guarantee that 4a, a,—a3 + 0. That is, the condition (c) is void.
Subcase 2: a,(w) > 0. Now
4a,a,—ad

min P(1,w) = P(A°, w) =
JeR 4al

From (a) we know that P(4, +0) >0, Vie[4,4]. Since P(4,w) is a continuous
function of 1 and w, if there were 4 & & such that P(1,®) < 0, there would exist an
@€[0, 4+ 00) such that P(1°, &) = 0. So it is enough to check that

da,a,—a;

&[4, 7], whenever P(1°,w) = T
1

0 A1

To check (A 1) we observe that
¢4 =D ~2) >0
< a3+2a,a,(A+2)+4a2 Al > 0 (A2)
which is equivalent to the condition (c) after substituting in a2 —4a, a, = 0.

Case 2: a,(w) = 0. Obviously, (b) is both necessary and sufficient for
P(4,®) >0, Yie[4,]

We need to confirm that (c) hold automatically. Indeed, if a}—4a,a, =0, then
a, = 0. Consequently, 2a, + a,(A+ A) +2a, AL = 2a, > 0, due to (b). O
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