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SUMMARY

In this paper, we consider the problem of quantized quadratic performance control for a class of stochas-
tic systems, which are subject to multiplicative noises in the measurement. A dynamic output feedback
controller is designed to guarantee a given level of performance. By using the sector bound approach to char-
acterize the quantization error, the existence of a solution for the quantized quadratic performance control
problem is found by solving the so-called guaranteed cost control problem of the associated system with a
sector bounded uncertainty. We show that the latter problem can be solved using LMIs. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Research on the problem of quantized feedback control can be traced back to 1956 [1], where
Kalman investigated the effects of quantization in a sampled-data control system and pointed out that
the quantized feedback system would exhibit limit cycles and chaotic behavior if a finite-alphabet
quantizer is used. In the early works on quantized feedback control problem [2–5], the quantization
error is always considered as undesirable, either as noise or state uncertainty, and most of the works
try to eliminate its influence.

The widespread use of network-based control where the information between the system mea-
surements and control input is exchanged through a network medium with a limited capacity has
further strengthened the importance of the quantized feedback control problem. Different from the
early views toward quantization, quantization is now considered to be useful instead of undesir-
able. As for the fundamental problem in networked control systems, how much is the least data rate
that has to be sent to stabilize the system, [6] shows that the coarsest static quantizer for single-
input deterministic systems to be stabilized via quantized state feedback is logarithmic, where the
quantization density can be characterized by the unstable poles of the system matrix. The mini-
mum quantization density with respect to state feedback subject to the Bernoulli packets dropouts
is considered in [7], which is related to both the unstable modes and the statistical properties of
Bernoulli noises. For the more general case with the input channel subject to an independent and
identically distributed packet dropout process in [8], the minimum data rate for the mean-square
stabilization is explicitly given in terms of the unstable eigenvalues of the open loop matrix and
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the packet dropout probability. For stochastic systems with multiplicative noise in both system and
input matrices, not only the system matrices but also the statistical properties of the noises are influ-
ential to the coarsest quantization density for quantized state feedback. Sample results on feedback
control with dynamic quantizers can be found in [9, 10]. Reference [11] focuses on the tradeoff
between the stochastic noise and the coarsest quantization density, which permits mean-square sta-
bilization of the system, and the exact solution to the coarsest quantization density is given in terms
of a special Riccati equation, and an approximate numerical solution is given in terms of a linear
matrix inequality. In works on quantized feedback control, most of them are confined to the problem
of quantized stabilization, and control performance is usually not addressed. The quantized feed-
back control problem with a quadratic performance cost for deterministic systems is studied in [12],
where a sector bound approach is used to characterize the quantization error, both quantized state
feedback and dynamic output feedback control are considered. As for quantized stabilization and
performance with a finite-level quantizer, [13] shows that asymptotic stabilization for the system
can be achieved with a moderate number of quantization levels by introducing a dynamic scaling
method for logarithmic quantizer, and the quantized feedback stabilization problem for systems with
bounded noises is also studied. For deterministic discrete-time systems, [14] gives less conservative
conditions on the quantization density for stabilization. By studying the properties of the logarith-
mic quantizer, [15] uses a method based on Tsypkin-type Lyapunov functions to give the absolute
stability analysis for quantized feedback control, and less conservative conditions than those in the
quadratic framework are derived. Tian et al.[16] have proposed a new model of the network con-
trol system in the unified framework, observer-based controller is developed for the asymptotical
stabilization, which can be shown in terms of nonlinear matrices inequalities, which can be solved
through a convex optimization problems. Niu et al. [17] considered the quantized output feedback
control problem for networked systems with data packets dropout. By using an estimation method
to cope with the effect of random packets loss, and the sector bound approach to treat with the quan-
tization error, exponentially mean-square stability is achieved. For system with packets dropout and
finite-level quantizer, sufficient condition for small l1 signal l1 stability is studied, which required
the maximum number of conservative packet dropouts to be bounded [18]. In [19], the stability of
system with quantized feedback subject to infinite time delay and packets dropout is studied. Most
of the aforementioned work only considered the stability, performance index is not included.

In this paper, we consider a quantized quadratic performance problem for stochastic systems
using output feedback control with a multiplicative noise in the measurement. This is motivated
by the fact that there has been a lot of work on quantized control problems for additive noises,
whereas multiplicative noises receive little attention. Multiplicative noises are indeed very common
and thus deserve serious considerations. For example, in many distance-based measurements, the
measurement error grows linearly with the distance; Packet loss in data transmission can be modeled
as a multiplicative noise; Human response to a management command (e.g., evacuation order in a
natural disaster or speed limit on the road) can also be modeled by a multiplicative noise. Ideally,
we would like to be able to treat both additive and multiplicative noises. But this turns out to be a
very hard problem, as noted by [20–25]. For simplicity, we assume that the system is subject only
to multiplicative noises.

The major difficulty with output feedback control with multiplicative noise is that the well-
known certainty equivalence principle fails to work, thus state feedback designs cannot be
used to aid the design of output feedback controllers. In this paper, we turn to a very dif-
ferent approach. By using the sector bound approach to characterize the quantization error,
we first show that the existence of the solutions to the quadratic quantized performance con-
trol problem is guaranteed by the existence of the solution to the so-called guaranteed cost
control (GCC) problem. Using the Schur complement technique and the elimination lemma to
deal with the stochastic noises, we show, through lengthy technical analysis, that the solutions
to the latter problem can be expressed in terms of linear matrix inequalities with a simple
scalar parameter.

Although the assumption of single-output is indeed some restrictive, it should be noted that the
approaches used in this paper can be generalized to multi-output measurement systems. The main
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difference is that the conditions for the quantized quadratic performance problem may become
sufficient only.

The paper is organized as follows. In Section 2, the system to be studied is introduced, some
fundamentals about quantization is discussed, and the problem formulation is given. In Section 3, the
relationship between the quadratic quantized performance control problem and the GCC problem
is established, and the existence of the solution to the problem of GCC problem is given in terms
of linear matrices inequalities. Section 4 gives an illustrative example to show the design of the
controller and the effectiveness of the control strategy. Section 5 draws some conclusions.

2. PROBLEM FORMATION

Consider the following linear discrete-time system with a multiplicative noise in the measurement:

x.t C 1/ D Ax.t/C Bu.t/;

y.t/ D .1C �.t//Cx.t/
(1)

where x.t/ 2 Rn is the system state vector with initial state x.0/ assumed to be white noise with
Ex.0/xT .0/ D †0 for some positive-definite matrix †0; u.t/ 2 R is the control input, y.t/ 2 R
is the measurement, �.t/ is a white scalar noise with E�2.t/ D �2 > 0 for some � > 0, and it
is uncorrelated with the initial state x.0/. The measurement is sent through a band-limited channel
that has to be quantized by a logarithmic quantizer in the following form:

Q.y/ D

8<
:

ui ; if 1
1Cı

ui < y 6 1
1�ı

ui ; y > 0

0 if y D 0
�Q.�y/ if y < 0

(2)

where ı D 1��
1C�

with 0 < � < 1 being the quantization density. The associated quantization levels
are as follows:

U D ¹˙ui W ui D �
iu0; i D 1; 2; � � � º

[
¹˙u0º

[
¹0º; u0 > 0: (3)

As illustrated in [12], using the sector bound approach, we have

jy �Q.y/j D j�.t/yj 6 ıjyj; (4)

where

�.t/ D
y.t/ �Q.y.t//

y.t/
: (5)

Consider the following quadratic performance cost function:

J.x.0// D

1X
tD0

�
xT .t/Sx.t/C uT .t/Ru.t/

�
; S > 0; R > 0: (6)

We are interested in designing a quantized output feedback controller

xc.t C 1/ D Acxc.t/C BcQ.y.t//; xc.0/ D 0;

u.t/ D Ccxc.t/CDcQ.y.t//;
(7)

such that the closed-loop system is quadratically stable and that the performance cost function is
minimized in the sense of

minEŒJ.x.0/; �.t//�; (8)

where the expectation E is performed over x.0/ and �.t/.
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3. SOLUTIONS

The exact solution for (8) is very difficult to obtain. Instead, we will solve a relaxed problem, which
we will call a quantized quadratic performance control problem.

From the system (1) and the controller (7), we can write the closed-loop system as

�.t C 1/ D Œ NAC NB.�.t//C �.t/ OB.�.t//��.t/; (9)

with the system state as

�.t/ D

�
xc.t/

x.t/

�
; (10)

and parameters are defined as

NA D

�
Ac BcC

BCc AC BDcC

�
; NB.�.t// D

�
0 �.t/BcC

0 �.t/BDcC

�
;

OB.�.t// D

�
0 BcC.1C�.t//
0 BDcC.1C�.t//

�
:

(11)

Using the system state �.t/ of the closed-loop system (9), the performance cost (6) can be
rewritten as

J.�.0// D

1X
tD0

�
�T .t/ NS�.t/C uT .t/Ru.t/

�
(12)

with

�.0// D

�
0

x.0/

�
; NS D

�
0 0

0 S

�
: (13)

For the closed-loop system (9) to be quadratically mean-square stable, there exists an associated
Lyapunov function V.�/ D �T NP� with NP D NP T such that

EŒrV.�.t//� D EŒV.�.t C 1//� �EŒV.�.t//� < 0; (14)

for all t > 0. The performance cost (8) is given by

EŒJ.�.0//� D E
�
�T .0/ NP�.0/

�
CE

"
1X
tD0

�
rV.�.t//C �T .t/ NS�.t/C uT .t/Ru.t/

�#

D E
�
�T .0/ NP�.0/

�
CE

"
1X
tD0

�T .t/ N�.�.t//�.t/

#
;

(15)

where
N�.�.t// D Œ NAC NB.�.t//C �.t/ OB.�.t//�T NP Œ NAC NB.�.t//C �.t/ OB.�.t//� � NP C NS

C ŒCc DcC.1C�.t//.1C �.t//�
TRŒCc DcC.1C�.t//.1C �.t//�:

(16)

It follows that

EŒ N�.�.t//� D Œ NAC NB.�.t//�T NP Œ NAC NB.�.t//� � NP C NS

C �2Œ0 DcC.1C�.t//�
TRŒ0 DcC.1C�.t//�

C ŒCc DcC.1C�.t//�
TRŒCc DcC.1C�.t//�

C �2 OBT .�.t// NP OB.�.t//:

(17)

The performance control problem to be studied in this paper can be formally formulated as follows:
Given a performance bound 	 > 0 and quantization density � > 0, find NP and (7), if there exist,
such that

E
�
�T .0/ NP�.0/

�
< 	 (18)
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subject to

E
�
�T N�.�.t//�

�
6 0; 8 � 2 R2n; t > 0: (19)

We call this problem a quantized quadratic performance control (QQPC) problem.
In order to solve the QQPC problem, we define the following auxiliary system:

x.t C 1/ D Ax.t/C Bu.t/; x.0/ D x0

y.t/ D .1C �.t//Cx.t/

v.t/ D .1C�.t//y.t/; j �.t/ j6 ı;
(20)

where v.t/ is the output available for feedback. The solution to QQPC is related to the so-called
guaranteed cost control (GCC) problem for the auxiliary system (20), that is, we want to find NP and
(7), if there exists, such that (18) holds subject to

EŒ N�.�/� < 0; 8 j�j 6 ı: (21)

Remark 1
It is clear that if there exists a solution to the GCC problem, the same solution works for the QQPC
problem. We show in the succeeding text that the converse is also true, with a trival gap.

Theorem 1
Consider the system (1) with performance cost in (6), controller (7), performance bound 	 > 0, and
quantization density as �. Suppose the GCC problem has a solution, then there exists a solution to
the QQPC problem. Conversely, if the QQPC problem has a solution, then for any arbitrarily small

 > 0, the GCC problem for (21) has a solution with ı replaced with ı � 
.

Proof
It is easy to know that (21) implies (19). Next, we prove that if the QQPC problem has a solution,
then, for any given arbitrarily small ", the GCC problem for " > 0 for (21) has a solution for
j�j 6 ı � 
. To see this, we assume that (19) holds but (21) fails. Then there exist some �0 and �0
with E

��
0 C.1C �.t//

�
�0
�
¤ 0 and j�0j 6 ı such that

E
�
�T0
N�.�0/�0

�
> 0: (22)

If �0 is a boundary point, that is �0 D ı, then the GCC problem has a solution for j�j 6 ı � 
 for
all 
 > 0. In the sequel, we assume that �0 is an interior point.
We claim thatEŒŒ 0 C.1C �.t// ��0� ¤ 0. Suppose thatEŒŒ 0 C.1C �.t// ��0� D 0, then from (16)
and (22), we can obtain that

E
�
�T0
N�.�

�
0 C.1C �.t//

�
�0/�0

�
D E

�
�T0 �0�

�
D E

�
�T0
N�.�0/�0

�
> 0: (23)

which contradicts with (19), so E
��
0 C.1C �.t//

�
�0
�
¤ 0. For the strict convexity of EŒ N�.�/�,

there exists �1 with j�1j 6 ı � 
1, for some 
1 > 0 such that

E
�
�T0
N�.�1/�0

�
> 0: (24)

For it is continuous in �0, we can perturb �0 slightly such that (24) holds and with every element
of E

��
0 C.1C �.t//

�
�0
�
¤ 0. Now, for �

�
˛
�
0 C.1C �.t//

�
�0
�

covers Œ�ı; ı� densely as ˛
varies from �1 to1. Hence, that ˛ ¤ 0 such that

E
�
�T0
N�.�.˛

�
0 C.1C �.t//

�
�0//�0

�
> 0: (25)

Define �1 D ˛�0, we obtain that

E
�
�T1
N�.�.˛

�
0 C.1C �.t//

�
�0//�1

�
> 0 (26)
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which contradicts (19), which means �0 cannot be an interior point. Hence, (19) implies (21) has a
solution for j�j 6 ı � 
. �
Next, we give necessary and sufficient conditions for the existence of the solution to the GCC
problem. To this end, we first introduce some notations:

K D

�
Ac Bc
Cc Dc

�
; A0 D

�
0 0

0 A

�
; B0 D

�
I 0

0 B

�
; I10 D

�
I 0

�
; I20 D

�
0 I

�
;

L D
�
0 C

�
; I1 D

�
I 0

0 0

�
:

(27)

Using (17) and applying the well-known S-procedure [26] on (21), we obtain the following result:

Lemma 1
For system (1) and controller (7), (21) holds if and only if there exists " > 0, such that the following
matrix inequality holds:2

66664
� NP�1 NA 0 0 0
NAT � NP C NS C "LTL NC T � ODT � NBT

0 NC �R�1 0 0

0 � OD 0 �R�1 0

0 � NB 0 0 � NP�1

3
77775C "�1HHT < 0; (28)

where

H D

2
66664
NH
0
ND

� ND

� NH

3
77775 ; OD D

�
0 DcC

�
; L D

�
0 C

�
; NC D

�
Cc DcC

�
;

NB D

�
0 BcC

0 BDcC

�
; ND D ıDc ; NH D

�
ıBc
ıBDc

�
:

To simplify (28), we note that (28) is equivalent to the following inequality:2
6666664

� NP�1 NA 0 0 0 NH
NAT � NP C NS C "LTL NC T � ODT � NBT 0

0 NC �R�1 0 0 ND

0 � OD 0 �R�1 0 � ND

0 � NB 0 0 � NP�1 � NH
NHT 0 ODT � ODT � NHT �"I

3
7777775
< 0: (29)

The conversion earlier is performed using Schur complement [26].

Define K1 D

�
Ac
Cc

�
, K2 D

�
Bc
Dc

�
, then the inequality (29) can be written as follows:

�0 C F
T
1 K1W1 CW

T
1 K

T
1 F1 C F

T
2 K2W2 CW

T
2 K

T
2 F2 < 0; (30)

where

�0 D

2
6666664

� NP�1 A0 0 0 0 0

AT0 ‰ 0 0 0 0

0 0 �R�1 0 0 0

0 0 0 �R�1 0 0

0 0 0 0 � NP�1 0

0 0 0 0 0 �"I

3
7777775
; (31)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1338–1351
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‰ D � NP C NS C "LTL;

F T1 D

2
666664

B0
0

I20
0

0

0

3
777775 ; W

T
1 D

2
666664

0

IT10
0

0

0

0

3
777775F

T
2 D

2
666664

B0
0

I20
�I20
�B0
0

3
777775 ; W

T
2 D

2
666664

0

LT

0

0

0

ıI

3
777775 :

(32)

Lemma 2
The inequality (30) holds if and only if

F T10
�
�0 C F

T
2 K2W2 CW

T
2 K

T
2 F2

�
F10 < 0 (33)

and

W T
10

�
�0 C F

T
2 K2W2 CW

T
2 K

T
2 F2

�
W10 < 0 (34)

where F10 and W10 denote the kernels of F1 and W1, respectively, given by

F10 D Ker.F1/ D

2
6666664

IT20 0 0 0 0

0 I 0 0 0

�BT 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

3
7777775
; (35)

W10 D Ker.W1/ D

2
666664

I 0 0 0 0 0

0 IT20 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

3
777775 : (36)

Proof
This follows by using the elimination Lemma [26]. The kernels ofF1 andW1 can be verified directly.
�
Denote �01 D F T10�0F10, �02 D W T

10�0W10, F T11 D F T10F
T
2 , W11 D W2F10, F T12 D W T

10F
T
2 ,

and W12 D W2W10, we obtain

�01 D

2
666664

�I20 NP
�1IT20 � BR

�1BT I20A0 0 0 0

AT0 I
T
20 ‰ 0 0 0

0 0 �R�1 0 0

0 0 0 � NP�1 0

0 0 0 0 �"I

3
777775 ; (37)

�02 D

2
66666664

� NP�1 A0I
T
20 0 0 0 0

I20A
T
0 I20‰I

T
20 0 0 0 0

0 0 �R�1 0 0 0

0 0 0 �R�1 0 0

0 0 0 0 � NP�1 0

0 0 0 0 0 �"I

3
77777775
; (38)

F T11 D
�
0 0 �IT20 �B

T
0 0

�T
; (39)

W11 D
�
0 L 0 0 ıI

�
; (40)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1338–1351
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F T12 D
�
BT0 0 IT20 �I

T
20 �B

T
0 0

�T
; (41)

W12 D

�
0 L

�
0

I

�
0 0 0 ıI

�
: (42)

Then the inequalities of (33)–(34) become

�01 C F
T
11K2W11 CW

T
11K2F11 < 0

�02 C F
T
12K2W12 CW

T
12K2F12 < 0

(43)

Define F21 D ker.F11/, W21 D ker.W11/, W21 D ker.W11/, F22 D ker.F12/, and W22 D
ker.W12/. By computation, we obtain that

F21 D

2
66664

0 I 0 0

0 0 I 0

�BT 0 0 0

IT20 0 0 0

0 0 0 I

3
77775 ; (44)

W21 D

2
6664

0 I 0 0 0

ıIT20 0 I
T
10 0 0

0 0 0 I 0

0 0 0 0 I

�C 0 0 0 0

3
7775 ; (45)

F22 D

2
6666664

��IT10 IT20 ��I
T
20 0 0 0

0 0 0 0 I 0

0 �BT 0 ��I 0 0
0 0 0 I 0 0

IT10 0 IT20 0 0 0

0 0 0 0 0 I

3
7777775
; (46)

W22 D

2
666664

0 I 0 0 0

�ıI 0 0 0 0
0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

C 0 0 0 0

3
777775 : (47)

Denoting

NP D

�
X X1
XT1 X2

�
; NP�1 D

�
Y Y1
Y T1 Y2

�
; (48)

the following theorem holds:

Theorem 2
The GCC problem (18) and (21) for the auxiliary system (20) has a solution if and only if there exist
NP and NP�1 as in (48) such that t r.X2†0/ < 	 subject to2

4�Y2 � BR
�1BT 0 A

0 �X �X1

AT �XT1 �X2 C S C "C
TC

3
5 < 0; (49)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1338–1351
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2
666664

�.1C �2/Y �Y1 �.1C �2/Y1 0 0

�Y T1 �Y2 � BR
�1BT �Y2 ��BR�1 A

�.1C �2/Y T1 �Y T2 �.1C �2/Y2 0 ��A

0 ��R�1BT 0 �.1C �2/R�1 0

0 AT ��AT 0 �X2 C S C "C
TC

3
777775 < 0;

(50)2
4 ı2.�X2 C S C "C TC/ � "C TC 0 �ıAT

0 �Y �Y1
�ıA �Y T1 �Y2

3
5 < 0: (51)

Proof
It is straightforward to check that

E
�
�T .0/ NP�.0/

�
DE

�
xT .0/X2x.0/

�
DE

�
xT .0/X2x.0/

�
DE

�
t r.X2x.0/x

T .0//
�
D t r.X2†0/:

(52)
Applying the elimination lemma to the inequalities (43), we find that (43) holds if and only if

F T21�01F21 < 0

W T
21�01W21 < 0;

(53)

and

F T22�02F22 < 0

W T
22�02W22 < 0:

(54)

Plugging (37), (44), and (45) into the inequalities of (53), we obtain (49) and the following
inequality: 2

4 ı2.�X2 C S C "C TC/ � "C TC ıAT �ıXT1
ıA �Y2 � BR

�1BT 0

�ıX1 0 �X

3
5 < 0; (55)

Multiplying the first row and first column of (55) by ı�1, then permuting its rows and columns, (55)
is converted into2

4�Y2 � BR
�1BT 0 A

0 �X �X1

AT �XT1 �X2 C S C "C
TC � ı�2"C TC

3
5 < 0: (56)

It is clear that this inequality is implied by (49) and thus it is not necessarily required. Plugging (38),
(46), and (47) into the inequalities of (54), we obtain (50) and (51). �
Next, we want to revise the inequalities (49)–(51) further by changing variables so that they become
linear inequalities. Define S D M TM with a full column rank matrix M , and let QY2 D "Y2,
QX2 D "

�1X2, then we have the following theorem:

Theorem 3
The inequalities of (49)–(51) are equivalent to2

66664
� QY2 � "BR

�1BT A QY2 0 0

QY2A
T � QY2 QY2M

T QY2C
T

0 M QY2 �"I 0

0 C QY2 0 �I

3
77775 < 0; (57)
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2
64
� 1
1C�2

. QY2 C "BR
�1BT / 1

1C�2
A 0

1
1C�2

AT � QX2 C C
TC C �2

1C�2
AT QX2A M T

0 M �"I

3
75 < 0; (58)

�
ı2.� QX2 C C

TC C AT QX2A/ � C
TC ıM T

ıM �"I

�
< 0: (59)

Proof
Using Schur complement, (49) can be rewritten as�

�Y2 � BR
�1BT A

AT �X2 CX
T
1 X
�1X1 CM

TM C "C TC

�
< 0: (60)

Using the fact that Y �12 D X2 � X
T
1 X
�1X1 and multiplying the second row and column by Y2,

(60) is equivalent to�
�Y2 � BR

�1BT AY2

Y2A
T �Y2 C Y2M

TMY2 C "Y2C
TCY2

�
< 0: (61)

Substituting Y2 with "�1 QY2, the aforementioned equation becomes"
�"�1 QY2 � BR

�1BT "�1A QY2

"�1 QY2A
T �"�1 QY2 C "

�2 QY2M
TM QY2 C "

�1 QY2C
TC QY2

#
< 0: (62)

Multiplying it by " and applying Schur complement change the aforementioned equation to (57).

For (50), multiplying

2
66664
I 0 0 0 0

0 I 0 � �
1C�2

B 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

3
77775 and

2
66664
I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 � �
1C�2

BT 0 I 0

0 0 0 0 I

3
77775 to the left and right

side of it, it is changed to2
6666664

�.1C �2/Y �Y1 �.1C �2/Y1 0 0

�Y T1 �Y2 �
1

1C�2
BR�1BT �Y2 0 A

�.1C �2/Y T1 �Y T2 �.1C �2/Y2 0 ��A

0 0 0 �.1C �2/R�1 0

0 AT ��AT 0 �X2 C S C "C
TC

3
7777775
< 0:

(63)

Deleting the fourth row and fourth column, which correspond to a negative-definite diagonal term,
the aforementioned equation becomes2

6664
�.1C �2/Y �Y1 �.1C �2/Y1 0

�Y T1 �Y2 �
1

1C�2
BR�1BT �Y2 A

�.1C �2/Y T1 �Y T2 �.1C �2/Y2 ��A

0 AT ��AT �X2 C S C "C
TC

3
7775 < 0: (64)

Swapping the second and third rows as well as the second and third columns, the aforementioned
equation is equivalent to2

6664
�.1C �2/Y �.1C �2/Y1 �Y1 0

�.1C �2/Y T1 �.1C �
2/Y2 �Y T2 ��A

�Y T1 �Y2 �Y2 �
1

1C�2
BR�1BT A

0 ��AT AT �X2 C S C "C
TC

3
7775 < 0; (65)
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Using Schur complement, it follows that"
�Y2�

1
1C�2

BR�1BT A

AT �X2CSC"C
TC

#
C

�2

1C �2

�
Y T1 Y2
0 �AT

� �
Y Y1
Y T1 Y2

��1 �
Y1 0

Y T2 �A

�
< 0:

(66)

Using (48), the aforementioned equation is equivalent to"
� 1
1C�2

ŒY2 C BR
�1BT � 1

1C�2
A

1
1C�2

AT �X2 C S C "C
TC C �2

1C�2
ATX2A

#
< 0: (67)

Substituting QX2 and QY2, we obtain"
� 1
1C�2

�
"�1 QY2 C BR

�1BT
�

1
1C�2

A

1
1C�2

AT �" QX2 CM
TM C "C TC C �2

1C�2
"AT QX2A

#
< 0: (68)

Multiplying both sides by

"p
"I 0

0 1p
"
I

#
and applying Schur complement, we obtain (58).

For (51), using Schur complement, it is equivalent to

ı2
�
�X2 C S C "C

TC
�
� "C TC �

�
0 �ıAT

� � �Y �Y1
�Y T1 �Y2

��1 �
0

�ıA

�
< 0; (69)

which is equivalent to

ı2
�
�" QX2 CM

TM C "C TC
�
� "C TC C ı2"AT QX2A < 0: (70)

Dividing the aforementioned equation by " and applying Schur complement, we obtain (59). �
Next, we point out that the constraint that NP NP�1 D I can be characterized using QX2 and QY2.

Lemma 3
Given " > 0, the constraint NP NP�1 D I implies that�

QX2 I

I QY2

�
> 0: (71)

Conversely, given QX2 and QY2 satisfying (71) and " > 0, NP can be constructed.

Proof
Because that XT1 Y1 CX2Y2 D I , XT1 Y CX2Y

T
1 D 0 (following from (48)), solving XT1 from the

second equation and plugging it into the first equation gives

X2 D
�
Y2 � Y

T
1 Y

�1Y1
��1

> Y �12 (72)

from which we can obtain the linear matrix inequality�
X2 I

I Y2

�
> 0; (73)

which is equivalent to �
" QX2 I

I "�1 QY2

�
> 0: (74)
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Multiplying both sides by

"
1p
"
I 0

0
p
"I

#
, we can obtain (71). Conversely, given QX2 and QY2 satis-

fying (71) and " > 0, X2 and Y2 are obtained to satisfy (71). X1 and Y1 can be computed from
XT1 Y1 CX2Y2 D I , XT1 Y CX2Y

T
1 D 0. �

Considering Theorems 2–3 and Lemma 3, we obtain the following main result, which together
with Theorem 1 solves the QQPC problem.

Theorem 4
The GCC problem (18) and (21) for the auxiliary system (20) has a solution if and only if there
exist positive matrices QX2 and QY2 and " > 0 such that "t r. QX2†0/ < 	; subject to the inequalities
(57)–(59) and (71).

Remark 2
Note that the inequalities (57)–(59) and (71) are jointly linear in QX2 and QY2 and ". Thus, the
set satisfying the constraints (57)–(59) and (71) is a convex set. The only nonlinear inequality is
"t r. QX2†0/ < 	 . To get around this difficulty, we note that " is a scalar parameter, thus the solution
to the GCC problem can be obtained by sweeping the " parameter. Once QX2 QY2 and " are found, NP
and NP�1 can be constructed. Afterwards, we obtain �0 in (31). Then the inequality (30) becomes a
linear inequality in terms of K1 and K2, which can be easily solved.

4. SIMULATION

In this part, we give an example to show the design of the controller and the effectiveness of the
approach proposed in this paper. The system under consideration is in the form of

A D

�
0 0

0 2

�
; B D

�
�1:5
2:5

�
; C D

�
1 1

�
; R D 1; S D

�
0 0

0 1

�
; M D 1; 	 D 60: (75)

It can be verified that the system is stabilizable, and the system is observable. For the case of � D 0,
the coarsest quantization density for the system to be stabilized by quantized output feedback is
� D 0:8182, which is given in [12], so for the system with multiplicative noise, the coarsest
quantization density should be greater than this. Consider the case with � D 0:2. Select " D 0:8

and ı D 0:053, which gives � D 0:9. By solving the linear matrices inequalities (57)–(59)

and (71) as required by theorem 4, and use Remark 2, we obtain that K D

�
Ac Bc
Cc Dc

�
D2

4�0:7260 0:3306 0:9582

�0:2447 0:1087 0:3247

0:3580 �0:1616 �0:4721

3
5. The response of the state of the system is illustrated in the

Figures 1 and 2. It is confirmed that the required H1 performance index 	 is satisfied.
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Figure 1. The response of x1.t/.
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Figure 2. The response of x2.t/.

5. CONCLUSION

This paper has studied a quantized output feedback control for linear systems with multiplicative
measurement noises. To make the problem computationally tractable, we have defined the quadratic
quantized performance control problem. Using the sector bound approach to characterizing the
quantized error, we have shown that the solution to this problem can be solved through GCC prob-
lem. Using S-procedure, Schur complement, and the elimination lemma, we obtain numerically
efficient necessary and sufficient conditions for the problem using linear matrices inequalities.
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