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a b s t r a c t

Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a
proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor
networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time.
Compared with existing consensus-based approaches, the proposed synchronization protocol improves
synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization er-
ror of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies.
At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous
protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the
proposed protocol.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed great advancement in smaller,
cheaper and low-power sensors which are capable of sensing,
collecting, processing data and communication through wireless
channel [1]. Sensor networks are mainly used for data fusion [2],
which highlights the necessity for a synchronized clock of time
among sensors, that is, all local sensors should share the same
global reference time. For example, in distributed data fusion
process, sensor readings and time-stamps are grouped into
packages and then pass along to their neighbours so that fusion of
such information will be used to calculate a precise estimate. In-
deed, the fusion of individual sensor readings is meaningful only
with packets that are time-stamped by each sensor's local clock.
High accuracy of local clocks is also essential for energy-saving
purposes [3], as sensor nodes need to spend most of the time in
the sleeping mode with only occasional interactions with neigh-
bouring nodes. Furthermore, most common services in WSN, in-
cluding coordination, communication, object tracking or dis-
tributed logging also depend on the existence of global time [4,5].

To develop successful clock synchronization protocols for
WSNs, several issues need to be considered carefully. First, WSNs
have wide deployment of sensors which increase the complexity
of the network. This leads to scalability requirements for the
rights reserved.

g),
synchronization protocols. Additionally, wireless communication
is unreliable and may suffer from severe interference. Hence the
synchronization protocol need to enhance the robustness in order
to avoid node failures and packet losses. Furthermore, the energy
conservation becomes a significant concern due to the fact that the
smaller size sensors are almost battery-based with limited power
supply. To avoid this restriction, it is required to optimize energy
use in software levels. Effective protocol with low overhead in
both communication and computation still remains to be studied
further.

There are two kinds of clock synchronization protocols: struc-
ture-based and distributed. In structure-based protocols a hier-
archical topology is created within the WSNs. Initially, one node is
chosen to be the root node which is treated as the global clock
reference, then a spanning tree based on this root node is created.
Afterwards, each node synchronizes both its clock skew and its
offset with respect to its parent node. Typical examples are listed
as follows. Timing-sync Protocol for Sensor Networks (TPSN) [6]
establishes a hierarchical structure in the network and then a pair-
wise synchronization is performed to construct a global timescale
throughout the network. Flooding Time Synchronization Protocol
(FTSP) [7] initially elects the root of the network which maintains
the global time and all other nodes synchronize their clocks to that
of the root with periodic flooding packets. Reference Broadcast
Synchronization (RBS) [8] is proposed as one-hop time synchro-
nization, where a node is selected as reference node and then
broadcasts a sequence of synchronization messages to other re-
ceivers in order to estimate both clock skew and offset of local
clocks relative to each other. Sari et al. [9] further apply the joint
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maximum likelihood (JML) estimator of clock offset and skew
under exponential noise model in RBS protocol. Besides, [10] de-
velops a receiver-only synchronization which can synchronize a
series of sensor nodes by receiving time stamps of pair-wise re-
ferences while it could reduce the energy consumption of the
whole network. To deal with a time-varying nature of the clock
offset, a novel Bayesian approach to the clock offset estimation is
proposed in [11]. In most cases, structure-based protocols suffer
from computational overhead if a new root needs to be elected
under the circumstance of dynamic changes of communication
topology. To our best knowledge, they do not satisfactorily handle
node failures or packet losses.

Confronted with the above problems, distributed protocols
have been proposed for time synchronization in WSNs. These
protocols work in a distributed way and do not require a specific
tree topology or a root node, thus have the advantages of being
scalable and robust to node failure and packet losses. Typical ex-
amples include [12–19]. Among distributed protocols consensus-
based ones serve as the most popular designing methods. Existing
consensus-based algorithms can be classified into two main ca-
tegories according to their ways of implementation, synchronous
[20,21] and asynchronous protocols, also known as gossip [22]. For
asynchronous protocols, Schenato proposed an Average TimeSync
(ATS) protocol [23] which is based on a cascade of two consensus
algorithms to make all the nodes converge to a virtual reference
clock by tuning compensation parameters for each node. CCS [24]
reduces the clock errors between nodes whose locations are
geographically close and achieves long lasting synchronization by
converging all nodes to a common skew. He proposed a novel
maximum time synchronization algorithm (MTS) [25,26], for de-
lay-free case and a weighted maximum time synchronization al-
gorithm for random delay case. Other work includes [27], etc. For
synchronous implementation, see [28–31]. Initially, synchronous
implementation seems unrealistic as it requires each node to up-
date its information simultaneously, which implicitly requires a
common clock, which contradicts the fact that they do not share a
common global clock. Carli et al. [29] proposed a synchronization
algorithm that is based on a proportional–integral (PI) consensus-
based controller. A similar approach, based on the second-order
consensus algorithm, has been proposed in [30] to deal with the
synchronization of networks of non-identical double integrators.
Based on [30], Carli and Zampieri [31] further develop a pseudo-
synchronous implementation way for synchronous protocols and
it is proved to have the same performance. Since then researchers
can focus on designing synchronous synchronization protocols but
implementing them using a pseudo-synchronous implementation.

In this paper, we consider a distributed approach and develop a
proportional–integral estimator-based protocol (EBP) for clock
synchronization over WSNs. As each local clock skew may ex-
perience slow drift due to external environmental conditions such
as ambient temperature or battery voltage and on oscillator aging,
even if all clocks are perfectly synchronized at a certain time in-
stant, they will slowly diverge from each other. In the case of slow
changes of clock skews, tracking is a preferable choice. Compared
with the existing protocols, the concrete technical merits of the
proposed algorithm can be summarized as follows:

1. Theoretical contribution to tackle with clock synchronization
time-varying clock skew. Most existing synchronization algo-
rithms either ignore the drifted clock skew or ideally assume
the change of clock skew as a zero-mean noise [32]. Ahmad [11]
proposed a novel Bayesian approach to deal with time-varying
clock offset estimation by using a factor graph representation of
the posterior density but only in scenarios of pairwise synchro-
nization. In spite of realizing convergence of clock parameters,
they fail to take time-varying clock skew into consideration
when giving their theoretical analysis. We aim to develop a
consensus-based synchronization protocol which could theore-
tically prove the convergent result under time-varying clock
skew. The proposed protocol generally assumes that each
physical clock skew has a relatively small change bounded by
a constant quantity. By applying EBP, the synchronization error
of virtual clock skews can be bounded by a relative small steady
state error bound when physical clock skews are gradually
changing within certain limits.

2. Higher synchronization accuracy under time-varying clock
skew. Our work focuses on improving synchronization accuracy.
The comparison between other two consensus-based algo-
rithms indicates that the proposed algorithm could gain better
synchronization accuracy especially under time-varying clock
skew.

The proposed protocol also deals with random delay case and
shows that the convergence of virtual clock skew is in mean
square sense. After the clock skew compensation, an asynchronous
clock offset compensation protocol is presented. Inspired by [31], a
pseudo-synchronous implementation for EBP is presented as
synchronous implementation for clock skew compensation is
unrealistic in practice. Moreover, as pseudo-synchronous imple-
mentation requires no simultaneous action of each sensor node at
a global time instant, EBP with a pseudo-synchronous implemen-
tation could support both half-duplex and full-duplex systems.

The remainder of this paper is organized as follows. In Section
2, the wireless sensor network model and a time-varying clock
skew model for WSNs are introduced as the preliminary knowl-
edge. Section 3 introduces the proportional integral estimator-
based protocol. Filtering-based algorithms under both delay-free
and random delay cases are presented. Then a proportional in-
tegral estimator-based protocol including both clock skew and
offset compensation is proposed, where the convergent results are
shown in the main theorem and other two corollaries. In Section 4,
analysis of pseudo-synchronous implementation is presented for
handling the unrealistic synchronous implementation. Simulation
results are shown in Section 5. Conclusion of our work and several
open problems are given in Section 6. The proof of main theorem
is in Appendix.
2. Preliminaries

This section introduces some notations, preliminaries of graph
theory, wireless sensor network model and a time-varying clock
skew model.
2.1. Notations

 denotes the set of real numbers and + denotes the set of
positive real numbers. 1 represents n-dimensional vector of ones
while 0 represents vector of zeros with an appropriate dimension.
n represents an n-dimensional vector while  ×n n denotes an ⁎n n
square matrix composed of real numbers. In indicates identity
matrix with order nwhile n indicates zero matrix with order n. 

denotes the set of nonnegative integer numbers.
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2.2. Graph theory

A weighted undirected graph   = ( ), consists of a non-
empty node set  { }= … n1, 2, , and an edge set   ⊆ ×
where an edge of  is a pair of unordered nodes. The neigh-
bourhood  ∈i of the vertex vi will be understood as the set

 { ∈ | ∈ }v vvj i j , that is, the set of all vertices that are adjacent to
vi. If ∈vj i, it follows that ∈vi j, since the edge set in a (un-
directed) graph consists of unordered vertex pairs. di denotes the
cardinality of i. The notion of adjacency in the graph can be used
to move around along the edges of the graph. Thus, a path of
length m in  is given by a sequence of distinct vertices:

… ( )v v v, , , , 1i i im0 1

such that for = … −k m0, 1, , 1, the vertices vik
and

+
vik 1

are ad-
jacent. In this case, vi0

and vim
are called the end vertices of the

path; the vertices …
−

v v, ,i im1 1
are the inner vertices.

An undirected graph is called connected if for every pair of
vertices in  , there is a path that has them as its end vertices.
Associated with each edge ( ) ∈i j, there exists a positive weight
ξij. For an undirected graph  , the degree matrix ( )D is defined as
follows:

 ⎧⎨⎩( ) =
=

( )
D

d i j,

0 otherwise. 2
ij

i

The adjacency matrix ( )A is defined as follows:

 ⎧⎨⎩( ) =
≠ ∈

( )
A

i j j1 , ,

0 otherwise. 3
ij

i

The associated Laplacian matrix ( )L is defined as follows:





⎧
⎨⎪

⎩⎪
( ) =

− ≠ ∈
≠ ∉
= ( )

L

i j j

i j j

d i j

1 , ,

0 , ,

. 4

ij

i

i

i

In this paper we consider a wireless sensor network model
represented by a weighted undirected connected graph   = ( ), ,
where  is composed of n sensor nodes and  stands for contact
between two neighbour nodes. Communication delay in WSNs
needs to be taken into account since they can be much larger
compared with the required synchronization accuracy [5]. We
mainly deal with two cases as follows:

1. There are no transmission or computational delays in WSNs.
Specifically, the transmission time of node ∈i and the re-
ceiving time of node ∈j i are considered to be instantaneous.

2. The communication delays at different time instants are as-
sumed to be positive random variables with constant mean and
variance and they are mutually identically and independently
distributed.

Finally, two important lemmas are introduced.

Lemma 2.1 ([33]). Consider a block matrix

⎡
⎣⎢

⎤
⎦⎥= −

( )
C A B

B 0 5

where ∈ ×A B, n n are real, symmetric and positive definite (i.e. A and
B have positive real eigenvalues) and A and B can commute (AB¼BA).
Let λA max, , λB max, be the maximum eigenvalues of A and B and λA min, ,
λB min, be the minimum eigenvalues of A and B. Any eigenvalue of C
satisfies the following bounds:

1. ⎡
⎣⎢

⎤
⎦⎥( )λ λ λ λ( ) ≥ − −λRe min Re 4 ,

A A A B min
1
2

2
,

2 where λ λ λ∈ { },A A min A max, , ,

2. ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

λ λ λ λ λ

λ λ λ

( ) ≤ + − ( ) ⩾

− −

Re Re 4 , Im

Im 4

A max A max B min

A A min B max

1
2 , ,

2
,

2

1
2 ,

2
,

2

.

Lemma 2.2 (Input-to-state stability [34]). For the linear time-in-
variant system ( + ) ≔ ( ) + ( )x k Ax k Bu k1 with a Schur-stable matrix A,
the zero-input response decays to zero exponentially fast, while the
zero-state response is bounded for every bounded input.

2.3. Clock model

Environmental conditions such as temperature, pressure, or
even humidity may affect the behaviour of the oscillator, causing
clock skews to speed up or slow down gradually. A time-varying
clock skew model is presented in [13] as

∫τ α β τ β( ) = ( ′) ′ + ( ) = ( )t t dt , 0 , 6i

t

i i i i0

where τ ( )ti is the local clock reading of node i; α ( )ti is the physical
clock skew which determines the local clock speed; βi is the
physical clock offset and t indicates absolute reference time. For
each node i at t, it cannot acquire its physical clock skew α ( )ti . The
only information known by node i is τ ( )ti . Explicit notation of t
indicates α ( )ti is a slowly time-varying variable. Suppose this slow
change satisfies the following assumption.

Assumption 2.1. Slow change of physical clock skew ensures the
uniform boundedness of α ( )ti at any time instant t

ρ α ρ− ≤ ( ) ≤ + ( )t1 1 , 7i1 1

where ρ< ≪0 11 indicates the maximum drift. Crystal oscillators
used in sensor nodes normally have a drift between 30 and 100 ppm.

As the synchronization protocol is in discrete-time form, we
denote one sampling period as T. For the sake of simplicity, we
express α α( ) = ( ) ∀ ∈kT k k,i i , i.e., we assume T¼1. Then one-
sampling-period drift during [ ( + ) ]kT k T, 1 for node i is defined as

α α αΔ ( ) = ( + ) − ( ) ∈ ( )k k k k1 , . 8i i i

Another assumption concerning with the change rate of α ( )ti is
made as follows.

Assumption 2.2. Slow change also ensures the uniform bound-
edness of αΔ ( )ki during any sampling period [ ( + ) ]kT k T, 1

α ρΔ ( ) ≤ ( )k , 9i 2

where ρ< ≪0 12 is the bound on the change of i's clock skew in
one sampling period.

The objective of a distributed clock synchronization protocol is
to synchronize all the nodes with respect to a common virtual
reference clock as close as possible, namely

∫τ α β( ) = ( ′) ′ + ( )t t dt , 10
t

0

where α( ) =
α∑ ( )=t

t

n
i
n

i1 is the average value of clock skew at time t.
Every local clock i keeps an update of its virtual clock reading

τ̂ ( )ti as follows:

τ τ τ^( ) = ( ( ) ( ) ∈ ) ( )t F t t j, , , 11i i i j i
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where (·)Fi is a compensator depending on the information avail-
able at node i and its neighbour nodes ∈j i. More specifically, we
consider (·)Fi as a linear updating rule, that is

( )τ α τ τ^( ) = ^ ( ) ( ) ( ) ∈ ( )t G t t t j, , , 12i i i i j i

where (·)Gi is a linear function. α̂ ( )ti is the virtual clock skew
compensation quantity based on the information available at node
i and node ∈j i and by multiplying α̂ ( )ti with physical clock
reading τ ( )ti , it aims to reduce synchronization error of local clock
skews.

If α α( ) = ∀ ∈t i,i i , that is, all αi's are constant quantities, then
α α( ) =t . In this case the virtual clock skew and clock reading for
node i should asymptotically track α and τ ( )t ,

 α α α τ τ^ ( ) = ∀ ∈ (^( ) − ( )) = ∀ ∈ ( )→∞ →∞
t i t t ilim , , lim 0, . 13t

i i
t

i

Define the indicator variable that measures the accuracy of
skew compensation: ε α α α( ) = ^ ( ) ( ) − ( )t t t ti i i . If α ( )ti is a slowly time-
varying variable, the objective is to bound the synchronization
error for virtual clock skew of node i as follows:

ε α α α ρ( ) = ^ ( ) ( ) − ( ) ≤ ( )→∞ →∞
t t t tlim lim , 14t

i
t

i i 3

where ρ ρ<3 1 can be regarded as the synchronization accuracy of
clock skew compensation and ρ3 needs to be made as small as
possible.
3. Proportional integral estimator-based clock synchroniza-
tion protocol

The proposed distributed protocol includes three parts which
are similar to the ones proposed in [23]: relative clock skew esti-
mation, clock skew compensation and offset compensation. The
proposed protocol uses the same components as [23] but deploys
different approaches compared with [23]. The main contribution is
to present a new synchronization protocol under time-varying
clock skews.

3.1. Relative clock skew estimation

Relative clock skew estimation algorithm aims to estimate the
relative clock skew of each node i with respect to its neighbour
node ∈j i. The estimation value of relative clock skew will be
used to develop a clock skew compensation protocol.

Definition 3.1. The definition of relative clock skew at time t is as
follows:

α
α
α

( ) =
( )
( )

∈
( )

t
t

t
i j, , .

15ij
j

i

The estimation of relative clock skew will be discussed in two
cases.

3.1.1. Relative clock skew estimation in delay-free case
Some notations are listed as follows:

1. tj(k) indicates global time at which node j's clock reading τ ( ( ))t kj j
just reaches kT.

2. τ ( ( ))( ∈ ∀ ∈ )t k k j,i j i indicates node i's local clock reading
when node j announces that its local clock reading just reaches
kT.

In delay-free case, if we take unavoidable measurement,
quantization errors and small drift of clock skews into
consideration, a low-pass filter-based algorithm introduced by
[23] is proposed in Algorithm 1.

In Algorithm 1, ρ ∈ ( )0, 1 is a tuning parameter. The choice of ρ
can be treated as a tradeoff between the precision of new mea-
surement and prior estimation based on the old measurement. +t
and −t represent, respectively, the right-hand limit and left-hand
limit of t. According to [23], for the case of constant clock skew αi,
applying Algorithm 1 yields the following convergent result

α α^ ( ) = ( )→∞
tlim . 16t

ij ij

Algorithm 1. Relative clock skew estimation in delay-free case.

3.1.2. Relative clock skew estimation in random delay case
Some notations are listed as follows:

1. ′( )t kj is the real broadcasting time at which node j's clock reading
τ ( ′( ))t kj j just reaches kT. At ′( )t kj , node j broadcasts its hardware
clock reading τ ( ′( ))t kj j to node i.

2. tj(k) indicates the real receiving time for node i. At tj(k), node i
receives packets from node j and immediately records its
hardware clock reading τ ( ( ))t ki j .

3. = ( ) − ′( ) ∈d t k t k k,k j j , is the communication delay from node j
to node i. For different dk's, they are mutually independent of
each other.

In random delay case, if we take unavoidable measurement,
quantization errors and small drift of clock skews into considera-
tion, a low-pass filter-based algorithm introduced by [25] is pre-
sented in Algorithm 2.

Algorithm 2. Relative clock skew estimation in random delay
case.

According to [25], for the case of constant clock skew αi, ap-
plying Algorithm 2 yields the following mean square convergent
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result

{ }α α^ ( ) = ( )E k 17ij ij

and

{ }α̂ ( ) = ( )→∞
Var klim 0. 18k

ij

3.2. Clock skew compensation

We apply the relative clock skew estimation Algorithms 1 and 2
which could guarantee the convergence result under constant
input of clock skew αi. Under slowly time-varying input of clock
skew α ( )ti , α̂ ( )tij is also a slowly time-varying variable. Considering
the slow varying properties, we will study the convergence
property of skew compensation using the same algorithm.

After α̂ ( )+tij is acquired, every node i uses a distributed updating
protocol to achieve clock skew compensation, which bounds the
error ε ( )ti under slowly changing input α ( )ti . At time instant

= ( ) ∈t t k k,j , each node i updates its clock skew compensation

quantity α̂ ( )ti . The virtual clock skew is compensated by multi-
plying α̂ ( )ti with its physical clock reading τ ( )ti as α τ^ ( ) ( )t ti i .

The proportional integral estimator-based protocol is proposed
as follows:

Initialization: α ω^ ( ) = ( ) = ∀ ∈i0 1, 0 0,i i .
Main Loop:







⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪⎪

∑

∑

∑
( )

α γ α ω ω α γ

α α α

ω ω α α α

^ ( ) = ( − ϵ )^ ( ) + ϵ ( ( ) − ( )^ ( )) + ϵ

−ϵ (^ ( ) − ^ ( )^ ( ))

( ) = ( ) − ϵ (^ ( ) − ^ ( )^ ( ))

+ −

∈

− − +

∈

− − −

+ −

∈

− − +

19

t t K t t t

K t t t

t t K t t t

1

,

,

i i I
j i

i j ij

P
j i

i j ij

i i I
j i

i j ij

where ωi is an internal estimator state which acts as an integrator.
Specifically, ω ( )+ti accumulates the difference of α α(^ ( ) − ^ ( )− −t ti j

α̂ ( ))−tij with its neighbours' ∈j i. α̂i is called estimator state
which tries to estimate the virtual clock skew compensation
quantity such that α α^ ( ) ( )+ +t ti i asymptotically approaches

α α∑ ^ ( ) ( )=
+ +t t

n
i
n

i i1 as close as possible when t goes to infinity. >K K, 0P I

are called estimator gains; γ > 0 is the information rate as it de-
picts the proportion of how much new information is introduced;
ϵ > 0 is the step size. Each node i not only communicates its
physical clock reading τ ( )−ti but also communicates its clock
compensation quantity α̂ ( )−ti and internal estimator state ω ( )−ti
with its neighbours ∈j i.

This protocol is inspired by the continuous form of propor-
tional–integral dynamic average consensus estimator [33,35,36]
which can allow each node to approximately track the average of
the slowly time-varying inputs and bound the estimation error
related to the rate of slow change of inputs under a fixed network.
We indirectly use the discrete form of proportional integral dy-
namic average consensus estimator as each node i cannot access
its clock skew α ( ( ))t ki j while it can only use relative clock skew

estimation α̂ ( )+tij calculated in Algorithms 1 and 2 respectively.
As tj(k) is based on node j's measurement of kT, each node i

receives α̂ ( ( ))t kij j and performs (19) at different time instants be-
fore synchronization has finished. However, here we only consider
the synchronous form of (19) as in the implementation part, we
show that under pseudo-synchronous implementation scheme,
the protocol has exactly the same performance as synchronous
one does. By replacing +t and −t with a common time notation
( + )t k 1 and t(k) from a perspective of global clock, the following
equations hold:

α α ω ω

α α ω ω α α

^ ( + ) ≜ ^( ( ) ) ^ ( + ) ≜ ^( ( ) )

^ ( ) ≜ ^( ( ) ) ^ ( ) ≜ ^( ( ) ) ^ ( ) ≜ ^ ( ) ( )

+ +

− − −

k t k k t k

k t k k t k k t

1 , 1 ,

, , . 20

i j i j

i j i j ij ij

The synchronous form of (19) is presented as follows:
Synchronous form:







⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪⎪

∑

∑

∑
( )

α α ω ω α γ α

α α α

ω ω α α α

^ ( + ) = ^ ( ) + ϵ ( ( ) − ( )^ ( )) + ϵ ( − ^ ( ))

−ϵ (^ ( ) − ^ ( )^ ( ))

( + ) = ( ) − ϵ (^ ( ) − ^ ( )^ ( ))

∈

∈

∈ 21

k k K k k k k

K k k k

k k K k k k

1 1

,

1 .

i i I
j i

i j ij i

P
j i

i j ij

i i I
j i

i j ij

The indicator that measures the accuracy of node i's local clock
skew is as follows:

ε α α
α

α
α

( ) = ^ ( ) ( ) −
∑ ( )

= ( ) −
∑ ( )

( )
= =k k k

k

n
k

k

n
. 22i i i

i
n

i
i

i
n

i1 1

If we let

α

α ω

ε ε α α

α α ω ω

( ) = [ ( ) … ( )] ( ) = [ ( ) … ( )]
^( ) = [^ ( ) … ^ ( )] ( ) = [ ( ) … ( )] ( )

αe k k k k k k

k k k k k k

, , , , , ,
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then (21) can be written collectively as
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And the error dynamics can be written collectively as

α α( ) = ( ) − ( ) ( )
αe k k

n
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. 26

T

Our main result is presented as Theorem 3.1. It shows that the
updating rule will lead to the boundedness of ε ( )→∞ klimk i .

Theorem 3.1. Consider the communication topology of WSNs of n
sensors being a connected undirected weighted graph  with
its Laplacian matrix L where λ2 and λmax correspond to the second
smallest eigenvalue and the largest eigenvalue of L respectively.
Each node i implements discrete-time synchronous form of
(21) with proportional and integral gains κ κ γ κγ= ′ = ′ = ′K K K K, ,p p I I

where ′Kp, ′KI , γ′ > 0. If Assumptions 2.1, 2.2 hold, ε ( )ki converges

exponentially to a ball at the origin of radius
γρ ρ ρ ρ

γ ρ γρ ρ ρ

ϵ ( − + )( − )

ϵ ( − ) − ϵ ( − ) +

1 1

1 2 1
2 1 2 1

2 2
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+ γ ρ ρ ρ
ρ λ
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K L
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2 2 I I

2 1 2
1
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as → ∞k under the following control parameter

constraints:

1.
ρ

ρ
γ

−
< ϵ

1
2

1

,

2.
ρ

β ρ( − )
< ϵ < ρ ρ

β ρ
− −

( − )1
2

1 1

2 2

1
2 1

2 1
,

where β1, β2, ∥ ∥−V 1 are global information of the network defined in
the proof.
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Proof. The proof is given in Appendix. □

Theoretically, in the proof of Theorem 3.1, the proposed pro-
tocol (24) has been transferred into a discrete-time-invariant lin-
ear system. Once the conditions of control parameters are sa-
tisfied, the internal stability theorem would guarantee the
asymptotic exponential convergence of (24) as all eigenvalues of
system matrix are assigned into the unit circle. As the system input
(physical clock skew) is a slow time-varying variable, finite-time
convergence is unrealistic.

For constant clock skew αi, the following corollary is
established.

Corollary 3.1. Consider the communication topology of WSNs re-
presented by a weighted connected and undirected graph  . Each
sensor implements the synchronous protocol (21) with proportional
and integral gains κ κ γ κγ= ′ > = ′ > = ′ >K K K K0, 0, 0P P I I . If each local

clock skew αi is constant, the virtual clock skew α ( )ki converges to the

average consensus value of
α∑ ( )=

n

0i
n

i1 and ( )αe k converges exponentially

to zero as → ∞k under the following control parameter constraints:

1.
ρ

ρ
γ

−
< ϵ

1
2

1

,

2.
ρ

β ρ( − )
< ϵ < ρ ρ

β ρ
− −

( − )1
2

1 1

2 2

1
2 1

2 1
.

The proof of Corollary 3.1 follows directly from Theorem 3.1.
For random delay case, the following corollary is established.

Corollary 3.2. Consider the communication topology of WSNs re-
presented by a weighted connected and undirected graph  . Each
sensor implements the synchronous protocol (21) with proportional
and integral gains κ κ γ κγ= ′ > = ′ > = ′ >K K K K0, 0, 0P p I I . If we take
Assumptions 2.1 and 2.2 and random communication delay into
consideration, ε ( )ki converges exponentially to a ball at the origin of
radius in mean square sense:

1. ρ
γρ ρ ρ ρ

γ ρ γρ ρ ρ
=
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2. { }ε ρ( ) ≤→∞E klimk i 3,

3 { }ε ( ) =→∞Var klim 0k i ,

under the following control parameter constraints:

1.
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β ρ
− −
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1 1

2 2

1
2 1

2 1
.

The proof of Corollary 3.2 follows directly from Theorem 3.1,
(17) and (18).

3.3. Offset compensation

At the end of clock skew compensation procedure, all virtual
clock skews in WSNs have achieved average consensus value, i.e.,
they will run at the same speed α under constant input αi's or
their synchronization errors will be bounded by a relative small

steady error ρ = +γρ ρ

ρ γ

γρ ρ

ρ λ λ

ϵ ( )

( ( ) − + ϵ )

( ) ∥ ∥

( ( ) − − ϵ^ ) ( )

−

+ −

k

k

k V

k K L3 1 1 i n I I

2
2

2
1

1 2
under time-
varying input α ( )ki 's. Hence, it is necessary to compensate for
possible offset errors. We present the offset compensation protocol
as follows.

Initialization: τ α τ^( ) = ^ ( ) ( ) ∀ ∈i0 0 0i i i .
Main loop:

 

⎧

⎨
⎪⎪⎪

⎩
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τ
γτ γ τ

γ γ

γ γ

τ τ α τ τ
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+
− −

− + + − +

t
t t

i i

t t t t t

,

1, , ,

1 1 , 27

i
i i j j

i j

i i j

i i i i i

where γi is the confidence parameter. α̂ ( )+ti is acquired from (19).
4. Implementation

4.1. Implementation of clock skew compensation protocol

As shown in our proof of skew compensation, the synchronous
form (21) is applied. However, it is unrealistic to guarantee the
simultaneous actions of transmitting, receiving and updating at
the same time before local clock skews are synchronized. As a
result, synchronous implementation is impractical. To tackle this,
we present a pseudo-synchronous implementation. This idea is
triggered by the fact that although each local clock has different
local clock readings, the difference between either their clock
skews or offsets is bounded. Different from asynchronous im-
plementation where node i updates its information immediately
once receives only one packet from one of its neighbours ∈j i, in
pseudo-synchronous implementation, node i does not update its
states until it receives messages sent by all its neighbours. On the
other hand, pseudo means the transmission and updating instants
are determined by its local information, including its relative clock
with its neighbours while synchronous implementation requires
each local sensor share a common global clock, that is, a piece of
global information. We first specify the transmission and updating
time instants.

The transmission time instants of ∈i are defined by

τ( ) = ( ) = ( )t k t t kT, where . 28tr
i

i

T is a positive parameter set as a default value known by all sensor
nodes. Namely, ( )t ktr

i indicates that the ith clock reading just
reaches hT.

The receiving time instants of ∈j i are defined by

( ) = ( ) ∀ ∈ ( )t k t k j, . 29re
j

tr
i

i

The updating time instants of node i are defined by

{ }( ) = ( ) ∈ ∪ { } ( )t k t k j imax . 30up
i

tr
j

i

namely the ith clock updates its state right after all its neighbour
nodes finish their transmission actions, included its own trans-
mission. Notice that, from the above definitions, ( ) ≥ ( )t k t kup

i
tr
i .

Moreover, ( )t ktr
i and ( )t kup

i can be determined by node i relying only
on its local information. Another important concept is defined as

( )≔ ( ) ∀ ∈ ( )t k t k imin , . 31i
tr
i

The pseudo-synchronous implementation of clock skew com-
pensation is presented in Algorithm 3.



Algorithm 3. Pseudo-synchronous implementation of skew compensation.
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The performance of pseudo-synchronous implementation with
clock skew compensation is illustrated in Theorem 4.1. Before that,
the following assumption needs to be guaranteed.

Assumption 4.1. To guarantee the performance of pseudo-syn-
chronous implementation, ( )t kup

i , ( + )t k 1 should satisfy the fol-
lowing inequality

( ) ≤ ( + ) ∀ ∈ ( )t k t k i1 , . 34up
i

Remark 4.1. Another interpretation of (34) is


τ τ≤ ( ) = ( ) = ( + )

∀ ∈ ( )

t t t t kT t t k T

i

, where : max , : min 1 ,

. 35
i

i
i

i1 2 1 1 2 2

According to Assumption 2.1, physical clock skews are re-
stricted by a certain bound. As long as there exists a slight differ-
ence between αmin and αmax, this assumption is rather rational.

Theorem 4.1. The states of the pseudo-synchronous protocol (32)
evolve according to the linear discrete-time equation (21), which is
exactly equal to the synchronous protocol.

Proof. In order to analyze the pseudo-synchronous protocol (32),
we need to fix the sampling time instants. As t(k) represents the
first time instant in which the local clock reading of a node reaches
the value kT, according to the definitions given in (28), (30) and
considering Assumption 4.1, the following inequalities hold



( ) ≤ ( + ) ≤ ( + ) (( − )) ≤ ( ) ≤ ( )

(( − )) ≤ ( ) ≤ ( ) ≤ ( )

(( − )) ≤ ( ) ≤ ( ) ≤ ( ) ∀ ∈ ∪ { } ( )
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According to (33) we can deduce that
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Substituting (37) into (32), it follows that ∀ ∈i
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As t(k) is the common time reference, each local node renews its
states exactly at the same reference time. This completes the proof
of Theorem 4.1. □

Remark 4.2. The proposed proportional integral estimator-based
protocol applies a pseudo-synchronous implementation. With
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pseudo-synchronous implementation, each pair of neighbouring
nodes in WSNs communicate with each other according to their
own clocks and require no simultaneous actions of transmitting,
receiving and updating at a common global time instant. As a re-
sult, EBP with pseudo-synchronous implementation applies to
both full-duplex and half-duplex communication radio technology
in wireless communications.
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Fig. 3. Convergent performance of offset compensation for EBP.
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Fig. 2. Convergent performance of skew compensation for EBP.

Table 1
Computational complexity between EBP and other two algorithms with ρ = 0.032
ticks/s.

Algorithm EBP MTS SLCA
5. Simulation results

This section provides two numerical examples. In Example 1,
comparison is done between our proposed protocol and two other
existing state of the art algorithms: the second-order linear con-
sensus algorithm (SLCA) [31] and the maximum time synchroni-
zation (MTS) [25] protocol. Example 2 illustrates the suitability of
large WSNs.

5.1. Example 1: Comparison between EBP and two other consensus-
based protocols

Consider a network topology in Fig. 1 composed of 15 labelled
nodes.

For EBP, the control parameters are selected as follows:
α ω γ^ ( ) = ^ ( ) = ϵ = = = =K K0 1, 0 0, 0.2, 0.09, 0.75, 1.65i i i p . As crystal
oscillators normally have a drift ranged from 30 to 100 ppm,
where an oscillator with 100 ppm drifts apart μ100 s in one sec-
ond. Therefore the initial clock skew αi's are randomly selected
from [ ]0.9999, 1.0001 and clock offset βi from [ ]0, 0.0002 s. As each
local clock skew experiences small drift, during one sampling
period the local clock skew is added by a random noise range from
[ − ]0.00000915, 0.00000915 , corresponding to [ − ]0.03, 0.03 ticks.
It can be seen from Fig. 2 that it takes nearly 250 iterations to
reduce the maximum difference of skew below 0.1 ticks
( = = μ1 tick 1/32 768 Hz 30.5 s). Fig. 3 shows the convergent
properties of offset compensation.

The comparison between EBP and other two consensus-based
algorithms (SLCA, MTS) are made from the following aspects:

1. Computational complexity: We assess the number of floating
point operations required for a global synchronization of a
wireless sensor network.

2. Synchronization accuracy: We compare synchronization accu-
racy for each algorithm under time-varying clock skew.

3. Convergent speed: We plot convergent curves of each algorithm
in one figure to do explicit comparison of convergent speed.
Fig. 1. Network topology composed of 15 labelled nodes.

Number of iterations required for convergence 130 20 200
Number of operations in one iteration 18 12 13
Total number of operations 2340 240 2600
5.1.1. Computational complexity
Comparison in computational complexity is done between the

proposed algorithm and other two consensus-based algorithms. In
particular, the comparison standard is based on how many num-
ber of floating point operations are required for each algorithm
after one-round synchronization with ρ = 0.032 ticks/s.

Table 1 shows that the proposed protocol requires more float-
ing point operations than the standard fast-convergent-oriented
MTS algorithm but requires fewer operations than SLCA.

5.1.2. Synchronization accuracy
We have compared the synchronization accuracy among the

proposed protocol, MTS and SLCA under time-varying clock skews.
Table 2 contains statistics of the maximum synchronization error
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Fig. 4. Comparison in convergent speed among EBP, MTS, SLCA.

Table 2
Synchronization accuracy between EBP and other two algorithms with ρ = 0.032
ticks/s after convergence.

Algorithm EBP MTS SLCA

Maximum synchronization error (ticks/s) 0.0364 0.2055 0.0578
Average synchronization error (ticks/s) 0.0511 0.1751 0.0752

Table 3
Synchronization accuracy between EBP and other two algorithms with ρ = 0.032
ticks/s after convergence.

Algorithm EBP MTS SLCA
Number of iterations required for convergence 130 20 200
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and average synchronization error for each algorithm.
Drawn from Table 2, the maximum synchronization error and

the average synchronization error for EBP in this static network
are 0.0364 and 0.0511 ticks/s respectively, compared with 0.1751
ticks/s and 0.2055 ticks/s of MTS and 0.0578 and 0.0752 ticks/s of
Fig. 5. Geographic distribution of err
SLCA. This comparison indicates that EBP has the best perfor-
mance in synchronization accuracy than other two algorithms
when the clock skew is time-varying.

5.1.3. Convergent speed
Comparison in convergent speed is done between the proposed

algorithm and other two state of the art consensus-based algo-
rithm. Specifically, the comparison standard is based on howmany
iterations are required for each algorithm after one-round syn-
chronization with ρ = 0.032 ticks/s. Table 3 shows the comparison
result.

We have now plotted the convergent curves of each algorithm
in one figure to do explicit comparison of convergent speed. As
shown in Fig. 4, EBP demonstrates slower convergent rate than
MTS but performs better than SLCA.

In conclusion, we classify consensus-based algorithms into two
categories: one is synchronous protocol with pseudo-synchronous
implementation, e.g. EBP, SLCA; the other is asynchronous protocol
with asynchronous implementation, e.g. ATS, MTS. Asynchronous
protocol has its advantage of being easier to implement as it re-
quires fewer floating point operations. Moreover, the convergent
rate is faster than synchronous protocol. On the other hand, syn-
chronous protocol can realize higher synchronization accuracy
especially when physical clock parameters are time-varying.
Hence we could choose the appropriate synchronization protocol
according to the actual demand in practice.

5.2. Example 2: Suitability of large WSNs

Consider a 10�10 grid WSN that composed of 100 sensor
nodes. The initial physical clock skews were assigned randomly
from a normal distribution with mean 1 and standard deviation of
100 ppm. Each node broadcasts one sync packet per round in
random order with a one-hop range of its neighbours. Control
parameters are chosen as γϵ = = = =K K0.3, 0.09, 0.1, 0.01i p . Each
sensor node is implemented with EBP. The geographic distribution
of clock errors in the network is shown in Fig. 5 before synchro-
nization. Fig. 6 shows the convergent results. After 32 rounds of
iteration corresponding to 9.6 s, it can be seen that the maximum
error of virtual clock reading is reduced under 0.1 clock ticks/s,
well below the clock resolution.

If the communication range of each inner node increases from
4 to 8 nodes, it takes only 20 rounds of iteration (corresponding to
6.0 s) to constrain the maximum error of virtual clock reading
or ticks before synchronization.



Fig. 6. Geographic distribution of error ticks after 32 rounds of synchronization.

Fig. 7. Geographic distribution of error ticks after 20 rounds of synchronization.
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under 0.1 clock ticks/s, see Fig. 7. Notice that the increase of
transmission range and the number of sync packets contribute to
the performances of EBP, e.g. precision of synchronization, the
convergent property. Furthermore, if the skew compensation is
viewed as a preliminary step, the offset compensation demon-
strates better performance in convergent rate as each compen-
sated local skew is bounded by a relative small range, no matter
what degree the physical skew drifts to.
6. Conclusion

This paper presents a proportional integral estimator-based pro-
tocol to handle clock synchronization under time-varying parameters
over wireless sensor networks. Under the proposed distributed pro-
tocol, a network of sensors can achieve clock synchronization in a
distributed manner. Furthermore, the proposed protocol achieves
higher synchronization accuracy against time-varying clock skew. We
investigate the stability property of EBP and analyse the convergence
property under both delay-free and random delay cases. Finally, a
realistic pseudo-synchronous implementation is proposed. Future
work includes optimization of control parameters in order to acquire
better convergent property of EBP.
Appendix
Proof of Theorem 3.1. Define
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Consider the state coordinate change
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where =ve n
1 is the unit eigenvector corresponding to zero ei-

genvalue of Laplacian matrix L L,I P . Define S such that [ ]v Se is an
orthogonal matrix. Under the new state coordinate system, (42)
becomes
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The error dynamic becomes
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n
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The first element σ ( )k1 of σ( )k has the following dynamic:

σ σ χ( + ) = ( ) + ( ) ( ) ( )k k d k k1 . 471 1 1 1

As σ ( )k1 is an uncontrollable and unobservable state, it is dropped.

Define ⎡⎣ ⎤⎦ ωσ σ σ* = ( ) … ( ) = ( )k k S k, , n
T T

2 . The remaining dynamics
are given as
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As STLIS is of full rank, it is also invertible. Define new vectors as
follows:
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Hence we can give the dynamics of ζ( )k
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The dynamics of ζ( )k can be divided into two parts ζ ( )k1 and ζ*( )k
where ζ ζ ζ*( ) = [ ( ) … ( )]−k k k, , n

T
2 2 1 . The dynamics of ζ ( )k1 are as

follows:
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Based on (16), ( )→∞ b klimk 1 converges to 0 exponentially. To

guarantee the convergence of ζ ( )k1 , γ
ρ

( − ϵ )
( )k

1 must be less than one. As
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1 indicates the following con-

dition of control parameter constraint
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As α α( + ) − ( )v k k1e
T is bounded by ρ2,
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which indicates that ζ ( )k1 converges exponentially to a ball of ra-
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The dynamics of ζ*( )k are given by
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As LI corresponds to a connected undirected graph  , the
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following well-known property [20] is established:
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In order to give a bound on ζ*( )k , we need to prove that system
(57) is input-to-state stable, hence the spectrum of A5 needs to be

analyzed. Define the eigenvalue set of A5 as { }λ λ^ … ^
−, , n1 2 2 . Based

on Lemma 2.1, the spectrum of A5 satisfies the bound
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Eq. (61) indicates that A5 is not only Hurwitz stable, but also has a
stability margin bounded by β β,1 2. To guarantee the spectrum of
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ρ ρ( )

ϵ
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5 lying in the unit disk, the following condition needs

to be satisfied
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As ρ( )k is bounded by ρ− < ( ) < +ρ
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, a more con-

servative condition is presented as
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By mathematical manipulations to (64), the step-size ϵ should
satisfy the following condition
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As long as (65) is satisfied, there exists a ϵ such that
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5 lies in the unit disk. By Lemma 2.2, system (57) is

input-to-state stable.
Let V become the similar transformation of + ϵI A5 and suppose

that Λ+ ϵ = −I A V V5
1 such that Λ is diagonal. By similarity trans-

formation V
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system (57) is transformed into
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According to (16),
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Hence it follows that η ( )k1 exponentially converges to 0 as → ∞k .
As σ σ*( + ) − *( )k k1i i is bounded by
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Adding the bounds (56) and (70) together, we conclude that ε ( )ki
converges exponentially to a ball of radius
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This completes the proof of Theorem 3.1. □
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