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ABSTRACT

This paper is concerned with the problem of designiug
optimal multirate filter banks. Three design criteria
are considered for linear phase FIR filter banks: H»
measure, Ho, and the mixture of them. A closed-form
solution is presented for optimal H filter bauk design.
For optimal H. filter bank design, two algorithis are
given which involve solving the design problem using
positive semi-definite programming techniques. The
mixed Hy/H,. design problem is also solved. The re-
sults of this paper are excepted to be useful in applica-
tions such as speech coding, sampling rate conversion
and multi-stage filtering.

1. INTRODUCTION

The technique of multirate filtering has been studied
by many researchers in recent years. The application
of this technique in digital signal processing is wide
spread, including filter banks for coding, sainpling rate
changers, and multi-stage filtering; see, e.g., [9, 4].

Using the standard polyphase representation, maost.
multirate filter bank design problems can be converted
into a multi-input multi-output filter design problemn
depicted in Figure 1. In this configuration, T repre-
sents a target system. For example, in a multistage
filter design problews, T may be specified by passhand
and stopband specifications. The two stages, G(2) and
H(z), are trausfer matrices in polyphase representi-
tion. For simplicity. we only consider a two-stage sys-
tem, but the concept in our paper can be extended to
systems with many stages. The signal iuput w(n) €
R™, the target output yr(n) € R, the filter output
yu(n) € R, and the filter error

e(n) =yn(n) —yr(n) € R (1)

The goal is to design G(z) and H{(z) such that some
given specifications, denoted by 7T, are met.

Although there are many design methods available
for various applications, most of them separate the mul-
tirate system into different parts and each part is de-
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signed separately according to its separate design spec-
ifications. Such separation often occurs on two levels.
Frist, different stages of a multirate system are designed
separately. Secondly, different channels of a given stage
are [urther separated. The advantage of this “local” de-
sign approach is its simplicity in design specifications
and in the computation required for design. In partic-
ular, conventional single rate, single channel filter de-
sign methods are all applicable. The main drawback,
however, is the lack of “global” optimality of the de-
sign. For example, a two-stage implementation of a
low-pass filter with é-tolerance level in the passband
is often designed by specifying a é/2-tolerance level in
each stage[9, 4]. The resulting multirate filter, although
meeting the desired specification, typically has its total
degree higher than necessary.

The purpose of this paper is to study a “global” de-
sign approach for multirate systems which intends to
overcome the weakness of the “local” design approach.
The idea of this inethod is that the design specifications
for stage 1 are given in terms of the cascaded subsys-
tem consisting of stage 1 to stage 4. That is, the design
of stage i should be done to optimize the performance
of the subsystem consisting stage 1 to stage ¢. This
kind of specifications are very natural in many mul-
tirate filtering problems. For example, if filter banks
are used for coding and decoding, the specifications for
the analysis bauk may be such that the maximum data
compression can be achieved. The specifications for the
synthesis filter inay be such that the cascaded system
(analysis filter and the synthesis filter) is more or less
lossless and linear phase. For the two-stage low-pass
filter examnple wentioned earlier, the first stage can be
done with sone §;-tolerance level (§; < 6), and then
the second stage should be designed such that the tol-
erance level of the cascaded systern is less than é while
keeping the order of stage 2 as small as possible.

Using the design approach mentioned above, the de-
sign of ench stage is done in the same fashion, and it can
be illustrated in Figure 1. The transfer function G(z) is
given. representing the cascaded subsystem from stage
1 1o stage + — 1. For i = 1, G(z) = I. The function
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H(z) represents stage 7. The design specifications for
stage + are symbolically represented by 7.

To accominodate different applications. we consider
H; and H,, measures and combinations of them for fil-
ter design. The ability to cope with different measures
is important in rmulti-objective applications. For exam-
ple, Hy filters are commonly ued for processing signals
involving Gaussian random noises. H.. filters are a
natural generalization of the equirriple filter in the sin-
gle rate single chiannel case. Our focus will be given to
linear phase FIR filters.

Our main contributions of the paper are elficient
algorithms for designing multirate H, and Ho [filters.
In the H; case, we present a closed form solition to the
design of optimal filters. In the Ho case, two couvex
optimization algorithins are presented. Mixed Hy/Ho
problems are considered too.

2. OPTIMAL H; FILTER DESIGN

The optimal H, filter design problem solved in this
section has a very general setting as described helow.

Let 2, and Q. be two disjoint compact set. in [~7, 7]
representing the passband and stopband of desired mul-
tirate filter. Denote by Q the union of Q, and Q.
and by Q4 = [-7, 7]\Q (the don’t care region). Let.
T(w) be a real matrix function defined on Q. which
specifies the linear phase ideal filter. Let (@) be a
real matrix function defined on [—=, 7], which spee-
ifies the weightings (corresponding to tolerance lev-
els) in the passband and stopband regions. In par-
ticular, W{w) = 0, Vw € Q4. It is assutned that
T(w) = T(—w) and W(w) = W(-w). Usually, both
T (w) and W {w) arc piecewise constant. Also given is a
linear phase filter G(z). We only cousider the following
H(z) (Other types of linear phase filters are consicdered
similarly):

Hy + Z H; cos(iu)

=1

H(:)

™m
2tz
=" <H0 -+ ZH‘.—_)_

=1 -

Equivalently,

H(e™) = em9m (

> (3)

P1 Given m, design a (2rm+ 1)-tap linear phase filter
H(z) as in (2) such that the following H.-nortu
square is mininized:

Two design problews are considerecl:
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where

X(w) = (T(w) - HE*)G(ENW (W) (5)

and trf-] denotes the trace.

P2 Given an upper bound J, find the minimum-tap
filter H(z) in (2) as follows:

minm subject to J(H) < J. (6)

We show that P1 has an analytical solution and P2

can be solved using a simple bisection algorithm.
To deal with P1, we define

.77-7—=‘/K;T(w)W(w)W’(w)T*(w)dw (7)
Jrei =/QTWW‘G"67”“" cos(iw)dw (8)

Jae ik =/ GWW*G" cos(iw) cos(kw)dw  (9)
Q

for7,k=0,1,---,m, and
H, e
H={| [, Jr¢= (10)
H’" ;‘G,m
'IGC-' = {JGG.ikv i7k=07°“7m} (11)

Then, Jrr. Jre and Jge are allreal and Jgg = Joc 2
0 (symmetric and positive-semidefinite). We also note
that these integrals are usually easy to compute be-
cause W{w) and T(w) are usually piecewise constant
and G(z) is also an FIR filter. Subsquently, we have

J(H) = tr [JTT - J3oH — H Jrg + H’JGGH] (12)

Assume Jge: > 0. Rewriting the above, we obtain

J(H) = & [Jrr = Jped5eJTC
+ (H-Jgedre) Jac(H = J58Ire)] (13)

Obviously, an optimal J(H) is given by

Twin = min J(H) = tr [Jrr ~ JpeJGEIre]  (14)
with the minimizer given by
Hui = Jaé;JTG (15)

This result is swunmarized below.

Theorem 1. The optimal solution to P1 is given by
(14)-(15). provided that Joe > 0.
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To see how P2 is solved, we assume that sotue upper
bound ™ and lower bound m are given. Note that
the upper bound can either be given from hardware
limitations or be estimated using degree estimates of
single channel linear phase FIR filters [4]. If no lower
bound is given, one can set mn = 0. Then, the following
bisection algoritlun, which takes at most logs (/i — i)
iterations, will provide an optimal m to meet the design
specifications.

Step 1: Set m = (m + m)/2. Solve Jy,;, as in (14).
Step 2: If Jyin > J, set m = m; else set @ = m. If
M > m, go to Step 1; else mpin = m.

We note that. Jrr and the elements of Jr¢: and Jee;
are repeatedly used in tlie iterations above, indicating
that the algorithiu can be immplemented very officiently.
However, we do not conduct a detailed analysis here
due to page limitation.

3. H, FILTER DESIGN-METHOD 1

The problem settings for Ho filter design ave the same
in the H; case except that an He, measure is used heve.
That is, we cousider the following problems:

P3 Given m, design a (2m + 1)-tap lincar phase filter
H(z) as in (2) such that the following H..-norm
is minimized:

Y(H) = 1025 0w [(T(w) = G(™) H(e™ )W ()]

(16)
where 6,,..[] denotes the maximu singular value.

P4 Given an upper hound %, find the minimmun-tap
filter H(z) m (2) as follows:
minm subject to y(H) < 7. (17)

We will consider P3 ouly because P4 can he solved
using a bisection algoritlun, as for P2.

We note that in the single channcl case. an Ho hil-
ter is nothing but an equirriple filter. which can be de-
signed efficiently using the well-known Parks-McClellan
algorithm {6]. Further. good estimates of {ilier orders
exist [6, 4]. However, this algoritluu does not have an
multichannel counterpart.

It is also well-known that single-channel equirriple
filters can be designed using linear programuting tech-
niques. This is siiuply done by taking a ~dense™ set of
frequencies {w;, - .wy} C Q, and wodify P3 to the
following:

i ¥

subject to [ N(w)} < v, k=1 N (18)
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where X (w) is defined in (5). This method is substan-
tially slower but has the advantage of being able to
incorporate additional convex constraints in time do-
main and frequency domains; see [7].

The design method introduced above is readily ex-
tended to filter banks. We take a “dense” set of fre-
quencies {wy,---,wy} C Q, and modify P3 to the fol-
lowing:

wmin '72

subject to 02 . [X(wk)] 9% k=1,---,N19)

Using the Schur complement, the above can be rewrit-

fel as
)20

Note that the matrix inequality above is linear in +2
and Hi.i = 0,1,---,m. Hence the problem can be
solved efficiently using semidefinite programming tech-
niques; see [1] for introduction and [3] for a Matlab
toolbox.

min ~?
')’21 X(wk)
1\- * (L«JL- ) I

k=1,

subject to (

N {20)

4. H, FILTER DESIGN-METHOD 2

The method introduced here requires a somewhat dif-
ferent. setting. We assume that an ideal (high order)
filter T(z) and a weighting function W(z) are expressed
by either FIR or IIR matrices. Also given is G(z) as
Lefore. The problem of interest is to design H(z) of a
given degree such that the Hoo-norm of the following
function is minimized:

E(z) = (T(z) = G(z)H(2))W (2) (21)

To motivate the design problem above, we consider
an application of filter banks in coding. In this case,
G(z) represents the analysis filter bank and H(z) the
synthesis filter bank. The ideal filter T(z) can simply
be a pure delay function, ie. T(z) = z~%I for some
d. The design problews is to design a synthesis filter
bank so that the decoded signal will match the original
sigual optiunally iu the Hy sense, module a pure de-
lay. Note that the synthesis filter bank is not designed
independently fromn the analysis filter bank.

Another example where T is an FIR or IIR filter is
the case of multistage filtering. Here T(2) is given and
the design goal is to use a multistage configuration to
reduce the overall order of the filter; see [4].

Without loss of generality, we will assume W(z) = I
because it can always be absorbed into T'(z) and G(z).
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Express the transfer matrices in state space realiza-
tions, i.e.

T(z) = Dr+Cr(zI-Ar)"'Br (22
G(z) = Dg+Cglzl ~ Ax)"'Ba (23)
H(z) = DH+CH(ZI-A//)-]B// (24)
The filtering error transfer function is given by |
E(zx)=D+C(zI-A)'B (25)
where
Ac 0 0 B
A= O Ar 0 |: B=| B
BHC(,‘ 0 AH B// D(,'
(26)
C=[DyCc -Cr Cu]; D=DyDeu- Dr
(27)

Since H(z) is FIR, we can assume that 4, and By are
constant and that Cp and Dy are design parameters
depending on H;,7 = 0,---,m linearly. Therefore. A
and B are known and that C and D are lincar in H,.

Theorem 2. The optimal Hy, filtering problem is equiv-
alent to the following semidefinite problem:

viim = miny?  subject to

ATXA-X ATXB cr
BTX4 BTXB-I DT | <u (28)
C D -4
X=XT>0.420, Hi,i=0.-.1. (29)

That is, min{||[E(z)|ec : Hi,i=0,1,- .1} = Yomin-

As for the first 1nethod, the inequalities in (28) are
linearin X and H;,7 = 0,1, -, m. Sosemidefinite pro-
gramming techniques can be applied to compute y,;,.

5. MIXED H,/H. FILTER BANK DESIGN

The mixed H,/H filter bank design criteria involve
both H, constraints and H constraints. Suppose we
are given T(z), G(z) and W(z) as in the last section
and some upper bound J for J(H) in (12). we need to
find a H(z) (of a given degree) as in (2) such that the
H_.-norm of the weighted error transfer function E(z)
in (21) is minimized subject to J(H) < .J.

Combining the results in Sections 2 and 4. we have
the following result:

Theorem 3. The mized Hy/Hoo optimal filter bank
design problem is equivalent to the followring:

2. = mina? subject to (28) — (29) and
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<0

-1

Jrr=-JcH-HUrg-Y H
H “YGG

uly) < J (30)
is}

provided that Jeeo > 0. That

win{||E(z)||ee : J(H) £ J, Hiyi=0,1,--,m} = Ymin
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Figure 1: Multirate Filter Bank



