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ABSTRACT

This study investigates the effects of using different external
and middle ear models as the preemphasis filter for speech
recognition. We find that an external and middle ear model
derived from physiological data of human auditory systems
gives the highest recognition rate. This auditory based pre-
emphasis filter also gives good a recognition rate for the con-
sonant sounds (fricatives, stops, liquids and diphthongs).

1. INTRODUCTION

It is common to preemphasize speech signals with a linear
filter, 1 — az~}, before speech is parameterized. This filter
is motivated by the fact that voiced speech carries an ap-
proximate -6dB/octave slope in the spectrum on average.
The need for preemphasis in speech recognition has been
justified in many recognition systems.

It is well-known that the external ear and middle ear
play an important role in the sensitivity of our hearing with
respect to different frequencies. Naturally, an alternative
preemphasis method for speech recognition is to use an au-
ditory based filter derived from external and/or middle ear
models. However, there seems no reported result on the use
of these ear modlels in preemphasis for speech recognition.

Our purpose here is to investigate the effect of external
and middle ear filtering on phoneme recognition.

2. EXTERNAL EAR AND MIDDLE EAR

The sound wave perceived by the external ear gets amplified
and filtered. If we assume that the sound wave is incident
at an angle of 45° relative to the front-back axis of the
human head, the approximated external ear transfer func-
tion is shown by the solid line in Fig. 1(a). The impedance
matching process of the middle ear provides amplification of
sound pressure during the transmission from the tympanic
membrane to oval window. The frequency characteristics of
the middle ear are found [6] by measuring the round win-
dow volume velocity for a constant sound pressure at the
tympanic membrane as shown in Fig. 1(b) (dashdot line).
Other external and middle ear functions which are adopted
in different anditory models are also shown in Fig. 1.

The composite transfer function of external [8] and mid-
dle [6] ear is shown in Fig. 2 (dashed line). Hewitt el at. (3]
approximate the composite filter by a bandpass function as
shown in Fig. 2 (solid line). Seneff [7] and Van Immerseel et
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Figure 1: (a) ‘shaw’ (solid line) is the human external ear trans-
fer function given by (Shaw, 1974). ‘sene’ (dotted line) and ‘vani’
(dashdot line) are the external ear models which are adopted in
the auditory models of Seneff (1988) and Van Immerseel el al.
(1992), respectively. (b) ‘krin’ (dashdot line) and ‘guin’ (dotted
line) are the middle ear transfer functions (round window vol-
ume velocity per unit pressure) of human {(Kringlebotn, 1985)
and cats (Guinan et al., 1967), respectively. ‘kate’ (solid line) is
the acoustic gain of the middle ear adopted by Kates (1991).

al. [10] ignore the middle ear transfer function in their au-
ditory models whereas Kates [5] and Deng et al. [1] ignore
the external ear transfer function. All these models will be
tested.

3. PHONEME RECOGNITION
ENVIRONMENT

Our phoneme recognition tests are evaluated on the pro-
totype version (1988) of the TIMIT database. We use the
DRI region only. The training tokens consist of 12 females
and 17 males, and the testing tokens consist of 3 females
and 5 males. There are 290 sentences for training and 80
sentences for testing in total. Seven groups of allophones
are identified and within-group confusions are not counted
as errors [9]). The speech signals are sampled at 16 kHz.
Each analysis frame has a duration of 20 ms with a 10
ms overlap. After the speech is preemphasized, 12 Mel-
frequency cepstral coefficients per frame are computed.
The phoneme recognizer consists of 59 phone models.
Each phone is modeled by a three state left-to-right HMM.
The output probability distribution of each state is modeled
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Figure 2: ‘shkr’ (dashed line) is the composite transfer function
of human external (Shaw, 1974) and middle (Kringlebotn et al.,
1985) ear. ‘hewi’ (solid line) shows the transfer function used by
Hewitt et al (1992).

by a mixture of three multivariate Gaussian density func-
tions with a diagonal covariance matrix. HMM parameters
are initialized with the segmental K-mean algorithm and
estimated using the Baum-Weltch re-estimation algorithm.

4. RESULTS AND DISCUSSION

The phoneme recognition results with different preemphasis
filters are shown in Fig. 3. Now we offer some discussion of
these results:
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Figure 3: The recognition rate of untrained samples. ‘mcep’
uses the conventional preemphasis filter, 1 — az~!, with preem-
phasis factor of 0.95. No preemphasis filter is used in ‘nopr’.
‘shkr’ uses the composite function of external ear (Shaw, 1980}
and middle ear function (Kringlebotn, 1985). ‘kate’, ‘sene’, ‘vani’
and ‘hewi’ are based on the auditory models by Kates (1991),
Senefl (1988), Van Iminerseel et al. (1992) and Hewitt et al
(1992), respectively.

1) The results snggest that the choice of preemphasis fil-
ter does affect the performance of a speech recognizer. The
preemphasis filter ‘shkr’ derived from the physiological data
of external [8] and middle ear [6] gives the highest phoneme
recognition rate. We believe that this is because its transfer
function has most weight in the frequency range of 500 Hz
to 5000 Hz. An interesting property of this model is that it
also gives a good recognition rate (64%) for the consonant
sounds (fricatives, stops, liquids and diphthongs).
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2) ‘sene’ yields the lowest overall phoneme recognition
rate. We suspect that this is caused by the steep slope
(about +55dB/dec) at the frequency below 4 kHz. The
recognition rate of affricatives, fricatives and stops are par-
ticularly low. Note that the spectral energy of these sounds
is concentrated in the range from 500 Hz to 4000 Hz [4].

3) It is interesting to note that the recognition rate of
both ‘vani’ and ‘kate’ are close. A low-pass filter is used in
‘vani’ [10] and a high-pass filter is used in ‘kate’ [5]. This
is not surprising because experiments of speech intelligibil-
ity [2] shows that speech is highly perceptible when heard
through a low-pass filter with high a cut-off frequency or a
high-pass filter with a low cut-off frequency. The conven-
tional preemphasis, ‘mcep’, gives a fair recognition rate and
is compatible to the result of ‘vani’and ‘kate’. Also, the case
without preemphasis (‘nopr’) performs quite well too.

4) In comparision with the conventional preemphasis
(’mcep’) and the case without preemphasis (’nopr’), au-
ditory based preemphasis filters seem to have some edge,
although the difference is not very significant. We note,
however, that the tests are done in a noise-free enviorn-
ment, i.e. the database is recorded without noises. Further
tests need to be done to study the effect of auditory based
preemphasis filters in adverse environments.
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