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ABSTRACT

This paper discusses recent results relating to the parametric
approach to robust stability. The general problem of robust
stability is defined and a review of Kharitonov type and edge
theorems, zero exclusion results, interval matrix stability, maximal
perturbation bounds, multilinear and nonlinear perturbations,
time delay systems and numerical/graphical approaches is pres-
ented. Some open research directions are indicated, concluding
remarks on the future of the approach are given and an extensive
list of references is included.

1. INTRODUCTION

The fundamental justification for using feedback control is "to
enforce good performance of control systems in the presence of
uncertainty. Also, feedback is used to enable a process to work in
the neighborhood of open-loop unstable oEerating conditions,
that is, to stabilize unstable plants" [84]. Although most systems
to be controlled are open-loop stable, the introduction of inte-
grators in the loop (to suppress steady state errors) or more
general feedback Jt)o improve dynamic performance) makes the
stabilization, in the presence of uncertain parameters and/or
delays, very difficult. Contrary to the decade of the 1970s when
most control efforts were concentrated on known mathematical
models now "control engineers must live with uncertainty and
understand that the impact of the level of modeling uncertainty
on the des(iign of controllers is crucial® [84]. Thus, questions of
stability and stabilization of uncertain systems are among the most
important issues in control engineering today. The aim of this

aper is to review and discuss recent results on some of these
issues, that is, what is now commonly called robust stability. This
paper is an extension to [54] which was written for the practicing
control engineer; here we give a more thorough and complete
technical description of the recent results. The reader interested
in tracing the history of robust stability in the parameter space is
referred to recent surveys [11,115] and a number of books
[2,23,64,107,114,131].

When dealing with a nominal system there are a number of well
knownmethods of verifying stability. These include analytical tests
such as the Routh-Hurwitz criterion or Lyapunov methods, as well
as graphical tests such as the Nyquist criteria. Ensuring the

ractical stability of a control system, however, requires taking
into consideration not only the nominal system but also all its
reasonable (expected) perturbations. In the classical Bode-
Nyquist design techniques the goal of practical stability is achieved
by introducing uncertainty in gain and phase, leading to the notion
of stability (gain and phase) margin. In many applications, how-
ever, the uncertain parameters are not the gain and/or phase but
some other well defined physical quantities such as time constants,
friction coefficients, loads, interconnection gains, chemical reac-
tion rates, time delays, etc..

There are basically two well developed approaches available to
problems of robust stability. One uses additive ( G(s) + A(s) )
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or multiplicative ( G(s) [ 1 +A(s)]) perturbations of the nominal
system transfer function (c.f. [48,49,65] and references therein)

with H © -norm or other bounds on A(s). The other takes into
account the structure of the perturbations by assuming that some
parameters (usually physical parameters) are known to lie within
some bounds or tolerances (c.f. [2,64,114] for examples of
uncertainty models in the parameter space). We will focus on the
parametric approach since: i) parameter bounds can usually be
obtained from physical considerations while it is difficult to find
bounds on A(s), ii) models of perturbations in the frequency
domain which proved successful (e.g. gain and/or phase pertur-
bations) cannot represent parameter perturbation as a special
case, iil) in many practical cases, after deriving an appropriate
uncertainty model in the parameter space the remaining uncer-
taintyin the frequency domain s negligible; it perturbs the Nyquist
plot in a small neighborhood of the origin, iv) the classical gain
and phase margin model becomes a special case of a moreféener.al
uncertainty model in the space of transfer function coefficients,
after introducing an uncertain complex gain coefficient.

2. PROBLEM DEFINITION AND PRELIMINARY REMARKS

Consider the continuous or discrete time closed-loop system with -
plant G and controller H. The characteristic equation is:

det (1 + GH) =0 (n
This can usually be represented in an equivalent form as:
p(r.a)=0 (2)

where p(.,.) is a function (which we call the "characteristic func-
tionf'g in the vector of variables r = [ ry,...,[;y] and the uncertain
coefficient vector a = [ay,...,a5] belongs to some known region of
tolerances. The variables ry are functions of one complex variable
associated with either the f.aplace transform, or the z-transform,
for example they may be of the form sk, e-sT, etc. The general
robust stability problem can now be formulated as:

Given a family P of characteristic functions associated
with an uncertain system, and a set D in the complex
plane, provide computationally tractable techniques for
determining the D-stability of P, that is, for checking
whether the zeros of the functions in P remain within D.

Typical choices for D are the open left half plane (for
continuous-time lsfsystems), the open unit disc (for discrete-time
xstcms), or specified subsets thereof. The general problem is very
ifficult, and additional assumptions are required before concrete
results can be given. To better understand some of the difficulties
we consider the particular case where the characteristic function
(polynomial) of a continuous time system is given by:

p(5,a)=a,s"+a,. s" +...+a;5+a,.a,>0
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We assume that the uncertain coefficients vary independently in
the intervals a;e [a;,B;],i = 0,1,...n. One way of checking the
stability (in this case D is the open left half plane) would be to
discretize the admissible parameter space and to check the sta-
bility of each p(s,a) at all discrete values of a; This is tractable




only when n is small and the discretization is coarse; for example,

forn = 3, tenvalues of 3;i = 0,1,2,3 would require checking 10,000
polynomials. This approach is clearly not a good way to go, since
1t would be necessary to check thousands or millions of polyno-
mials, even for small n. Furthermore, the discretization might be
too coarse and this apgroach would not guarantee the correctness
ofthe result. On the other hand, it is obvious, in view of the Hurwitz
conditions that: for n = 2 it is sufficient to check whether
@0 >0 and a, >0, forn = 3itis possible to check the positivity
of the lower bounds of the coefficients and the inequality
@@, B3R, >0, but for n > 3 the problem becomes cumber-
some. Fortunately, recent results [78] obviate the necessity of
pursuing_this apgroach, at least for the p(s) in (3) and for
independent coefficient variations.

:I;: RECENT RESULTS ON THE ROBUST STABILITY PROB-
EM

In this section we briefly review recent results for special cases of
the general robust stability problem.

3.1 Interval polynomials and Kharitonov-type results.

For the p(s,a) given in (3) a complete solution has been obtained

bﬁKhantonov [78] under the assumptions that:

( 1ng is a so called “interval polynomial”, meaning that the
icient variations are independent, that is

a;ela;,B;], O<a,<B,,

K2) the region D is the open left half plane.
¢ demonstrated that P 1s D-stable if and only if exactly four
polynomials corresponding to specially chosen extreme values of
the coefficients are stable. The four polynomials are:

€D

.....

p“(s)=ao+als+stz+[3333+a,,s4+(x555+...
Pap(8)=0,+Bs+B,s%+a,s+a,st+B.s+...
8 o™ 2 3 4 s

Pa(8)=Bo+Bis+ays?+ays°+B,s*+Bys®+...

©))
Ppa(8)=Bo+a,s+a,5%+B,8 +B, st +ags®+...

A simJ)}e way to memorize how these four polynomials are gen-
erated is to note the "melody”

-oa,a,BBa,a,BLB,...
which defines uniquely the above polynomials.

If the coefficients in (3) are complex (i.e. (K1) is modified such
that each coefficient varies independently in a rectangle in the
complex plane), Kharitonov [79] has shown that onl eight poly-
nomials must be checked. Kharitonov’s results make tge particular
robust stability problem considered above straight-forward and a
number of proofs of the theorem are available
[6,29,30,33,34,37,92,142].

The type of systems which can be treated using Kharitonov’s
results is limited by assumptions (K1) and (K2) above. A con-
siderable research effort has gone into attempts to relax these
assumptions  [9,13,19,25,27,31,36,38,43,50,51,53,55,61,82,85,91,
93,97,98,122,128,145 and references therein], that is, to consider
other D and/or dependent coefficient variations and/or systems
with p(s,a) different than the one in (3). We note that if the system
possesses only one unknown coefficient satisfying (4), then 5)
reduces to checking two polg'nomials differing only in that one
involves the minimum and the other the maximum value of the
unknown coefficient. We refer to this as checking extreme values,
and say that a given class of systems will in general admit a
Kharitonov-like result if the stability for extreme values of the
g:rameters guarantees robust stability. With this definition it has
en shown that:

Neither discrete time [38,62] nor delay systems [55]
admit Kharitonov-like results
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Forsome special D regions and/or restricted types of polynomials,
however, checking the extreme values may be sufficient
[32,50,62,81,97).

We now consider in detail assumption (K1) which is often not
satisfied in typical situations. To see this, consider the transfer
function:

k(s2+5+5)

GH(s)=
(s) s¥+1.45%+1.45+1

(6)

with uncertain gain parameter k € [0.5,3]. The characteristic
equationis givenby (3) withn = 3,a3 = 1,a; = a, = 1.4 + kand
ag = 1 + Sk. Clearly the coefficient variations are hnearg'
dependent, and do not satisfy assumption (K1). On the other hand,
the stability is preserved if and only if a;a; > a) (Note that the
ﬁositivity of a;, 1=0,.,3is assured). Checking this ineqlua.lity for

= 0.5, 1 and 3 we conclude that the system is, respectively, stable,
unstable and again stable. Hence stability for the extreme values
of the uncertain parameter does not guarantee stability for the
entire re%ion of uncertainty and a Kharitonov like result can not,
ingeneral, be obtained for systems where the coefficient variations
are linearly dependent. This seems to indicate that progress in the
theory of robust stability to include linearly dependent coefficients
is hard to achieve. Fortunately, however, some recent results bring
good news.

3.2 Polytopes of polynomials and edge results.

Consider the polynomial given in (3) withn = 3,23 = 1, ap=a
and assume that a; and ag are bounded by a triangular region. It
can be seen, using the Routh - Hurwitz test, that in order to check
the stability of the whole triangular region it is sufficient to check
the stability of its edges, which reduces the dimensionality of the
problem (note thata, = a defines the boundary of the stability
region).

The above example generalizes to the multidimensional case: the
so called "Edge Theorem" of Bartlett, Hollot and Lin [19] states
that if we are given a polytope in the space of coefficients ay,...,an
thenthe stability of the whole polytope is equivalent to the stability
of its edges. This yields a great reduction in computational com-
plexity; not as dramatic as Kharitonov’s result, but still substantial
since checking the edges can be executed by checking the root
locations of certain easily derivable matrices. More specifically,
let

P={P(s.A):p(S M) =N, P () * et AP (),

xizo,ix,ﬂ (7)

be a general polytope of polynomials. Note that our previous
example is also a polytope
{s®+(1.4+k)s*+(1.4+k)s+1+5Sk: ke[0,3])=

N(s®+ 1,452+ 145+ 1)+ (1 -A)(s°+4.45%+ 4.45+16):
Ae[O0,1])

To check the stability of an edge

{MP1(S)* Ao pa(8)IN +A,=1,A,20)

it is necessary and sufficient that p; be stable and the matrix
H;H, (or HH;1) does not have eigenvalues in(—, 0]where
H; and H, are Hurwitz matrices corresponding to p; and p,
respectively [25]. The counterpart of this condition for discrete-

time systems can be found in [3,18]. In addition, an attractive
gr:;ghical test has been found for checking edges [55,56]: it is
sul

cient to check stability of p; (or p,) and then verify whether
P2(jw) )

-n< arg| ——— |<n 8

g(pmjw) ®

for allw. For example, if py(s) = (s + 1)2and py(s) = (s- 1)2 then
the continuous function



rg(Pz(j“))
p1(jw)

reaches -7 at w =1 thus indicating instability of some convex
combination of p;(s) and p,(s). In general, the practical compu-
tation can be executed over a finite interval, since for largew the
ratio po(jw)/p1(jv) approaches a constant value.

>= -4arctg(w)

We can now ask whether the edge theorem holds for a wider class
of systems. The answer is that:

The Edge Theorem holds for the case with a reduced
system order (vanishing highest order coefficients) [63],
for discrete time systems {3,18,19,44,143] and can be
extended to time delay systems [55,56] as well as almost
arbitrary D regions (some mild assumptions on D are
required [53,55]).

Also the graphical tests for checking the edges extend to these
cases [55] where they are of even greater interest since, e.g., no
general analytic tests exist for checking stability of time delay
systems.

3.3 Interval matrices and other state space uncertainty models

State space models with perturbed system matrices are a natural
counterpart to uncertainty models based on characteristic poly-
nomials. The corresponding stability problems are much more
complicated than the one of a polytope of polynomials because
the coefficients of the characteristic gaenction of the system are
multilinear functions in the elements of the system matrix. Among
the many possible matrix perturbations the simplest are "interval
matrices" where it is assumed that all (or some) matrix elements
vary independently in prescribed intervals. For this model it would
seem reasonable to expect the existence of Kharitonov type
results; this expectation led to claims [26,69] of necessary and
sufficient conditions for stability of interval matrices in the con-
tinuous time [26] and discrete time [69] cases. Unfortunately, both
claims are incorrect as pointed out by respectively [12] and
[57,77,80,105,110,120,144]. Furthermore, the edge theorem does
F(:it] extend to a polytope of matrices (or even a hyperectangle)
14].

On the positive side, to check the D stability of a polytope of
matrices, results [39,40] indicate that when the dimension of the
system matrix is n, it is necessary and sufficient to only check either
(2n - 4) or (2n -2) faces depending on the structure of D. Fur-
thermore, Kharitonov type necessary and sufficient conditions
have been found for very special classes of matrices {137]. There
are also a number of conservative results offering sufficient con-
ditions [1,20, 21, 22, 41, S8, 66-68, 70-76, 83, 86, 87, 89,
90,95,99,109, 111,117,119,138-141,145].

An open research question is whether it is possible to find simple
necessary and sufficient conditions for general interval matrices
or polytopes of matrices. By simple, we mean conditions which
wouldrequire either finitely many arithmetic operations or solving
finitely many polynomial equations or both.

An interesting direction has been proposed in the case of non-
linear dependence on uncertain parameters [108,130] where a
single parameter perturbation has been reduced to checking the
root locations of a special matrix. These papers also touch on the
two parameter perturbation case.

3.4 Maximal perturbation bounds, stability radii and similar
approaches

An interesting open area in which results are just beginning to
appear  [7,8,10,24,28,35,46,51,52,59,60,88,100,102-104,118,121,
123,125,126,130,132,141} is that of finding "maximal perturbation
bounds." By this we mean finding the maximal value of a scaling
factor for the set of uncertain parameters such that robust stability
is preserved. More precisely, given a set of uncertain physical
parameters A, a nominal value ¢o€ A and an expansion-
contraction transformation described by
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fa)=ay+k(a-ay)

we seek a maximum value for a real positive k such that the
system remains robustly stable Ve € £ (A). The interest here is
that in contrast to cases where the perturbation bounds are
assumed known, this approach attempts to find the largest set of
perturbations for which the system remains D-stable. This may be
of particular interest for the robust controller synthesis problem
where design parameters need to be chosen. For example, in [52]
a closed form description is given for the maximal perturbation
bound of Hurwitz stable interval polynomials. For the polytope
of polynomials defined in (7) solutions are given in [51,130].

The nature of existing results is that for simple perturbation
models (e.g. one dimensional segments in the vector space of
uncertain parameters) analytical tests are available which are
easily computable. For more general perturbation models, how-
ever, the use of optimization algorithms is required to carry out
the tests. An open question is whether the optimization problems
can be simplified.

3.5 Results based on the "zero exclusion criterion."

The main idea behind the so-called "zero exclusion criterion (or
principle)" is the fundamental property that the roots of polyno-
mials are continuous as functions of coefficients. To explain this,
consider the robust stability of a continuous-time system with
coefficients of the characteristic polynomial depending continu-
ously on a number of independgnt parameters located within
specified intervals. Then the robust stability is guaranteed if (1)
a nominal system is stable and, (2) for any admissible values of
the ﬁarameters, the characteristic golynoxma.l does not have zeros
on the imaginary axis. Statement 2 means that no polynomial can
assume a zero value at the boundary of the left half-plane (zero
exclusion). This principle can be developed further to obtain
numerical tests for robust stability,. A number of results
[9,13,30,42,43,51,133] are based on this criterion. In [9], the zero
exclusion criterion is used to generalize the concept of four
Kharitonov functions for a polytope of polynomials. This gener-
alization would seem to be of real interest for reducing the
computation time when treating cases involving man

perturbation parameters. The results of [9] are extended in [13%
to include unmodelled dynamics. The issue of robust stability o

po(l;vtopes of functions which are not necessarily polynomials is
addressed in [42] and a more general form of the zero exclusion
criterion is developed. Fu [S1] proposes an approach based on the
zero exclusion criterion for the D-stability of polytopes of poly-
nomials, which provides a closed-form description for the "max-
imal" size of a polytope of D-stable polynomials. Numerical
algorithms are also given in [51] for calculating the maximal size.

3.6 Multilinear and nonlinear perturbations

An irr_lﬂ:)rtant class of largely open problems is the multilinear
case. This case assumes that the characteristic function is given
by (3) where the a; are multilinearly dependent on a set of other

arameters (as noted in Section 3.3, the interval matrix model
eads to multilinear perturbations). Unfortunately, no efficient
results currently exist for treating the general case of multilinear
or nonlinear parameter perturbations. Since theé multilinear case
is often encountered in applications, it represents a major barrier
which needs to be overcome through future research on the
parametric approach to robust stability.

Only some preliminary results are available. For instance, in [45]
it has been shown that under some "shaping conditions” a value
set of a polynomial dependent bilinearly on two parametersa,
anda  varying in some intervals is a polygon for each s=jw. This
resembles the situation with a linear (polytope) structure with
respect toa, anda,. The reduction of robust stability to root
location of a simple matrix [108,130] already mentioned in Sec.
3.3 is another example of an interesting preliminary research
direction. Of course, when one wants to try conservative sufficient
conditions many of the results for matrix perturbations cited in
Sec. 3.3 apply. In addition, there are papers offering sufficient



conditions for perturbations in the coefficients of the character-
istic polynomial [101,116,127,136] or exploiting a special structure
of the uncertain parameters (perturbed gains, etc., [96,106,113]).
In principle, it is possible (by using the zero exclusion principle)
to reduce the general problem with polynomial dependence on
uncertain parameters to testing positivity of multivariable poly-
nomials. For the latter, the existing tests based on resultants are
very complicated and do not simplify easily for particular
parameter structures. Perhaps only special numerical approaches
may be capable of handling the general nonlinear problems.

3.7 Time delay systems

As already indicated, Kharitonov’s theorem does not extend to
time delay systems [55] but the edge theorem does [55,56]. For
some special perturbations Kharitonov-like results can be
obtained (see e.g., Theorem 2 in [93], however Theorems 3 and
5 in [93] are invalid as evidenced by the counterexample in [55]).
There is little other literature on this subject ( [135] offers some
sufficient conditions, [15] proposes a numerical approach in the
frequency domain, [94] andp[l 6] show destabilizing effects of time
delays and other parameters in pole Flacement design, [147] gives
analytic tools to deal with systems of order less or equal to four).
This is somewhat understandable since the work for nondelayed
systems is far from beinF completed. On the other hand, there are
anumber of relatively old results concerning stability independent
of time-delays (see [149] and references therein) where algebraic
methods were proposed. However, one warning applies: If time
delays grow to infinity, sKstem eigenvalues either enter the right
half plane or approach the imaginary axis [148].

3.8 Numerical and graphical approaches

There are two main directions in this area: one trying to execute
testing in the parameter space (e?loiting whenever possible a
reduction of dimensionality offered by the theory), and another
working in the complex domain of values of characteristic poly-
nomials or transfer functions. The second direction can be
attractively visualized using computer graphics. To comdpare the
two, let us recall a problem of checking the stability of edges (see
Sec. 3.2 and compare the graphical test with calculating eigen-
values). The second direction seems to be more effective based
on the fact that graphical tests for checking edges extend to
time-delay systems [55] whereas many other methods do not
(similarly, the frequency domain method in [9] extends to a
delayed case [15]). Two recent papers following the first direction
are 5{127,134], whereas frequency domain or value sets are used
ig} ,15,129). In [4] a case study is presented involving root locus,
value sets, Hurwitz tests and stability boundary testing in the
parameter space. Summarizing, the research in numerical
approaches is only preliminary and more work is necessary before
a reliable software becomes?éasible.

4. REMARKS AND CONCLUSIONS

The necessity of developing tools to deal with uncertainty in
control systems is now widely recognized, and in the last five years
the parametric approach to robust stability has been receiving
increasing interest. If knowledge of the system justifies assuming
independent or linearly dependent coeéicient perturbations in
the characteristic function, the theory underlying the parametric
approach to robust stability is reasonably well developed. Fur-
ermore, conditions under which Kharitonov results or edge
results apply are now fairly clear. In addition, the zero exclusion
criterion offers a method of determining the maximal size of the
?olytope of polynomials for which stability can be achieved. Thus,
or a wide class of systems we believe the theory is sufficiently well
developed that work can begin on developing efficient software
to aid control engineers in incorporating the parametric approach
into their analysis and design toolboxes.

The major stumbling block to the extension of the parametric
approach to a wider class of systems is the lack of a theory for
treating multilinear and/or nonlinear cases. Currently, the only
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ractical results concern sufficient conditions for limited cases.
is is the main area which begs for results and we feel that
numerical approaches represent a promising direction.
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