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Abstract: This paper serves as a tutorial paper for a new area of research in control systems, namely, quantized feedback control

and estimation. This area is motivated by the increasing need of incorporating communication networks in a control system. In

such a framework, feedback information needs to be transmitted over a digital network, which results in a number of new chal-

lenges for estimation and control design. The focus of this paper is to introduce a number of recent results on the design of quanti-

zers for the purposes of control design and state estimation. uantized feedback control, networked control, quantized estimation,

robust control .
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1 Introduction

Although often invisible to the general public, control
and automation technologies are an integral part of modern
industry. These technologies are essential in managing
complex data and information, ensuring stable and safe
operations, optimizing operational performances, guaran-
teeing economic viability and safeguarding environmental
impacts. Unlike the traditional control technologies, mod-
ern control systems are typically implemented on a digital
communication platform, forming the so-called networked
control systems. With the increasing success and popular-
ity of wireless communications, there is also an increasing
need in deploying wireless network based control systems.

The introduction of networks has created many new
challenges to the traditional control theory. Traditional
control theory assumes that the feedback channel is analog
and solely dedicated to control purposes. However, more
and more industrial systems are controlled via digital com-
munication links such as Fieldbus, local area networks,
and wireless networks. These communication links are
shared with other network functions. This means that feed-
back signals in the control loop are subject to a number of
undesirable distortions. These include quantization errors,

time delays, transmission errors and packet dropouts.
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Quantization errors occur because a digital network is
limited by the amount of data it can transmit per unit
time. Such a limit can be severe especially in wireless
networks. Time delays occur naturally in a network. The
major problems here are random delays caused by conges-
tions, packet collisions, re-transmissions and unpredict-
able routings. Transmission errors here refer to errors not
recoverable through error-correction coding and decoding,
thus unrecognizable by the control designer. Packet drop-
outs refer to the loss of transmission data, when transmis-
sion of a given packet can not take place within the
required time limit. All these undesirable properties in a
digital network require us to develop new theory and tech-
niques for estimation and control design.

In this paper, we focus on the quantization issue and
study the so-called quantized feedback control and estima-
tion problems. The setting for these problems is that we
assume that data transmission is only subject to quantiza-
tion errors and ignore all other features such as time de-
lays and packet dropouts. Likewise, many other research-
ers focus on other aspects of the networked control prob-
lems by, e.g., ignoring the quantization issue. This type
of divide-and-conquer approach allows us to provide con-
crete solutions for each communication issue, and we can
combine different solutions together for practical imple-

mentations .
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Control and estimation using quantized information can
be traced back to early days of control research. In par-
ticular, research into the so-called quantized linear qua-
dratic Gaussian (LQG) control problem started in early
1960’ s. This problem is the standard LQG control prob-
lem but subject to the constraint that the feedback infor-
mation must be quantized by a fixed-rate quantizer. Re-
lated works include [ 19-23 ]. More broad attempts on
quantized feedback control can be traced back further to
the works of [ 17] and [ 18] on the effects of quantization
errors to sampled-data feedback systems.

The overwhelming success of networked control sys-
tems, especially for industrial control and automation, has
brought a resurgent interest in quantized feedback control.
Examples of works include[ 1-4,6,9,8,7,10-11,13-14].
There are also many recent attempts on the quantized LQG
problem; see[ 12,15,24].

Like in the classical control theory where state estima-
tion plays in essential role, estimation based on quantized
information is also critical to quantized feedback control.
This has been well recognized in most of the references
above. In addition, quantized estimation has a broad
range of applications beyond feedback control. Examples
include sensor network-based estimation and tracking[ZS—
29] and consensus networks [ 26-27]. Examples where
quantized estimation is a part of the solution to a more
broad problem of network-based estimation subject to
transmission delays, packet dropouts and other problems
can be found in [25,28-29].

In the rest of the paper, we discuss how to jointly de-
sign quantizer and feedback controller or state estimator.
We consider both static quantization and dynamic quanti-

zation.

2  Quantized feedback control via static

quantization

Consider the following system:
x(k+1)=Ax(k)+ Bu(k),
y(k)=Cx(k), (1)
where x (k) ER" is the state, u(k)ER is the control
input, y (k) € R is the measured output, A € R"*",
BER"™ and CER™" are given. We will denote the
transfer function from u (k) to y (k) by G(z). We as-

sume that A is unstable and (A, B, C) is a minimal re-

alization.
The quantized feedback control problem is is depicted
in Figure 1, i.e., is to design a feedback quantizer
v(k)=QCy(k)), (2)
and a feedback controller of the form
£(k+1)=A%(k)+ Buw(k), £(0) =0,
u(k)=Cx(k)+Dw(k), (3)
with £ (k)€ R", such that the closed-loop system is sta-
ble and that the so-called quantization density [9] is
coarsest. The quantization density of Q(+) is defined as

follows :

#ale] (4)

= lim su
77(} e - lne ’

where # g[e ] denotes the number of quantization levels

in the interval [e,1/¢].

u(k) R System y(k)

()

v(k)

Controller

Fig.1 Quantized feedback control

In this section, restrict ourselves to a static quantizer.
That is, the quantizer does not use past input and
quantized values in order to quantize the given (current)
input value. In this setting, it turns out that the so-called
logarithmic quantizers are more appropriate than the com-
monly used (and commercially available) linear quanti-
zers.

A logarithmic quantizer is described by
T= = p'po:i=0, 21, £2,--1 U0}, 2y >0, (5)
where p€ (0,1) and

; P |
O'tto s T 5P <y<y_grto,

Q(y) = 0, iy =0,
- Q(—y), if y<O0,
(6)
where

T l+p’ (7)

A pictorial representation is given in Figure 2. The de-
scription above is for an infinite-level logarithmic quanti-
zer. In practice, it is truncated when the input is too

large (by a saturator) or too small (by a dead zone) in
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magnitude.

4 v=(1+8)y wv=y wv=(1-08)y

v=0Q(y)

Fig.2 Logarithmic quantizer

The first case where logarithmic quantization is superior
to linear quantization is in quantized feedback control
where the objective is to drive the output or the state to the
origin but the control signal or measurement signal need to
be quantized [9,13]. This arises in stabilization, tracking
and disturbance attenuation. The reason is that logarithmic
quantization gives a multiplicative quantization error,
which reduces as the input signal becomes small. As a
tradeoff, the quantization error becomes large when the in-
put signal is large, but this does not create problems.

The second case where logarithmic quantization is supe-
rior to linear quantization is in quantized state estimation
where the state of a system needs to be estimated using
quantized information [ 16]. If the measured signal is
quantized directly, logarithmic quantization may not be
appropriate because the measurement may be persistently
large . However, one may quantize the estimation error in-
stead. In doing so, logarithmic quantization is better be-
cause we want a small quantization error when the estima-
tion error becomes small and we can tolerate a large
quantization error when the estimation error is large.

Another case where logarithmic quantization is advanta-
geous is when the signal to be quantized already has a
multiplicative noise. Many sensors have the feature that
measurement errors are specified using a relative error.
For example, positions are often measured by range (dis-
tance) and most range sensors have accuracies specified
by relative errors. Recall that logarithmic quantization al-
so introduces a multiplicative error. When it is combined
with a multiplicative noise, it is simply magnified without
changing the noise structure.

It is interesting to note that most control and estimation
settings deal with additive noises. We note here that this

is indeed done mainly for mathematical convenience be-

cause multiplicative noises are somewhat more difficult to
deal with; see [30].

It was shown in [13] that the optimal quantizer struc-
ture for the quadratic stabilization of (1) is given by loga-
rithmic quantization. Moreover, under quadratic stabiliza-
tion, quantized feedback control is equivalent to robust
control with sector bounded uncertainty, and the coarsest
quantization density (which is equivalent to the smallest
p) can be found by standard H., optimization as detailed
below.

Theorem 1  Consider the system (1). For a given
quantization density p > 0, the system is quadratically
stabilizable via a quantized controller (2) if and only if
the following auxiliary system:

x(k+1)=Ax(k) + Bu(k)
v(k)=(1+A)Cx(k),IAl<d (8)
is quadratically stabilizable via:
v (k+1)=Ax, (k) +Buw(k)
u(k)=Cux,(k)+Duv(k), (9)
where &, which is the sector bound produced by the
quantization error, and o are related by (6).
The largest sector bound & Sul)(which gives p0,,) is given
by
5sup=(]glzf) 1 G.() I .)", (10)
where G,(z) = (1- H(z)G(z)) "H(z)G(z) and
H(z)=D,+C,(z -A,) 'B,.
The result builds a fundamental bridge between
quantized feedback control and robust control, paving way

for a lot of further research on networked control.

3 (Quantized state estimation

Consider the following linear system:
x(k+1)=Ax(k) + Bw(k),x(0) = x,,

y(k) = Cx(k) +v(k), (11)
where w (k) € R" is the process noise, v(k)E R is the
measurement noise. It is assumed that x, € R" is a ran-
dom variable with mean %, and covariance =, , and w and
v are uncorrelated zero-mean white noises with covarianc-
es 2, and 2, , respectively, and they are uncorrelated
with x, .

We study the problem of state estimation using
quantized measurement transmitted over a digital commu-

nication channel with a limited data rate. It is desirable to
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know how to quantize the measured signal so that good
state estimation can be achieved using limited informa-
tion.

The quantized estimator is shown in Figure 3. Instead
of quantizing the measured signal directly, we choose to
quantize the prediction error of the estimator. The estima-
tor is chosen to be

£(k+1)=A8(k) + LQ(y(k) - 9(k)),£(0) = x,,
9(k)=Ce(k)), (12)
where £ (k)€ R" is the estimate of x(k), (k) ER is
the estimate of y(k) based on £ (k), Q(-) is the

quantizer, and L is the estimator gain.

v(k)
w(k) y(k)
e —— System
£(k)
> Quantizer > Channel > Estimator ——

Fig.3  Quantized state estimation

Note in the above that state estimation is constructed
only using the quantized prediction error. Therefore, un-
der the ideal channel assumption, both sides of the chan-
nel can construct the same estimate using the quantized
prediction error. In particular, the construction of £ (k)
on the transmission side does not require the estimated
state to be transmitted back from the receiver side.

A logarithmic quantizer is used. Defining the estima-
tion error

e(k)=x(k)-2(k)
and its covariance matrix
E(k)=cele(k)e' (k)
the aim is to design both the filter gain L and the quantizer
so that the trace of the asymptotic E (k), i.e., E =
lim, .. , is to be minimized. Details can be found in [16].
We now demonstrate quantized state estimation by an

example. The system model is given by (11) with

2.4744 -2.811 1.7038 - .5444 .0723
1 0 0 0 0
A=| 0 1 0 0 0 |,
0 01 0 0
0 0 0 1 0
B'=[1 0 0 0 0],
C=1[0.245 0.236 0.384 0.146 0.035], (13)

S,=1and 3, =1/16. The range of & for the tests is
chosen to be [0, 0.3]. For each &, we try two estimator
gains L, one taken as the Kalman gain designed by ignor-
ing the quantization error and one being the robust gain
computed by treating the quantization error as a multipli-
cative noise.

Figure 4 shows the simulated values of tr( E). Also
shown in the figure are the estimates of tr( £) which we
can ignore for this paper. We have two observations: (1)
As the quantization becomes coarse (p becomes small or
6 becomes large) , the estimation error increases; (2) the
robust gain outperforms the Kalman gain more significantly

when the quantization becomes coarse.

12.0 =
— Estimated tr(E) using Kalman gain
11.8 || —— Simulated tr(E) using Kalman gain
1.6l = Estimated tr( E) using robust estimation gain
*V|| —o— Simulated tr(E) using robust estimation gain
11.4
. 11.2
SRTRY
B
10.8
10.6
10.4
10.2
10.0
0 0.05 0.10 0.15 0.20 0.25 0.30
0
Fig.4 Intinite-level logarithmic quantization

When the quantizer is truncated to a finite-level one,
additional estimation error arises. In this case, apart from
the o, the parameter z, in the quantizer needs to be de-
signed as well. As a result, with about 4 ~ 5 bits of
quantization, the quantized estimator has its estimation
error variance only marginally larger than in the case with-
out quantization. The details on the design of p and g,
can be found in [16]. Figure 5 shows the result of esti-

mation error vs. the number of quantization bits N, .

20 . : N
— Estimated tr(E) using Kalman gain
19t —— Simulated tr (E) using Kalman gain
—— Estimated tr(E) using robust estimation gain
18 —o— Simulated tr(E) using robust estimation gair
171
161
S 15t
B
14}
131
12¢
117
10 . . : -
2 S 4 5 6 7 8
Number of quantization bits
Fig.5 16-level quantization



A dynamic quantizer uses memory, i.e., it can use
the past input-output values of the quantizer to determine
how to quantize a current input value, and thus is more
complex and potentially more powerful .

One type of dynamic quantizers uses dynamic scaling
in conjunction with a static quantizer. That is, the input
signal is pre-scaled so that its range is more suitable for
quantization. The scaling parameter is dynamically adjust-
ed (i.e., adjusted online). Noticeable work along this
line includes [3,6,10-11]. In [3], it is pointed out that
if a system is not excessively unstable, by employing a
quantizer with various sensitivity a feedback strategy can
be designed to bring the closed-loop state arbitrarily close
to zero for an arbitrarily long time. The idea of quantizer
with sensitivity is extended in [6] where it is shown that
there exists a dynamic adjustment of the quantizer sensi-
tivity and a quantized state feedback that asymptotically
stabilizes the system. In the case of output feedback, a
local (or semi-global) stabilization result is obtained.

It is shown in [8] that stabilization of a single-input-
single-output linear time-invariant system (in some sto-
chastic sense) can be achieved using only a finite number
of quantization levels. In addition, the minimum number
of quantization levels (also known as the minimum feed-
back information rate ) is explicitly related to the unstable
poles of the system, under the assumption of noise free
communications. In this setting, the dynamic quantizer
effectively consists of two parts: an encoder at the output
end and a decoder at the input end. The problem of mini-
mum feedback information rate is studied in more details
in [ 10] by analyzing the structures of the encoder and de-
coder. We do caution that many results on quantized
feedback with dynamic quantizers may be impractical due
to three problems: (1) Most results are for stabilization
only rather than for performance control; (2) The transient
response is typically very poor due to the lack of good con-
trol design algorithms; (3) As pointed out in [31], the
capacity results are in general not valid for practical com-
munications channels which are not noise free.

In[14], a simple dynamic scaling method has been
studied. This method employs a finite-level logarithmic

quantizer () in conjunction with the following scaling:
vo=gi Qg). (14)

where the scaling gain g, is adjusted by
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g7, i 10(gy)l=p,
g =&/ Y2, i 1Q(gy )1 =0" s, (15)
i otherwise .

with some initial g, >0, where 7,,7,€ (0,1) are de-
sign parameters. The basic idea is to scale down (resp.
up) the next input if the current input is too large (resp.
small) in magnitude.

Note that g,,, is determined based on when Q (g,y,)
(quantized information), no additional information needs to
be passed on from the transmit side to the receive side for
updating g, , provided both sides start with the same g, and
there is no transmission error for the quantized information.

It is shown in [ 14] that it requires only a finite number
of logarithmic quantization levels to quadratically stabilize
a given linear system when the above dynamic scaling
method is used. The detailed design of the dynamic
quantizer and the controller are not discussed here.

Simulation results show that for most practical control
systems, the number of quantization bits per time sample
is very moderate [14]. To demonstrate this fact, we con-

sider the system (1) with

2.7 -2.41 0.507 1
A=| 1 0 0 |(,B=[0/,

0 1 0 0
C=[1 -0.5 0.04].

The system is unstable with two unstable open-loop poles
at 1.2 + 70.5 but without unstable zero and the relative
degree is 1. Figure 6 shows the state response of the

closed-loop system with a 4-bit logarithmic quantizer.
200

— %
— %
— X3

150

100

50

-50+t

-100

50 60 70 80 90 100

time

0 10 20 30 40

Fig.6  Closed-loop response with a 4-bit quantizer

5  Quantized linear quadratic gaussian

control

In [24], we focus on the so-called quantized LQG con-
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trol problem which is generalized from the standard LQG
problem in discrete time but with the constraint that the
feedback channel is a digital link with a fixed bit rate.
The quantized LQG problem we study is the same as the
standard LQG control problem but with the constraint that
the feedback signal must be quantized and transmitted
over a digital link with a fixed bit rate, as depicted in
Figure 7.

Wy 5 Uy Xy

Plant
Uy Yi

DEC |« Channel |« ENC |

Fig.7 Quantized LQG control system

The system we consider is a discrete-time model given

by
x,,1 = Ax, + Bu, + w, ,

y, = Cx, + v, , (16)
where x, ©R" is the state, u, € R" is the control input,
¥, €R” is the measured output, w, €R" and v, € R are
independent Gaussian random distributions with zero mean
and covariances W, >0 and V, >0, respectively, and the
initial state x, is also assumed to be an independent zero-
mean Gaussian distribution with covariance % .

In the sequel, we denote z' = {zy,z,,""*, 21 .

The communication channel we consider in this paper
is assumed to be a memoryless and error-free channel with
a fixed transmission rate of R bits per sample. The output
signal y, needs to be encoded first (as indicated by the
ENC block in Figure 2 before transmission, and the re-
ceived signal is decoded which is then used to construct a
control signal u, (as indicated by the DEC block in Fig-
ure 2).

The encoder is required to be a causal mapping from
the measured signal y,, i.e.,

a,=at(yr|a'_]), (17)
where o (*) takes values in a finite alphabet set .7 with
size of 2% . Without loss of generality, we take .7 = i1,
2,0, 2R % .

Similarly, the decoder is required to be a causal map-

ping from the received quantized signal, i.e.,

w,=p(ala"), (18)

where a, is the received version of a,. Because the chan-

nel is error free, @, = a,, thus (22) can be rewritten as
u =, (a,la™). (19)
We are interested in the following linear quadratic

cost:

T-1
J= 6[96/7 QTxT + on/llel + Zu/l Hlxl + u’/l Slul] )
(=

(20)
where e[ * ] is the expectation operator and Q, = (', ,
S, =8, and H, are weighting matrices with
S,>0,0,-HS'"H =0 (21)
forall t=0,1,--,T-1and Q; = Q;=0.

The problem of quantized LQG control is to jointly de-
sign the quantizer and controller (or encoder and decod-
er) to minimize the cost J, under the bit rate constraint.

In [24], we first look back at the history of the re-
search on this problem and discuss many attempts to gen-
eralize the separation principle [ 19-23 ], some dated back
to early 1960 s. We point out that many of these general-
izations contain technical errors and/or misinterpretations.
This leads us to a number of results on quantized LQG
control, as briefed below:

(1) A weak separation principle holds which states that
optimal quantized LQG control can be achieved by sepa-
rately designing state estimation, state feedback control
and quantization. However, the separation is weak in two
ways: ( | ) The quantization criterion depends on the
control cost function; ( ii ) More seriously, optimal
quantization can not be done by separately minimizing the
quantization errors at different time instants. These weak-
nesses imply that optimal design for quantized LQG con-
trol is very complex numerically and is in huge contrast
with the classical separation principle where state estima-
tion is independent of the state feedback control and state
estimation at each time instant can be done recursively
without considering the future evolution of the system dy-
namics.

(2) The consequence of the weak separation principle
is that the quantized LQG problem becomes a quantized
state estimation problem. In this problem, the output sig-
nal of a system needs to be quantized by a fixed rate
quantizer and the quantized information is used to con-
struct an estimate of a linear function of the state of the
system, the desired control signal in our case, in a way to

minimize a given distortion function. We point out that
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this can be viewed as a generalized vector quantization
problem. We then use a linear predictive coding (LPC)
type of approach to show that, under high resolution
quantization and some mild rank condition, optimal
quantization is done by using a memoryless quantizer. Us-
ing memoryless quantizers means that quantization can be
done by considering each input sample separately. This
result, together with the weak separation principle above,
shows that a full separation principle holds for quantized
LQG control under high resolution quantization and the
mild rank condition. This rank condition essentially
requires the dimension of output not to exceed the dimen-
sion of the input, which holds in particular for single-in-
put-single-output systems.

Details on quantized LQG control can be found in
[24].

6 Conclusion

In this paper, we have briefly discussed a number of
quantized feedback control and estimation problems. This
review is limited because many other results are not dis-
cussed. These include robust control using quantized
feedback [32], control design with both input and output
quantization [ 33] and feedback control with minimal
feedback information in general [8,34].

Quantized feedback control is a relatively new area of
research with many open and challenging questions. Al-
though quantization is a well-studied subject in signal pro-
cessing and digital communications, we caution that it is
usually not appropriate to directly apply techniques in
these areas to control problems. The main reason for this
is that control systems involve feedback, which has two
major implications: (1) The quantized signal re-enters
the system; (2) The input signal to the quantizer is not
known a priori to be bounded. Both of these implications
make the analysis and design of quantizers much more dif-
ficult.

Future research work in this area should be directed at
inter-disciplinary studies by incorporating knowledge in
control, information theory, communication networks,
sensor networks and quantization theory so that not only
quantization problems but other network induced control

and estimation problems can be solved.
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