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Abstract

In this paper, we consider a class of uncertain linear
systems which are subject to a general type of integral
quadratic constraints (IQCs). Two problems are ad-
dressed: 1) robust H analysis and 2) robust He con-
trol. In the first problem, we determine if the system sat-
isfies a desired H o, performance for all admissible uncer-
tainties subject to the IQCs. In the second problem, we
seek for a dynamic output feedback controller to achieve
a desired robust Ho, performance. We apply the well-
known S-procedure and show that these two problems
can be effectively solved using linear matrix inequalities
(LMIs).

1 Introduction

This paper addresses two problems: robust H.. analy-
sis and robust H control of a class of linear systems
which are subject to an energy bounded (or Ls bounded)
exogenous input and several uncertainties involving the
so-called integral quadratic constraints (IQCs). In the ro-
bust H., analysis problem we determine the worst-case
energy (or the induced Ly norm) at an output, while for
the Ho, control problem a feedback controller is sought
for such that the worst-case energy at a controlled output
is less than some desired level. These problems and vari-
ations of them have been studied in a number of papers
recently; see [9, 14, 7, 10, 1] and references thereof.
There has been a lot of advancement since the H, con-
trol problem was initially proposed by Zames [17]. The
landmark paper [3] (known as DGKF paper) provides a
simple algebraic Riccati equation (ARE) approach to the
problem. Recently, the linear matrix inequality (LMI)
approach has attracted a lot of attention; see [6] and [8],

*This work has been supported by the Australian Research
Council.

Nikita E. Barabanov
Dept. Software Engg.
Elect. Engg. University
St. Petersburg, Russia

Huaizhong Li
Dept. Elect. Comp. Engg.
University of Newcastle
NSW 2308, Australia
eelhz@ee .newcastle.edu.au

for example. The LMI approach is computationally ad-
vantageous because of the recent progress in linear pro-
gramming, i.e., the powerful interior point algorithm pro-
posed in [11]; also see [2]. Another advantage of the LMI
approach is its simplicity for treating the singular cases.
However, all the works mentioned here require that the
system to be controlled or analyzed does not have any
uncertainty in the model.

For systems with structural uncertainties, one method
popularly used is the so-called y analysis and synthesis;
see [4]. This method is applicable to systems involving
linear time-invariant dynamical uncertainties. Recently,
several papers have been written about H., analysis and
control of systems with time-varying uncertainties, see
[9, 15, 14, 7, 1], for example. The type of uncertainties
treated by these papers are all norm-bounded, as illus-
trated in (4)-(7) in section 2. On the other hand, a more
general type of uncertainties described by IQCs have also
been used in H, analysis and control; see [10, 13] for ex-
ample.

The aim of this paper is to show that the robust H.o
analysis and control problems can be solved by using the
so-called S-procedure [16, 10] and the linear matrix in-
equality (LMI) approach.

The type of IQCs used in this paper are very general,
allowing uncertainties in the state, exogenous input, con-
trol input, controlled output and measured output.

The rest of the paper is outlined as follows: Section 2
studies the H, analysis problem; section 3, the control
problem; and the concluding remarks are given in sec-
tion 4.

2 Robust H,, analysis

Cousider the following linear uncertain system:

i(t) = Az(t) + Bw(t) + Z Hyi&i(t) (1)
2(t) = Cx(t) + Dw(t) + Z Hyi(t) (2)



where z(t) = Ax(t) is asymptotically stable, z(t) € R" is
the state, w(t) € R? the exogenous inputs, z(t) € R" the
output, and & (t) € R¥ the uncertain variables satisfying
the following 1QCs:

T T
/O IIEi(t)IIZdtS/O | Evia(t) + Baw(t) + Esi€(t)|[*dt,
(3)

asT — o0, i =1,---,p
with
§t) = [ 1) & @)

AISO7 A, _B7 C, D, Hli; Hgi, Eli; Egi and Egi are constant
matrices of appropriate dimensions.

Remark 1. The IQCs have been used for a long time in
Russia; see [16]. They have also been used in recent liter-
ature to deal with robust control, see [10, 13] for example.

To understand the generality of the IQCs in (3), let us
look at a special class of uncertain systems which have
been treated in a number of papers (see, e.g., [9, 15, 14,

7, 1)):

i(t) = (A + AA)z(t) + (B + AB)w(t) (4)
2(t) = (C + AC)z(t) + (D + AD)w(t) (5)
where
Sean| = |m|Fom Bl ©
with
FLF@) <1, vt>0 (7)

Obviously, this example above corresponds to the case
p =1, and (7) is more restrictive than (3).

Remark 2. Note that the following quadratic constraints

16N < [[Bria(t) + Exw(t) + Esi&(t)]1%,

i=1,2,...,p ®)
precisely describe the norm-bounded uncertainty (6) -(7).
Both (3) and (8) can effectively represent dynamic un-
certain structure. However, the significant difference be-
tween (3) and (8) is that (8) are local constraints while
(3) are weaker “global” constraints. It is obvious that
(3) are less conservative than (8) in describing system
uncertainties.

We make the following assumption:

(A0) (Zero state detectability) Let w(t) = 0. Then

ST 11z(8)][2dt is bounded as T — oo implies (1) — 0
as T — oc.

The problem of robust H, analysis is as follows: Given
v > 0 and the system (1)-(3) satisfying Assumption (A0),
determine if the system is asymptotically stable and that

the following condition is satisfied:

T T T
/0||z<t>|| dt<7/0 w(t)|Pdt, / w(®)|Pdt > 0
(9)

as T — o0o,z(0) =0

for all admissible uncertainties.
Before proceeding further, we need some short-hand
notation:

Hy = [Hy1--- Hip); Hy =[Ho - Hop) (10)
Bl =B} .- EL], i=1,2,3 (11)
= ey 2

J = diag{ﬁfkl T ijkp} (13)

where 79,---,7, are scalars and k; are the numbers of
columns of H;. The vector 7 > 0 if every component of
T is positive.

Applying the well-known S-procedure[16, 10], we have
the following result:

Lemma 1. Given the system (1)-(3), condition (9)
holds if there exist a symmetric positive definite matric
P ¢ R"™" and scaling parameters t,---,7, > 0 such
that the following condition holds:

D D
2:cTP(Aw + Bw + Z Hy:&) + Z 7i (|| Briw + Eayw + EBifH2

i=1 i=1

p
—[l&]1%) + 1ICz + Dw + Y Haitil|* = +°[Jwl[* <0,
i=1

Ve e R, weR,EERM i=1,---p (14)

Proof. (Stability) Set w(t) = 0. Integrating the left
hand side of the inequality in (14) along any trajectory
of the system (1)-(2), we have:

" (T)Pz(T) — «” (0) Pz(0) + Z Ti {/

T T
—/|mwﬁ+/|mmmmo
0 0

It is clear from (3) that

T
| Briz + Bsi€]|*dt

T
I (T)P2(T) — 27 (0)Pz(0) +/ l|2(t)]|?dt < 0
0
If x(T) #0 as T — oo, we will have
T G
/ 2@)2 = 00, as T — oo
0

by Assumption (A0), which is clearly impossible.

(Hoo performance) Given any w(t) € L2[0,00). Inte-
grating the left hand side of the inequality in (14) along
any trajectory of the system (1)-(2), as T — oo and let-
ting (0) = 0, we obtain (9). O



The following theorem establishes several equivalent
conditions to (14):

Theorem 1. Given the uncertain system (1)-(3), the
following conditions, all guaranteeing the solution to the

associated robust Ho, analysis problem, are equivalent:

(i) There exist P = PT > 0 and 7 > 0 such that (14)
holds;

(ii) There exist P
following LMI:

= P > 0 and 7 > 0 solving the

T=[CcT Ef T (22)

—1 —1/2

~ [ ~'D  HyJ
D= |:’71J1/2E2 J1/2E3J71/2 (23)

and o
i ATP+PA+CTCPB+CTD (24)
Y| BTP+DYC -I+D'D

Note that the system in (18) can be rewritten as fol-
lows:

[ATP +PA+ E{JE, +C'C PB+ElJE, +C*D PH, +C'H, + ETJEg]
Ly = BTP+EIJE, + DTC 21+ DT'D+EYJE, DTHs+ EIJE; | <0 (15)

|_ HTP+ HIC + ET JE, HID—+ET 4 J+lugllafﬁuSUEdJ
. (1) = Aa(t) + B (o) (29)
(iii) There exis = > 0 and 7 > 0 solving the 5(t) = Ca(t) + Dib(t) (26)

following LMI:
ATP+PA PB PH, CT ETJ

BTP —21 0 DTElJ

Lo = HTP 0 —-JHIETJ| <O (16)
C D Hy -1 0
JE, JEy, JE3; 0 —J

(iv) There exists T > 0 such that the following auziliary
system is asymptotically stable and the Hoo-norm of
the transfer function from w(-) to 2(-) is less than 1:

i(t) = Ad() + ' B HIT V() (a7
. c 1. D Ho,J— /2
2(t) = [J1/2E1] &(t) + [ 7’1yJ1/2E JY2 g, g1/ w(t)(18)

Moreover, the set of all T satisfying (i) is convex.

Proof. The proof consists of straightforward algebraic
manipulations:

“(i) <=> (ii)”: The inequality (14) can be rewritten
as follows:
E1w
ng
Es¢

2¢7 P(Ax 4+ Bw+ Hi&) + (¢ ET + w"ET +¢TET)J

—£TJe + (27CT + wT DT + ¢THT )(Cx + Dw + H»f)
—2wTw < 0,

Vee R", weRLEERY i=1,---p (19)
Equivalently,
x
[T wT )L, |w]| <0,
3
Ve R, weRL,EERM i=1,---.p (20)
i.e., (15) holds.
“(ii) <=>(iv)”: Denote
=[y"'B HJ Y (21)

Also, the matrix £; in (15) can be alternatively expressed
as follows:

£y = diag{l,,,v ‘1, J7Y/?*}L,diag{l,,y " 1,, J~'/*}

(27)

That is, £1 < 0 if and only if £; < 0. It is well-known
(see, for example, [9]) that matrix A is asymptotically
stable and ||D + C(sI — A) 'B||s < 1 if and only if
£, < 0 for some P = PT > 0. Hence, (ii) is equivalent
to (iv).

“(ii)<=>(iii)”: Since £; < 0 if and only if Ly <0,
we need to show that £, < 0 if and only if L1 <0. We
first note that £; < 0 if and only if the following holds:

ATP+ PAPBCT
Ly = BTp —IDT| <0 (28)
C D -I

which is derived from the well-known fact that

X, xT

L2210 <=> Xi+XIXo<0 (29
Xy =1
The equivalence between L, < 0 and L, < 0 can be
established by similar manipulations used on £; and £;.
The details are omitted. O

Remark 3. Some discussions about the equivalent con-
ditions in theorem 1 are in order. First, we note that
both £, and L» are jointly linear in P,7 and v?. This
makes it possible to use the recently developed convex op-
timization algorithms (see, [11, 2], for example) to search
for solutions and even to search for the least « bound.
Secondly, Condition (ii) is obviously more economical
to compute than (iii) due to the dimensional difference
in £, and £>. However, L5 is also linear in matrices
B,C,D,H,,Hs, E, E; and E3, which makes it very at-
tractive in control design when these matrices are linear
in the design parameters. The auxiliary system (17)-(18)
is useful in understanding the nature and conservatism



of the S-procedure. It is particularly interesting to see
how the IQCs are easily converted into extra terms in the
input and output, and to see the connection between the
robust H analysis problem and an ordinary but scaled
Hoo analysis problem. The convexity of the H,-norm of
the auxiliary system is somehow nontrivial.

3 Robust H, Control

Cousider the following uncertain system generalized from

(D-(2):

&(t) = Az(t) + Byw(t) + Bou(t) + Z Hi&(t)  (30)
2(t) = Crax(t) + Diw(t) + Digu(t) + Z Ha:&(t)
y(t) = Coz(t) + Dyyw(t) + Dasu(t) + Z Hz:&(t)

where z(t) € R" is the state, w(t) € R? the exogenous
inputs, u(t) € R™ the control input, z(t) € R" the con-
trolled output, y(t) € R" is the measured output, and
&(t) € R¥ the uncertain variables satisfy the following
1QCs:

T T
A|mwwwsénmmm+@wm+&gw

+E4iu(t)||2dt7 as T'— 00, i = ]-7 Y 4 (33)

Also, A,Bi,B>,C1,02,D11,D12, D21, D22, Hiy, Hoy,
Hs;, Ey;, Es; and Ej3; are constant matrices with ap-
propriate dimensions.

To this end, we assume the following:

(A1) (A, B,,(C») is stabilizable and detectable.
(A2) Dy =0.

Remark 4. The necessity of assumption (A1) is obvious,
while (A2) is made for technical convenience.

Let a desired controller be of the following form:

To(t) =
u(t) =

where z.(t) € R" is the state, and A., B. and C. are
constant matrices of appropriate dimensions.

Then, the M., control problem associated with the
uncertain system (30)-(33) satisfying Assumptions (A0)-
(A2) is as follows: Given v > 0, find a controller of the
form (84)-(35) such that the closed-loop system is asymp-
totically stable and satisfies the following condition:

Acxe(t) + Bey(t)
Cexe(t) + Dey(t)

(34)
(35)

T T
[ epar <97 [l s T 00,20 = 0
(36)

for all admissible uncertainties.
Besides the short-hand notation in (10)-(13), we define:

Hj3 =[Hsy - - H3pl; (37)
A _ A =+ BQDCCQ BQOC i B _ Bl + B2DCD21
BC02 Ac ’ BCD21
] (39)
=[Cy + D12D.Cy D15C.l; D= Dy + D12D.Doy
(39)
_ Hi; + BoD Hs; -
Hy=|"" 2 , 30y Hyy = Hoj+DyaD.Hs; (40)
BCH3Z

Ey; = [Eri + Ey;D.Cs EyC.); Es; = Eo; + Eq;DcDoy;
E3; = E3; + By D H3 (41)

It is straightforward to verify that the closed-loop sys-
tem of (30)-(35) is given by

Af ‘|‘ B'w + ZHM&

Z H?zfz

(42)

(43)
with

T T B B B
/Wmmst/Hm@w+@mm+mmmw@
0 0

asT — o0, i=1,---,p (44)
We further define:
=[E}...El], i=1,23 (45)

Applying theorem 1, we know that the robust H., con-
trol problem is solvable using the controller in (34)-(35)
if the following system is asymptotically stable and its
Hoo-norm is less than 1:

(46)
—17 7 o7—1/2
~y~'D HyJ .
7—1J1/2E2 J1/2E3J1/2] w(t) (47)

It can be verified straightforwardly that (46)-(47) above
is the closed-loop system of the controller (34)-(35) to-
gether with the auxiliary system defined below:

2(t)

= A#(t) + [y "By HiJ Y?)is(t) + Bau(t) (48)

C . Dy HyoJ—'/? N
(1) [J1/2E1:| () + |:7_1J1/2E2 JY2 B, g2 w(t)
D
+| i, | (49
y(t) = Cod(t) + [y ' Doy HsJ /*Ji(t) (50)

for some 7 > 0, where 7, J, Ey, E2, H; and H, are defined
n (10)-(13), E5 and Hj are defined similarly.
Consequently, we have the following result:



Theorem 2. Given the wuncertain system (30)-(33),
there exists a controller of the form (34)-(35) such that
the associated Hoo condition (36) is satisfied for a given
~v > 0 if there exists some T > 0 such that the closed-loop
auziliary system of (48)-(50) and the same controller has
Hoo-norm less than 1.

Proof. It is a simple consequence of theorem 1, as de-
scribed above. O

We now address the harder problem: how to solve
the Hoo control problem associated with (48)-(50) using
LMIs.

Our mission now is to find 7 > 0 and a controller of
the form (34)-(35) such that the closed-loop system of
(48)-(50) is asymptotically stable and has Hso-norm less
than 1. We will show that this problem can be solved
using LMIs. To this end, we need the result below:

Lemma 2. [6] Consider the following system:

#(t) = Az(t) + Byw(t) + Bau(t) (51)
y(t) = CQ.I(t) + Dzlw(t) + ngu(t) (53)

satisfying assumptions (A1)-(A2). Let Ng (resp. Ng)
be any matriz whose columns form a basis of the null
space of [BY D1,] (resp. [Co Dai]). Then, there exists
a controller of the form (34)-(35) such that the closed-
loop system has Hoo norm less than 1 if and only if there

exist symmetric matrices R and S satisfying the following
LMIs:

AR + RAT RCT| B, -
T 1

|:]\(/;R ?:| ClR -1 D11 [%% <0 (54)

o] LT

ATS + AS SB,|CT .

T 1V

[]\65 ?] BIS —I|DL [%% <0 (55)

Cy Dy | -1 -

RI]
[1 5|20 60)

Using lemma 2 and theorem 2, we obtain the following
result:

Theorem 3. Given v >0 and 7 > 0 and the auxiliary
system (48)-(50) satisfying assumptions (A1)-(A2), the
following two conditions are equivalent:

(a) There exists a controller of the form (34)-(35) such
that the closed-loop system of (48)-(50) is asymptotically
stable and has Hoo-norm less than 1;

(b): Let Ng (resp. Ns) be any matriz whose columns
form a basis of the null space of [BI DI, EI]
(resp. [Co D2y Hs)). There exist symmetric matrices
R,S € R™™"™ such that the following LMIs hold:

AR+ RAT RCTY REY | By HiJ}
CiR —I 0 |Dy HoJ !
T
[AGRO} EiR 0 —J'| B E3J! [ASRO <0
BT DL EI 4T 0
J*HY J*HIJ*ETl 0 —-J7!

ATS + SA SB, SHy|CT ETJ
r BTS —~%1 0 |DLETJ 1
[Ags 2] H'S 0 —J|HIELJ [A(ff? <0
C, Dy, Ho|-I 0 J
JE, JE; JEs| 0 —J
(58)
RI]
[IS_ 20
(59)

Proof. The proof is a direct application of lemma 2 to
the auxiliary system (48)-(50). We first note that the
columns of the matrix

diag{I,1,J~'/?}Ng (vesp. diag{I,~I, J"/*}Ns)

form a basis of the null space of [BY [D, EIJ'/?]]
(resp. [Cy [y 'Dsy HzJ '/?]]). Then, it is tedious but
straightforward to verify that the LMI in (57) is the ver-
sion of (54) for the auxiliary system, but pre- and post-
multiplied by the following matrix:

1] 0
O|diag{~yI, J 172}

Similarly, the LMI in (58) is the version of (55) for the
auxiliary system, pre-post multiplied by the following
matrix:

I 0
Oldiag{l, J'/?}
O

Remark 5. Note that the LMI in (57) is linear in R, J !
and v?; while the LMI in (58) is linear in S, J and ~2.
Also, (57) and (58) are dual to each other. However, they
are not jointly linear in J or J~!. That is, for each fixed
J, the LMIs are jointly linear in R, S and 72. However, in
the case of state feedback control, LMI (58) drops out and
the result is fully convex. This last point is made precise
in the result below. The proof of the following corollary
is straightforward using the same technique in [6] and
is also implied in [12] for systems without uncertainty,
hence is omitted for brevity.

Corollary 1. Given vy > 0 and 7 > 0 and the uncertain
system (30)-(32) with uncertainty satisfying 1QCs (33).
The following two conditions are equivalent:
(a) There ezists a controller of the following form
u(t) = Keax(t) (60)
such that the closed-loop system for the auziliary sys-
tem (48)-(50) is asymptotically stable and has Hoo-norm
less than 1;
(b): Let Ny be any matriz whose columns form a basis of
the null space of [BI DI, EI]. There exist symmetric
matrices R € R"", R > 0 and J > 0 such that LMI
(57) holds:



4 Conclusion

In this paper, we have studied the problems of robust
Hoo analysis and robust Ho, control for a class of linear
system subject to IQCs, as represented by (1)-(3) and
(30)-(33), respectively. We have shown that the analysis
problem can be solved by using a LMI (either (15) or
(16)) which is linear in matrix P, scaling parameters 7
(equivalently, J), and Ho, performance bound ~, thus a
complete LMI solution.

For the robust H., control problem, we have obtained
a set of LMIs (57)-(59); as shown in theorem 3. In the
dynamic output feedback control case, one of the LMIs is
convex in J and another in J~*. Thus they are not jointly
linear in J or J—!. However, in the state feedback control
case, one of the LMIs is void and we have a true LMI
solution. Further research is needed to see if it is possible
to re-parameterize J so that the result for the dynamic
output feedback control case is fully convex. When the
LMIs (57)-(59) are solved, a robust H., controller can
be constructed by using the procedure given in section 4.
This procedure is modified from [5].

Also obtained in the paper are two auxiliary systems,
(17)-(18) and (48)-(50), one for the analysis problem and
the other for control. These auxiliary systems are trans-
formed from the original uncertain systems and conve-
nient to use, as demonstrated in solving the control prob-
lem.

We shall point out that the conditions obtained for the
analysis and control problems are all sufficient in general.
This is due to the use of S-procedure. Unfortunately,
there is no better method available for dealing with IQCs.
Further study is needed to analyze this issue.

We also point out that the results in this paper are
readily generalizable to discrete-time systems. This will
be reported in a separate paper.
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