On stability robustness with respect to LTV uncertainties ## Gjerrit Meinsma Dept. of Systems, Signals and Control Faculty of Mathematical Sciences University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands g.meinsma@math.utwente.nl ## Tetsuya Iwasaki Dept. of Control Systems Eng. Tokyo Institute of Technology 2-12-1 Oookayama, Meguro Tokyo 152, Japan iwasaki@ctrl.titech.ac.jp # Minyue Fu Dept. of Electrical and Computer Eng. University of Newcastle Callaghan, NSW 2308 Australia eemf@cc.newcastle.edu.au ### Abstract It is shown that the well-known (D, G)-scaling upper bound of the structured singular value is a nonconservative test for robust stability with respect to certain linear time-varying uncertainties. #### 1 Introduction Figure 1: The closed loop. Is the above closed loop stable for all Δ 's in a given set of stable operators \mathcal{B} ? That, roughly, is the fundamental robust stability problem. There is an intriguing result by Megretski and Treil [3] and Shamma [8] which says, loosely speaking, that if M is a stable LTI operator and the set of Δ 's is the set of contractive linear time-varying operators of some fixed block diagonal structure $$\Delta = \operatorname{diag}(\Delta_1, \Delta_2, \dots, \Delta_{m_F}), \tag{1}$$ that then the closed loop is robustly stable—that is, stable for all such Δ 's—if and only if the \mathcal{H}_{∞} -norm of DMD^{-1} is less than one for some constant diagonal matrix D that commutes with the Δ 's. The problem can be decided in polynomial time, and it is a problem that has since long been associated with an *upper bound* of the structured singular value. The intriguing part is that the result holds for any number of LTV blocks Δ_i , which is in stark contrast with the case that the Δ_i 's are assumed time-invariant. Paganini [6] extended this result by allowing for the more general block diagonal structure $$\Delta = \operatorname{diag}(\delta_1 I, \ldots, \delta_{m_c} I, \Delta_1, \ldots, \Delta_{m_F}). \tag{2}$$ A precise definition is given in Section 2. Paganini's result is an exact generalization and leads, again, to a convex optimization problem over the constant matrices D that commute with Δ . In view of the connection of these results with the upper bounds of the structured singular it is natural to ask if the well known (D, G)-scaling upper bound of the *mixed* structured singular value also has a similar interpretation. In this note we show that that is indeed the We show that the (D, G)-scaling condition is both necessary and sufficient for robust stability for arbitrary LTI plants M with respect to the contractive LTV operators Δ of the form $$\Delta = \operatorname{diag}(\tilde{\delta}_1 I, \dots, \tilde{\delta}_{m_r} I, \delta_1 I, \dots, \delta_{m_r} I, \Delta_1, \dots, \Delta_{m_E}), \quad (3)$$ with $\tilde{\delta}_i$ denoting linear time-varying *self-adjoint* operators on ℓ_2 . A precise definition follows. The condition holds for any number of blocks, while it is known that for LTI Δ 's and constant M the (D, G)-scaling condition is necessary and sufficient if and only if $$2(m_r + m_c) + m_F \leq 3,$$ see [5]. Paganini [7] has gone through considerable trouble to show that for his structure (2) one may assume causality of Δ without changing the condition. In the extended structure (3) with self-adjoint δ_i this is no longer possible. ## 2 Notation and preliminaries $\ell_2 := \{x : \mathbb{Z} \mapsto \mathbb{R} : \sum_{k \in \mathbb{Z}} x^2(k) < \infty \}$. The norm $\|v\|_2$ of $v \in \ell_2$ is the usual norm on ℓ_2 and for vector-valued signals $v \in \ell_2^n$ the norm $\|v\|_2$ is defined as $(\|v_1\|_2^2 + \cdots + \|v_n\|_2^2)^{1/2}$. The induced norm is denoted by $\|\cdot\|$. So, for $F : \ell_2^n \mapsto \ell_2^n$ it is defined as $\|F\| := \sup_{u \in \ell_2^n} \|Fu\|_2 / \|u\|_2$. For matrices $F \in \mathbb{C}^{n \times m}$ the induced norm will be the spectral norm, and for vectors this reduces to the Euclidean norm. F^H denotes the complex conjugate transpose of F, and $He F := \frac{1}{2}(F + F^H)$. An operator $\Delta : \ell_2^n \mapsto \ell_2^n$ is said to be *contractive* if $\|\Delta v\|_2 \le \|v\|_2$ for every $v \in \ell_2^n$. Lower case ℓ 's always denote operators from ℓ_2^1 to ℓ_2^1 . Then for $u, y \in \ell_2^n$ the expression $y = \delta I_n u$ is defined to mean that the entries y_k of y satisfy $y_k = \delta u_k$. An operator $\delta : \ell_2 \mapsto \ell_2$ is self-adjoint if $(u, \delta v) = (\delta u, v)$ for all $u, v \in \ell_2$. Bounded operators on ℓ_2^n are called *stable*. Hats denote Z-transforms, so if $y \in \ell_2$ then $\hat{y}(z)$ is defined as $\hat{y}(z) = \sum_{k \in \mathbb{Z}} y(k) z^{-k}$. To avoid clutter we shall use for functions \hat{f} of frequency the notation $$\hat{f}_{\omega} := \hat{f}(e^{i\omega}).$$ The closed loop depicted in Figure 1 is called *uniformly robustly stable* with respect to some set \mathcal{B} of stable LTV operators Δ if there is a $\gamma > 0$ such that $\| \begin{bmatrix} \nu \\ \nu \end{bmatrix} \|_2 \le \gamma \| \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} \|_2$ for all $\Delta \in \mathcal{B}$, $\begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} \in \ell_2^{2n}$. We only consider Δ 's with norm at most one and stable M. In that case the closed loop is uniformly robustly stable if and only if there is an $\epsilon > 0$ such that $\| (I - \Delta M) u \|_2 \ge \epsilon \| u \|_2 \ \forall \Delta \in \mathcal{B}$, $u \in \ell_2^n$. Throughout we assume that $\Delta: \ell_2^n \mapsto \ell_2^n$ is of the form (3) with $$\begin{cases} & \tilde{\delta}_i : \quad \ell_2 \mapsto \ell_2 & \text{LTV, self-adjoint and } \|\tilde{\delta}_i\| \leq 1, \\ & \delta_i : \quad \ell_2 \mapsto \ell_2 & \text{LTV and } \|\delta_i\| \leq 1, \\ & \Delta_i : \quad \ell_2^{q_i} \mapsto \ell_2^{q_i} & \text{LTV and } \|\Delta_i\| \leq 1. \end{cases}$$ (4) The dimensions of the various identity matrices and Δ_i blocks are fixed, but otherwise Δ may vary over all possible $n \times n$ LTV operators of the form (3),(4). The sets \mathcal{D} and \mathcal{G} are defined as $$\mathcal{D} = \{ D : D = D^{\mathsf{T}} > 0, D \in \mathbb{R}^{n \times n}, D = \\ \operatorname{diag}(\tilde{D}_1, ..., \tilde{D}_{m_r}, D_1, ..., D_{m_c}, d_1 I_{q_1}, ..., d_{m_F} I_{q_{m_F}}) \}$$ and $$G = \{G : G = G^{\mathrm{H}}, G \in j \mathbb{R}^{n \times n}, G = \operatorname{diag}(\tilde{G}_{1}, \dots, \tilde{G}_{m}, 0, \dots, 0, 0, \dots, 0)\}$$ Note that the *D*-scales are assumed real-valued and that the *G*-scales are taken to be purely imaginary. As it turns out there is no need to consider a wider class of *D* and *G*-scales. #### 3 The result **Theorem 3.1.** The discrete time closed-loop in Figure 1 with stable LTI plant with transfer matrix M is uniformly robustly stable with respect to Δ 's of the form (3, 4) if and only if there is a constant matrix $D \in \mathcal{D}$ and a constant matrix $G \in G$ such that $$M_{\omega}^{\mathsf{H}} D M_{\omega} + j(G M_{\omega} - M_{\omega}^{\mathsf{H}} G) - D < 0 \quad \forall \omega \in [0, 2\pi].$$ (5) Megretski [2] showed this for the full block case (1); Paganini [6] derived this result for the case that the Δ 's are of the form (2) and with Δ causal. The proof of the general case (3) follows the same lines as that of [6] and [5], but now the Δ 's must be allowed to be non-causal; for causal Δ 's the condition (5) is generally only sufficient for uniform robust stability. A key idea is to replace the condition of the contractive Δ -blocks with an integral quadratic condition independent of Δ : **Lemma 3.2.** Let $u, y \in \ell_2^q$ and consider the quadratic integral $$\Sigma(u, y) := \int_{0}^{2\pi} (\hat{y}_{\omega} - \hat{u}_{\omega})(\hat{y}_{\omega} + \hat{u}_{\omega})^{H} d\omega \in \mathbb{R}^{q \times q}. \quad (6)$$ The following holds. - There is a contractive self-adjoint LTV δ : ℓ₂ → ℓ₂ such that u = δI_q y if and only if Σ(u, y) is Hermitian and nonnegative definite. - There is a contractive LTV δ: ℓ₂ → ℓ₂ such that u = δI_q y if and only if the Hermitian part of Σ(u, y) is nonnegative definite. - There is a contractive LTV Δ: ℓ^q₂ → ℓ^q₂ such that u = Δy if and only if the trace of Σ(u, y) is nonnegative. A consequence of this result is the following. **Lemma 3.3.** Let u be a nonzero element of ℓ_2^n . Then $(I - \Delta M)u = 0$ for some Δ of the form (3, 4) if-and-only-if $$\Sigma(u, Mu) := \int_{0}^{2\pi} (M_{\omega} - I) \hat{u}_{\omega} \hat{u}_{\omega}^{\mathsf{H}} (M_{\omega} + I)^{\mathsf{H}} d\omega \tag{7}$$ is of the form $$\begin{bmatrix} \tilde{Z}_{1} & ? & ? & ? & ? & ? \\ \frac{?}{?} & \ddots & ? & ? & ? & ? & ? \\ \frac{?}{?} & ? & Z_{1}^{c} & ? & ? & ? & ? \\ \frac{?}{?} & ? & ? & \ddots & ? & ? \\ \frac{?}{?} & ? & ? & ? & ? & ? & ? \\ \frac{?}{?} & ? & ? & ? & ? & ? & \ddots \end{bmatrix} \in \mathbb{R}^{n \times n}, \tag{8}$$ with $\tilde{Z}_i = \tilde{Z}_i^T \geq 0$, He $Z_i^c \geq 0$, Tr $Z_i \geq 0$, and with "?" denoting an irrelevant entry. Here the partitioning of (8) is compatible with that of Δ . *Proof (sketch).* With appropriate partitionings the expression $(I - \Delta M)u = 0$ can be written row-block by row-block as $$u_1 - \tilde{\delta}_1 M_1 u = 0, \ u_2 - \tilde{\delta}_2 M_2 u = 0, \dots, \ u_K - \Delta_{m_E} M_K u = 0.$$ By Lemma 3.2 there exist contractive $\tilde{\delta}_i$, δ_i and Δ_i of the form (4) for which the above equalities hold iff certain quadratic integrals Σ_i have certain properties. It is not to difficult to figure out that these quadratic integrals Σ_i are exactly the blocks on the diagonal of $\Sigma(u, Mu)$, and that the conditions on these blocks are that they satisfy $\Sigma_i = \Sigma_i^T \geq 0$, He $\Sigma_i \geq 0$, or Tr $\Sigma_i \geq 0$, corresponding to the three types of uncertainties. Proof of Theorem 3.1 (rough sketch). Lemma 3.3 states that $(I - \Delta M)u = 0$ can occur for some Δ if and only if $$W \cap Z = \emptyset$$ where $\mathcal{W}:=\{\Sigma(u,Mu): \|u\|_2=1\}$ and $\mathcal{Z}:=\{Z:Z$ is of the form (8) with $\tilde{Z}_i=\tilde{Z}_i^T\geq 0$, He $Z_i^c\geq 0$, Tr $Z_i\geq 0$ }. For uniform robust stability we need that $\|(I-\Delta M)u\|_2\geq \epsilon\|u\|_2$ for some $\epsilon>0$ independent of u. In view of the above it will be no surprise that uniform stability is equivalent to that \mathcal{W} and \mathcal{Z} are bounded away from each other. Equivalently, uniform robust stability holds if and only if $\overline{\mathcal{W}}\cap \mathcal{Z}=\emptyset$. Here $\overline{\mathcal{W}}$ denotes the closure of \mathcal{W} . Now \mathcal{Z} is easily seen to be convex, and remarkably $\overline{\mathcal{W}}$ is convex as well [3]. Then by a standard duality argument $\overline{\mathcal{W}}\cap \mathcal{Z}=\emptyset$ is equivalent to the existence of a seperating hyper-plane. The normal vector of this hyper-plane turns out to be D+jG for some $D\in \mathcal{D}$ and $G\in \mathcal{G}$, and that \mathcal{W} and \mathcal{Z} are on opposite sides of the hyper-plane then reduces to the inequality (5). Details are in [4]. ### References - [1] M. Fan, A. Tits, and J. Doyle. Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. *IEEE Trans. on Aut. Control*, 36(1):25–38, 1991. - [2] A. Megretski. Necessary and sufficient conditions of stability: A multiloop generalization of the circle criterion. *IEEE Trans. on Aut. Control*, 38(5), 1993. - [3] A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. *J. Math. Syst. Estimation and Control*, 3(3):301–319, 1993. - [4] G. Meinsma, T. Iwasaki, and M. Fu. On stability robustness with respect to LTV uncertainties. Available at www.math.utwente.nl/~meinsma/reports/index.html. - [5] G. Meinsma, Y. Shrivastava, and M. Fu. A dual formulation of mixed μ and on the losslessness of (D,G)-scaling. *IEEE Trans. Aut. Control*, 42(7):1032–1036, 1997. - [6] F. Paganini. Analysis of implicitly defined systems. In *Proceedings of the 33rd CDC*, pages 3673–3678, 1994. - [7] F. Paganini. Sets and Constraints in the Analysis of Uncertain Systems. PhD thesis, Caltech, USA, 1996. - [8] J. Shamma. Robust stability with time-varying structured uncertainty. *IEEE Transactions on Automatic Control*, 39(4):714–724, 1994.