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Abstract

It is shown that the well-known (D, G)-scaling upper bound of
the structured singular value is a nonconservative test for robust
stability with respect to certain linear time-varying uncertainties.

1 Introduction

Figure 1: The closed loop.

Is the above closed loop stable for all A’s in a given set of stable
operators B? That, roughly, is the fundamental robust stability
problem.

There is an intriguing result by Megretski and Treil [3] and
Shamma [8] which says, loosely speaking, that if M is a stable
LTT operator and the set of A’s is the set of contractive linear time-
varying operators of some fixed block diagonal structure

A =diag (A1, Ay, ..., App), (1)

that then the closed loop is robustly stable—that is, stable for all
such A’s—if and only if the #{,-norm of DM D! is less than
one for some constant diagonal matrix D that commutes with the
A’s. The problem can be decided in polynomial time, and it is a
problem that has since long been associated with an upper bound
of the structured singular value. The intriguing part is that the
result holds for any number of LTV blocks A;, which is in stark
contrast with the case that the A;’s are assumed time-invariant.

Paganini [6] extended this result by allowing for the more general
block diagonal structure

A=diag(8il,... .8 1, A1, ..., Aup). 2)

A precise definition is given in Section 2. Paganini’s result is an ex-
act generalization and leads, again, to a convex optimization prob-
lem over the constant matrices D that commute with A.

In view of the connection of these results with the upper bounds of
the structured singular it is natural to ask if the well known (D, G)-
scaling upper bound of the mixed structured singular value also has
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a similar interpretation. In this note we show that that is indeed the
case.

We show that the (D, G)-scaling condition is both necessary and
sufficient for robust stability for arbitrary LTI plants M with re-
spect to the contractive LTV operators A of the form

A=diagGil, ..., 8, 81, ..., 8m LAY, .... n), (3

with §; denoting linear time-varying self-adjoint operators on £,.
A precise definition follows. The condition holds for any number
of blocks, while it is known that for LTI A’s and constant M the
(D, G)-scaling condition is necessary and sufficient if and only if

2(m, +m)+mp <3,

see [5]. Paganini [7] has gone through considerable trouble to
show that for his structure (2) one may assume causality of A
without changing the condition. In the extended structure (3) with
self-adjoint §; this is no longer possible.

2 Notation and preliminaries

L :={x:Z—R: Y, ;x*(k) <oco}. Thenorm |v|l; of v € £,
is the usual norm on £, and for vector-valued signals v € £ the
norm ||vl, is defined as ([JvilI2 + -+ + ||v,l13)"/%. The induced
norm is denoted by || - ||. So, for F : £ > £} it is defined as
|F|| == SUPucey [| Full2/ |ull2. For matrices F € C'™™ the induced
norm will be the spectral norm, and for vectors this reduces to the
Euclidean norm. FH denotes the complex conjugate transpose of
F, and He F := {(F + FM). An operator A : £5 > £} is said
to be contractive if ||Av|l; < ||vll; for every v € £5. Lower case
&’s always denote operators from £} to £}. Then for u, y € £} the
expression y = &1, u is defined to mean that the entries y, of y
satisfy y, = 8u,. Anoperator 8 : £, > £, is self-adjoint if (u, §v) =
(8u, v) for all u, v € £,.

Bounded operators on ¢} are called stable. Hats denote Z-
transforms, so if y € € then J(z) is defined as y(z) =
Y vz Y(k)z™*. To avoid clutter we shall use for functions f of
frequency the notation

fw = f-(eiw).

The closed loop depicted in Figure 1 is called uniformly robustly
stable with respect to some set B of stable LTV operators A if there
isay > Osuchthat |[[}]]|, <¥[[]|, forall A e B, [1}] € €2
We only consider A’s with norm at most one and stable M. In that
case the closed loop is uniformly robustly stable if and only if there
is an € > O such that ||(/ — AM)ull, > €llull, VA € B, u e ;.



Throughout we assume that A : £5 > £3 is of the form (3) with

3 £+ £, LTV, self-adjoint and ||§;[| < 1,
8 &> ¢ LTVand |5 <1, @
Ai i e LTVand A <1

The dimensions of the various identity matrices and A; blocks are
fixed, but otherwise A may vary over all possible n x n LTV oper-
ators of the form (3),(4). The sets D and § are defined as

D=(D: D=D">0,DeR™, D=
diag (D1, .., Dm,, D1, ., Dy dilyy, -y gy, )}

and

G={G: G=G", Ge jR™,

G=diag(G,,...,6G,,,0,...,0,0,...,0)}

Note that the D-scales are assumed real-valued and that the G-
scales are taken to be purely imaginary. As it turns out there is no
need to consider a wider class of D and G-scales.

3 The result

Theorem 3.1. The discrete time closed-loop in Figure 1 with sta-
ble LTI plant with transfer matrix M is uniformly robustly stable
with respect to A’s of the form (3, 4) if and only if there is a con-
stant matrix D € D and a constant matrix G € G such that

MHDM, + j(GM, - MPBG)-D <0 VYwel[0,27]. (5

Megretski [2] showed this for the full block case (1); Paganini [6]
derived this result for the case that the A’s are of the form (2) and
with A causal. The proof of the general case (3) follows the same
lines as that of [6] and {5], but now the A’s must be allowed to
be non-causal; for causal A’s the condition (5) is generally only
sufficient for uniform robust stability. A key idea is to replace the
condition of the contractive A-blocks with an integral quadratic
condition independent of A:

Lemma 3.2. Let u, y € £ and consider the quadratic integral

2
Ty = Go=)Fot i) do € R (6)
0
The following holds.

1. There is a contractive self-adjoint LTV S : €5 — £, such that
u=2481yyifand only if ¥(u, y) is Hermitian and nonnegative
definite.

. There is a contractive LTV & : £, v> £; such that u = &1,y
if and only if the Hermitian part of (u, y) is nonnegative
definite.

There is a contractive LTV A : &3 v+ £3 such that u = Ay if
and only if the trace of T(u, y) is nonnegative.

Proof. See [4].

]
A consequence of this result is the following.
Lemma 3.3. Let u be a nonzero element of £5. Then (I — AM)u =
0 for some A of the form (3, 4) if-and-only-if
27
Su, Muy:= | (M, — Di,id (M, + DPdo (D)
0

4409

is of the form

Z 71?7 71?7 ?
2 .12 2172 9
7 71ZS 277 7
AL | er, ®)
2 212 .17 2
7707 Zy ?
70?7

with Z; = ZT > 0, He Z¢ > 0, TrZ; > 0, and with “?” denoting
an irrelevant entry. Here the partitioning of (8) is compatible with
that of A.

Proof (sketch). With appropriate partitionings the expression ({ —
AM)u = 0 can be written row-block by row-block as

u;—31M1u=0, u2—32M2u=0, ey uK—A,,,FMKu=O.

By Lemma 3.2 there exist contractive 3;, 8; and A; of the form (4)
for which the above equalities hold iff certain quadratic integrals
¥; have certain properties. It is not to difficult to figure out that
these quadratic integrals X, are exactly the blocks on the diagonal
of X (u, Mu), and that the conditions on these blocks are that they
satisfy X; = ZF > 0, He Z; > 0, or Tr%; > 0, corresponding to
the three types of uncertainties. ™

Proof of Theorem 3.1 (rough sketch). Lemma 3.3 states that (/ —
AM)u = 0 can occur for some A if and only if

Wnz=4a,

where W = {ZT(u,Mu) : Jullz=1} and Z := (Z :
Z is of the form (8) with Z; = Z,T >0, He Z{ > 0, Tr Z; > 0}. For
uniform robust stability we need that | (/] — AM)ull> > €|lull, for
some € > 0 independent of u. In view of the above it will be
no surprise that uniform stability is equivalent to that W and 2
are bounded away from each other. Equivalently, uniform robust

stability holds if and only if W N2 = @. Here W denotes the
closure of W. Now Z is easily seen to be convex, and remark-

ably W;is convex as well [3]. Then by a standard duality argu-

ment W N 2Z = @ is equivalent to the existence of a seperating
hyper-plane. The normal vector of this hyper-plane turns out to
be D + jG for some D € D and G € G, and that W and Z are
on opposite sides of the hyper-plane then reduces to the inequality
(5). Details are in [4]. n
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