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Abstract. In this paper, a new approach is developed for loop
transfer recovery (LTR). This approach employs a general feed-
back/feedforward structure for model matching control which
includes the observer-based state feedback control as a special
case. Under this framework, the problem of LTR is both gener-
alized and simplified. First, the necessary and sufficient condi-
tion for the ezact LTR is trivially obtained for both minimum
phase and non-minimum phase systems and the corresponding
controller is simply computed without any asymptotic tuning
procedure. Secondly, for the non-minimum phase systems for
which the exact LTR may not be possible, we address the op-
timal LTR problem and show that it can be formulated as an
Hoo optimization problem and can be solved by using either the
Nevanlinna~Pick theory or the Ricatti equation approach. In
the case where a good rejection to measurement noise is needed,
the problem of partial LTR is addressed. Our approach applies
to both continuous time and discrete time systems.

1 Introduction

It is well known that an observer-based state feedback design,
if not carefully designed, could render poor robustness for the
closed loop stability and performance against disturbance and
modelling errors. An example of this non-robustness behaviour
can be found in [1] where it is shown that a standard LQG de-
sign may yield an arbitrarily small gain margin. In order for an
observer-based state feedback design to have good robustness,
the so-called loop transfer recovery (LTR) is developed; see,
for example, [2, 3, 4, 5, 6, 7, 8]. The existing LTR techniques,
however, have the following problems.

e They apply mainly to minimum phase systems. Although
some attempts are made on non-minimum phase systems
(see, for example, 3, 8]), the applications are limited or
perhaps complicated.

o The solutions to LTR are computed by asymptotic tuning
procedures which may be numerically intensive. Moreover,
the relationship between the tuning parameter and the de-
gree of recovery is usually implicit.

When the exact or asymptotic LTR is not possible, it is
not clear how much recovery can be achieved.

e The existing LTR techniques are applicable only to
observer-based state feedback designs and limited to re-
covering state feedback control.

Somie attention has been paid to these problems. For example,
Moore and Tay [9] proposed formulating the LTR problem as
an H®/H? sensitivity recovery problem which can be solved
via the standard H® optimization techniques. For minimum
phase systems, this method provides either exact or asymptotic
gensitivity recovery.. For non-minimum phase systems, it gives
an optimal (called partial in [9]) sensitivity recovery.
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In this paper, we develop a new approach for LTR. This ap-
proach employs a general feedback/feedforward control struc-
ture for model matching which includes the observer-based
state feedback control as a special case. Under this frame-
work, the problem of LTR is both generalized and simplified.
First, the necessary and sufficient condition for the ezact LTR
is trivially obtained for both minimum phase and non-minimum
phase systems and the corresponding controller is simply com-
puted without any asymptotic tuning procedure. In fact, the
controller for the exact LTR is unique when the plant is invert-
ible, which implies that the controller obtained by any asymp-
totic LTR procedure will converge to the same solution. This
property obviates the necessity of asymptotic procedures for
the exact LTR. Secondly, for the non-minimum phase systems
for which the exact LTR may not be possible, we address the
optimal LTR. problem and show that it can be formulated as a
classical Nevanlinna—Pick problem in the single input case or a
directional interpolation problem in the multi-input case both
can be solved using the Nevanlinna—Pick theory. The solutions
are provided and an design example is illustrated. In the spe-
cial case of an observer-based state feedback design, we show
that the optimal LTR problem can be solved via an algebraic
Ricatti equation. Because LTR often results in poor measure-
ment noise rejection, we address the problem of partial LTR
which aims at making a compromise with measurement noise
attenuation. In addition, we show that the H°/H? sensitivity
recovery problem proposed in [9] is a special case of the LTR
problem treated in this paper. Our approach applies to both
continuous time systems and discrete time systems.

2 Problem Formulation

Consider the linear time-invariant (LTI) plant I (either
continuous—time or discrete-time) modelled by

pz(t) Az(t) + Bu(t) + Buw(t)
y(t) Cxz(t) + Du(t) ()

where z € R" is the state, u € R™ is the conirol, y € R" is
the oulpui, w € R™ is the control disturbance, and p is either
the differentiating, the differencing operator or the Delta oper-
ator proposed in [10]. The output is assumed to be noise free.
Measurement errors will be considered later in the discussion of
partial LTR. The transfer function of & is given by

G(s) = C(s] — A)"'B+ D €R(s)"™*™. )

Here s is the operator of either the Laplace transform, the z
transformn or the Delta transform; R(s)*? denotes the sct of
a x b rational matrices in s. Throughout the paper, we assume
Al: T is stabilizable and detectable.
A2: r > m and G(s) is left invertible.

To motivate the problem of model matching and our general
feedback/feedforward control structure, let us first discuss state
feedback control and observer-based state feedback control.



State Feedback Control: If the state z(t) is measurable,
the design problem is simply to find a feedback matrix F' €
R™*" such that the state feedback control below stabilizes the
plant (1) and the closed-loop system enjoys the desired perfor-
mance and robustness.

u(t) = r(t) - v(t) 3
o(t) = Fa(t) )

where r(¢) is the system command and v(t) is the feedback signal.

The corresponding closed loop output is given by

y(s) = Ha(s)[r(s) + w(s)] %)
where
Hy(s) := G(s)[I + Ls(s)] ™" € R(s)"*™ (6)

is the closed loop input output transfer function and
Lg(s) := F(sI — A)~'B € R(s)™*™ )

is the loop transfer function.

Observer—based State Feedback Control: When the state
is not available, the observer-based feedback control below is
often applied. For simplicity, we only discuss the full state
observer case and assume D = (.

pE(t) = A#(t)+ Bu(t) + K(y(t) — Ci(t)) 8)
u(t) = F#(t) )
with stable 4 — KC. This leads to
v(s) = Mops(s)y(s) + Nobs(s)u(s) (10)
where
Mobs(s) = F(sI-A+KC)'K e R(s)™*"
Nova(s) = F(sI— A+ KC)™'BeR(s)™™ . (11)
It is easy to show that the output is governed by
y(s) = Ha(s)[r(s) + (I + Nos(s))w(s)] . (12)

As shown in (12), the observer-based design guarantees that
the closed loop system has the same (required) input output
transfer function as in the state feedback case (separation prin-
ciple). Ilowever, the transfer function from the control distur-
bance to the output is further amplified by I + Nobs(s). This
could seriously contaminate the output if Nobs(s) is large. We
will also show later the effect of this term to the robustness of
the closed loop stability.

The capability of the state feedback control (4) is, however,
limited. This is due to the pole placement nature of (4), i.e., no
stable zeros of G(s) can be replaced or added and no more than
n stable poles can be assigned. Naturally, the observer-based
design suffers from a similar problem. For this reason, it is more
general to consider the following control approach.

Model Matching with Feedback/Feedforward Control:
Consider the feedback/feedforward control (3) with

v(s) = M(s)y(s) + N(syu(s) , I+ N(s) is invetible  (13)
with stable N(s) € R(s)™*™ and M(s) € R(s)"*", such that
the closed loop system has input output transfer function equal
to Hy(s); see fig. 1. We call this control a feedback/feedforward
law because the resulting control u(s) involves both y(s) and
r(s) terms. The output is then governed by

y(s) = H(s)[r(s) + (I + N(s))uw(s)] (14)

where

H(s) := G(s)[I + L(s)]™" € R(s)™*™ (15)
is the closed loop input output transfer function and

L(s) := N(s) + M(s)G(s) € R(s)™*™ (16)

is the associated loop transfer function.
Note that (3) and (13) include all the stabilizing controllers
of G(s) because, by seting r(s) = 0,

u(s) = —(I+ N(s))" M(s)y(s) (17)

which describes the left coprime factorization of every possible
controller, including the stablizing controllers.

Given a desired closed loop input outpul model Hy(s) ex-
pressed in the following form:

Ha(s) = G(s){I + La(s))~* € R(s)™™ (18)

where Ly(s) is the desired loop iransfer function, the problem
of model matching is to design stable M (s) and N(s) such that

L(s) = Lq(s) , (19)

which leads to H(s) = Hy(s).

It is straightforward to verify that the observer-based state
feedback control (3)-(4) is a special case of the general feed-
back/feedforward control with Hy = H,, Lq = Ly, M = Mops
and N = Nop,. Obviously, it is not possible for the feed-
back/feedforward control above to match an arbitrary closed
loop transfer function mainly because of the stability constraint.
For this reason, we assume the following.

A3: Ly(s) has the same unstable poles as G(s), multiplicities
included; in addition, [+ Lg(s)]~*, G(s)[I + Ls(s)]~* and
[I+ La(s)]=*La(s) are all stable.

From the robustness point of view, it is a good practice to select
Hy(s) such that the resulting sensitivity [ + Lq(s)]~! is small.
This additional condition, however, does not technically effect
the results to come.

It is clear from (14) that the general feedback/feedfoward con-
trol may also yield a nonrobustness problem due to a possible
large N(s), as discussed in the observer-based design case. To
gain further insight about the non-robustness potential of the
feedback /feedforward control, we suppose there is some mis-
match between G(s) and the true plant Ga(s), where Ga(s)
may be of higher order than G(s), allowing unmodelled dynam-
ics. Then, assuming G(s) is square and invertible, the system
output (14) becomes

Yy = Gall+N+MGA] M r+ (I + N)uw)
= GA[I+LR+N{I-R)] r+{+N)w) (20)
where
R(s) := G=\(s)Gals) - (1)

This shows that a large N(s) not only amplifies the control
disturbance but also jeopardizes the stability and the closed
loop transfer because of the term N(s)(I— R(s)) in (20). Notice
that this term could be significant when N(s) is very large even
il G(s) and Ga(s) are close. Thal is, the stability margin of
the closed loop system could be arbitrarily small and the closed
loop transfer function could be seriously distorted.

Now let us define the problem of LTR. Denote by L,(s) the
open loop transfer function from w to v (breaking the loop at
x in Figure 1), i.e.,

Ly(s) := [I + N(s)] "' M(s)G(s) € R(s)™*™ . (22)
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Equation (14) with L(s) = Lq(s) can be rewritten as follows:

4(s) = GO+ La(s)](5) + GIT + L) u(s)

The idea of LTR is to make the loop transfer function Ly (s)
to be as close to Lq(s) as possible so that the closed loop sys-
tem will recover the robustness of Lq(s). More precisely, the
problem of LTR is as follows: find stable N(s) and M(s) such
that they satisfy (19) and that the difference between L, (s) and
Lq(s) is minimized. Hence, the exact LTR requires

(I+ N ()7 M(5)G(s) = La(s) - (23)
If the exact LTR is not achievable, we would like to propose
an optimal LTR problem. Notice that LTR requires the closed
loop transfer function from w to y to be as close to Ha(s) as
possible. Due to (14), the difference between these two transfer
functions is caused by a nonzero N(s). Hence, the optimal LTR
problem is proposed as follows: find

Am- = 1inf |[N(8)]|oo , (24)
subject to (19) and stable M(s), and parameterize all N(s)
attaining the infimum (24).
Remark 2.1 Once A, is computed, the gain of the transfer
function from the control disturbance to the output can be sim-
ply estimated. In fact, due to (14), this gain can be made no
larger than 1+ ), times the gain of Ha(s).
Remark 2.2 It is possible to incorporate frequency weightings
in (24) as is normally done in a standard Hoo optimization
problem. By doing so, the equation (24) will become
Am = inf [|Wi(s)N (s)W2(s)]leo (25)
where the weighting matrices Wi(s), Wa(s) € R(s)™*™ are sta-
ble with stable inverse. This new problem, however, can be
modified to (24) by defining

N(s)
La(s)

Remark 2.3 Following Remark 2.2, we now show that the
H> [ H? sensitivity recovery problem proposed in [9] is a speical
case of the weighted optimal LTR problem (25). Note that in [9]
the output dynamic feedback is used to recover the state feed-
back. With our notation, the input sensitivity function given
by the state feedabck (3-4) is

Skp(s) = [T+ Ls(s)] ™

Wi(s)N(s)Wa(s) , M(s) := Wi(s)M(s) ,
Wi(s)La(s)Wa(s) » G(s) := G(s)Wa(s) . (26)

1

and the input sensitivity function given by the feed-
back/feedfoward control (3) and (13) is

Si(s) = [T+ (I +N(s)) " M(s)G(s)] ™" .
Therefore, the sensitivity difference is given by

é(s) Sp(s) = §(s)

[[+Le(s)) P =T+ (T + N(s))"*M(s)G(s)]*

I+ L,,(s)]'l — [T+ N(s)+ AI(S)G(S)]'I(I + N(s))
—[I+ Ly(s)] 7' N (s) (27

In the above, N(s)+M (5)G(s) = Ls(s) is used; see (19). Hence,
it is clear that ¢!(s) is the weighted N(s) with weighting ma-
trices Wy(s) = —[I + Le(s)]~! and Wa(s) = I. As we will see,
the solution to the exact LTR problem is very simple, and the

optimal LTR problem becomes a Nevalinna-Pick interpolation
problem which seems simpler to solve than the £ optimiza-

tion problem given in [9]. It should also be pointed out that not
every weighted N(s) can be regarded as a (weighted) sensitivity
error because of the possible unstable zeros imposed by Skp(s).
The case of output sensivitivy recovery studied in [9] can be
treated by considering a dual system.

Now we end this section with the following lemma; the proof
is omitted due to space limit.
Lemma 2.1 Consider the system (1) and the desired loop
transfer function La(s) satisfying assumptions AI-A3. Let the
feedback/feedforward control (3) with (13) with stable N(s) €
R(s)™*™ and M(s) € R(s)™*" satisfy (19). Then,

i) M(s) has no unstable zero identical to any unstable pole of

G(s);

ii) Lq(s) — N(s) contains all unstable zeros of G(s), multiplic-
ities included; and

iii) the closed loop system is internally stable.

Conversely. if N(s) is stable, and N(s) and M(s) satisfy (19)
and condition ii) above, then M (s) must be stable.

3 Exact LTR

The condition for the exact LTR is easily obtained by solv-
ing (19) and (23):

M(s) = La(s)G*(s); N(s)=0 (28)
where G*(s) is any left inverse of G(s). In order for the closed
loop system to have internal stability, M(s) and G(s) should
have no unstable zero pole cancellation. Since Lq(s) and G(s)
have the identical unstable poles (assumption A3), the internal
stability can be guaranteed if and only if La(s) contains all the
unstable zeros of G(s). Thus, we have the following necessary
and sufficient condition for the exact LTR.

Theorem 3.1 Consider the system (1) and the given de-
sired loop transfer function Lq(s) satisfying assumptions Al-
A3.  Then, the ezact LTR can be achieved by the feed-
back/feedforward control (3) with (13) if and only if Lq4(s) con-
tain all the unstable zeros of G(s), if any, multiplicities in-
cluded. When this condition holds, the solution lo the feed-
back/fecdforward control is given by (28). In particular, this
solution implies that the ezact LTR requires no feedforward con-
trol (N(s)=0).

Remark 3.1 The recoverability condition above has been re-
alized by a number of researchers under the framework of
observer-based state feedback design and asymptotic LTR, ([2]
for minimum phase systems, [3] and [8] for non-minimum phase
systems). What is new here is that the same recoverability con-
dition holds for the ezact LTR under the framework of model
matching and a general feedback/feedforward control structure.
Remark 3.2 The recoverability condition given in Theorem 3.1
is automatically satisfied by minimum phase systems. For non-
minimum phase systems, the exact LTR requires Lqa(s) to pre-
serve all unstable zeros of G(s). It should be pointed out that
this constraint can not be satisfied generically. In particular,
the zeros of Lq(s) will be all stable if the state feedback law is
the solution of an LQ design [3].

Remark 3.3 An alternative implication of Remark 3.2 is that
we have to choose the desired model Hq4(s) or, equivalently,
La(s) carefully if the exact LTR is desired. This raises the
following interesting question. Given a plant transfer function
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G(s), under what conditions can we find a stable Hy(s) or,
equivalently, L(s) satisfying assumption A3 such that the exact
LTR is possible. The answer concluded from Theorem 3.1 is
that such a Hq(s) or Lq(s) exists if and only if G(s) is strongly
stabilizable, i.e., stabilizable by a stable M(s) with N(s) = 0.
The conditions for strong stabilization are well known [11, 12].
Remark 3.4 For square and invertible plants, the exact LTR
leads to a unigue solution to the controller. This implies that
all the asymptotic LTR procedures will converge to the same
controller, regardless of the parameterization method and con-
vergence behaviour. This fact obviates every asymptotic pro-
cedure if the exact LTR or almost exact LTR is the objective.
When the plant is only left invertible, the controller for the ex-
act LTR will not be unique because of the non-uniqueness of
G*(s). However, this has no effect on the closed loop dynamics.
Again, there seems no need for asymptotic tuning procedures.

Remark 3.5 It should be noted that the exact LTR may re-
quire a non—causal controller, i.e., M(s) may be improper. This
can be easily fixed by cascading it a low pass filter with a suf-
ficiently high cutoff frequency. Strictly speaking, the resulting
system does not have the exact LTR, but the difference is ne-
glectable. It is interesting to observe that an observer-based
design not being able to achieve the exact LTR is simply be-
cause it enforces a strictly proper controller or a proper one in
the case of reduced order observer-based design; see Mops(s) and
Novs(s). Furthermore, the difference among various asymptotic
LTR procedures simply lies on the question of where to place
the additional high frequency poles which are tuned implicitly
but have little effect on the system dynamics.

4 Optimal LTR: the General Case

If the plant is of non-minimum phase and it does not satisfy
the condition in Theorem 3.1, the problem of optimal LTR (24)
arises. Although this problem can be restated as finding

Am = inf [|Lq(s) — M(s)G(s)||co

subject to stable M(s), it is not a standard H, optimization
problem because Ly(s) and G(s) may be unstable. Fortunately,
because Lq(s) and G(s) have the identical unstable poles, the
problem (24) can be solved using the Nevanlinna-Pick theory.
For simplicity, we only consider continuous time systems. A
discrete time system can be converted to a continuous time one
by using, e.g., a bilinear mapping. The following analysis is
built up mainly on the results in [13, 14]. It is further assumed

A4: the unstable zeros oy, - - -, ay of G(s) are distinct and sim-
ple satisfying Re[a;] > 0.

This assumption implies that, for each a;, there exists a unique
& € C™ with ||&]] = 1 such that

Glai)&; =0, i=1,2,-...£. (29)
Note that.f,- =1 for the single input case (m = 1). Let
7 :=Ld(ai)£,-eC'" , 1=1,2,...,L. (30)

Then, the constraint (19) is equivalent to

Néi=n,i=12,...,¢, (31)
i.e., Lq(s)— N(s) contains all unstable zeros of G(s). According
to Lemma 2.1, the stability of N(s) and (31) automatically
imply the stability of M(s). Hence, we have the following result.

Theorem 4.1 The optimization problem (24) is equivalent lo
finding

Am = if{|IN(8)]loo : N(as)éi = 1,8 =1,2,---,6}  (32)

and all such N(s). The corresponding stable M(s) is given by

M(s) = (La(s) = N(s))G*(s) - (33)
Single Input Case: In the single input case (m = 1), the
equivalent problem (32) is a classical Nevanlinna-Pick inter-
polation problem which has a unique solution [13, 15], solved
in the following four steps. The first step is to compute Ap,.
Let Na(s) = N(s)/A, then ||N(s)]jloo < A if and only if
[INA(s)llo < 1. According to [13, 15], there exists N)(s) in-
terpolating Ny(a;) = mi/A,i = 1,2,---,£ if and only if the
following £ x £ Pick matriz is nonnegative definite:

Py, =Py - /\—ZPI (34)

where

L p=
boP= ()

Py={ (35)

o; + &;
and the accent ~ denotes the complex conjugate. Then,
Am = sup{\:det P, =0} .
Equivalently, due to the positive-definiteness of Py, we have

Am = sup{A : det[A\2] — Py1Py] = 0}

/\m = V )\max[Po—lpll (36)

where Amax denotes the maximum eigenvalue. The second step
is to scale N(s) and n;: set N(s) := N(5)/Am and 5 := 1,/ A,
i=1,2,...,£ Then the problem (32) becomes to find all the
stable N(s) with ||N(s)|lc < 1 subject to N(e;) = mi, i =
1,2,.--,£ Step 3 is to solve this scaled problem. The final step
is to reverse the scaling done in step 2. The complete procedure,
which is summarized from (13, 15], is given below.

Step 0: Compute «; and evaluate 7; according to (30), i =
1,2,---,L

Step 1: Compute Py and P in (35) and A, according to (36);
Step 2: Set 7, :=ni/Am,i=1,2,.-,¢;
Step 3.1: Form the so—called Fenyves array f;,; as follows:

,61',1 = Th'yi=112v"')[;

Bijr = (@i + &) (B = Bi3) ,
! (@i — a;)(1 - B;,iBi;)

1<j<i-lge-1; (1)
Step 3.2: Find k < ¢ (which must exist) such that
Bigl <1, i=1,--k; |Bererl=1;  (38)
Step 3.3: Set N+U(s) = By ipi;
Step 3.4: Fori =k, k-1,.-.,1,do
NG = (= a)NED(s) + Biis + &) (39)

T (s 4 @) + Bii(s — ai)NGHL(s)

and set N(s) = NO)(s);
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Step 4: Set N(s) = AnN(s) and compute
M(s) = [La(s) = N(s)IG (s) -

Multi-input Case: In the multi-input case (m > 1), the
problem (32) is known as a directional interpolation problem
(DIP). Thanks to a recent paper by Kimura [14], this can be
solved by using an extension of the so—called Schur-Nevanlinna
algorithm. As in the single input case, the solution involves
four steps. Step one is to compute Ap, given by (36) but with
P; defined by

&&; inj
Pp={—2—};, P={—"—
il brarw R
where the accent ~ denotes the Hermitian transpose. The second
step is to scale N(s) and 7;, same as in the single input case.
Step 3 is to solve the scaled DIP problem and the final step is to
reverse the scaling done in Step 2. The details are given below.

(40)

Step 0: Compute oy, & and 7; according to (29) and (30),i =
1,2,---,L

Step 1: Compute P and P, in (40) and An, according to (36);
Step 2: Set 7 := 9i/Am, i =1,2,---, &

Step 3: For the scaled 7;, find N(s) with |[N(s)||eo < 1 such
that (31) holds. Due to space limit, the reader is referred
to [14] for the algorithm. N(s) may not be unique.

Step 4: Set N(.;x) = A N(s) and compute
M(s) = [La(s) = N(s)IG* (s) -

5 Optimal LTR: the Observer Case

In this section, we show that if the observer-based state feed-
back design (8)~(9) is used then the optimal LTR problem can
be solved via an algebraic Ricatti equation. For simplicity, the
system under consideration is assumed to be continuous-time
with D = 0. The generalization to its discrete-time counterpart
can be obtained by using a discrete algebraic Ricatti equation.

For the observer-based design (8)-(9), the goal of optimal
LTR is to minimize Nops(s). From the consideration of practical
implementation, it is also desirable to avoid a high gain K. That
is, the transfer function M,ps(s) should be penalized. Therefore,
the optimal LTR problem becomes solving

Am = inf |[|E(s)|leo (41)

where

E(s) := [Nobs(8) Mobs()Q) (42)
with Q € R™*" being a symmetric positive-definite weighting
matrix. Note that the constraint of stable A — KC is implied
in (41). If a high gain is allowed, Q should be kept small. It
turns out that the optimization problem above can be recast as
the following standard H, optimization problem (with notation
mainly adopted from [16]).

Consider the auxiliary LTI system

px(t) AE(t) + Byao(t) + Bau(t)
§t) = Ciz(t)+ Du(t) (43)

where z € R" is the state, @ € R" is the control, w € R" is the
conirol disturbance, § € R(™*") is the output and

A = AT; B, :=FT; B, =CT,
Cl = [B O]T; ﬁl = [0 Q]T

(44)

The null submatrix in €; and that in D are r x nand m x r,
respectively. Denoting the control weighting matrix QQ7 by R,
note that R is positive-definite and

DT[C, Dj=[0 R].

For any given scalar A > 0, the objective is to design a feedback
control law #(t) = —K& such that

o The closed loop matrix A — B3 K is stable; and

o The closed loop transfer function from the disturbance w
to the output 7,

E(s) = (Ci1 - DR)(sI — A+ B:K)™ !By, (45)

satisfies ||E(s)||co < A.

It is straightforward to verify that ET (s) = E(s) with KT = K.
Therefore, the optimal LTR problem (41) and the He, optimiza-
tion problem above are equivalent, and X indicates the degree
of LTR. The solvability of this optimization problem is known
[16, 17, 18, 19, 20]: a solution exists if and only if the following
algebraic Riccati equation

ATP 4+ PA+ P(A-2B BT - B,R-'BI)P+ C1CT =0 (46)
has a stabilizing solution P. Here, P is called a stabilizing

solution if it solves (46) and A + (A\~2B,Bf — B,R~'B])P is
stable. the required control matrix is given by
K=R'BTP. 47)
Translating this result back to the original problem (41), we
obtain the following theorem.
Theorem 5.1 Consider the optimal LTR problem in (41) with
a given weighting matriz Q@ > 0. For any scalar A > 0, there
ezists an observer gain matriz K such that ||E(s)|le < A if and
only if the following algebraic Ricatli equation
AP + PAT + P(A\-2FTF - CTR™'C)P+BBT =0 (48)

has a stabilizing solution P, i.e., A+ P(\"2FTF-CTR™1C) is
stable. When a stabilizing solution exists, the required observer
gain mairiz is given by

K = PCTR™' . (49)

6 Measurement Noise and Partial LTR

In our previous discussions, we assumed that the output mea-
surement is noise free. In the case when the measurement noise
is not neglectable, the LTR techniques will usually cause noisy
output. Indeed, replacing the output y(¢) in (13) by

ym(t) = () +d(2)
where d(t) is the measurement noise, the equation (14) becomes

y(s) = G(s)lI+L(s) 7 [r(s)— M (s)d(s)+(I+N(s))w(s)] - (51)

(50)

Under the exact LTR, the equation above simplifics to
y(s) = G(S)[I + La(9)] 7 [r(s) — La(s)G ™" (s)d(s) + w(s)]

for invertible plants. Since L(s) is usually large at low frequen-
cies in order to have small sensitivity, the corresponding gain
from d(s) to y(s) will be approximately equal to 1. That is, the
measurement noise is almost directly injected into the output.
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Furthermore, the measurement noise may saturate the plant
input u(t) when L4(s)G~1(s) is very large. These phenom-
ena,investigated in [21], display a trade-off between robustness
and measurement noise rejection. In order to reduce the effect
of measurement noise, the degree of LTR must sacrifice. Con-
sequently, the problem of partial LTR arises: Given a scalar
A > Ay, find all stable N(s) and M(s) subject to (19) and
|IN¥(s)]| € A and choose among them the solution for which the
transfer function from d to y is minimized. Using Assumption
A4 and the analysis in section 4, the first part of the problem is
equivalent to finding all stable N(s) with ||N(s)|| < A subject
to

N(ai)i=mi, i=1,2,---,£. (52)

The corresponding M(s) are given by (33). For the single in-
put case, the algorithm for solving the later problem is similar
to the one given in section 4 except that \,, needs to be re-
placed by A in step 2; k is set to be £ in step 3.2 because all
1Biil < 1 after scaling; and N+1)(s) is an arbitrary stable ra-
tional function with || N¢+1)}|o, < 1. For the multi-input case,
the same change in step 2 applies while other steps remain un-
changed. Once all the feasible N(s) are parameterized in terms
of N¥+1)(s), the second stage of solution takes place which
minimizes Hq(s)M (s). This problem deserves further research.

7 Conclusion

In this paper, we have investigated the problem of LTR for
model matching by using the general feedback /feedforward con-
trol structure (3) and (13). Under this framework, the problem
of exact LTR has been solved. The solution is of closed form,
requiring no parameter tuning or asymptotic converging. The
uniqueness of the resulting controller for invertible plants obvi-
ates the necessity of asymptotic procedures for the exact LTR.
For non-minimum phase systems where the exact LTR may not
be possible, we have shown that the optimal LTR problem can
be solved using the Nevanlinna~Pick theory. In the case of an
observer-based state feedback design, the cptimal LTR problem
can be solved via an algebraic Ricatti equation. The problem
of partial LTR is also discussed. We end this paper by referring
the reader to a recent paper [22] by the author in which it is
shown that the optimal LTR problem is equivalent to an He
optimal estimation problem.

(Dls)turbancc]
wit
(Input) , (Output)
r(t ¥ u G(S) Y&) >
»4%
v(t) | (Plant)
(Feedback) *'
N(s)
+
%)< M(s) te

(Feedback/Feedforward Controller)
Figure 1: A General Feedback/Feedforward Control System
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