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Abstract: The paper addresses the problem of
loop transfer recovery (LTR) of continuous-time
systems with sampled output measurements, that
Is, given an ideal (desired) continuous-time linear
state feedback controller, the authors seek for a
dynamic output feedback controller based on
sampled measurements, such that the state
feedback control is best approximated in a certain
sense for robustness reasons. They first point out
a simple fact that the so-called exact or
asymptotic LTR is not possible for such sampled-
data systems when the intersampling response is
taken into account, regardless of the relative
degree and mininium-phase properties and the
sampling rate of the system. Based on this
observation, the authors proceed to formulate a
generalised loop transfer recovery problem which
searches for an optimal dynamic output feedback
controller which minimises the difference between
the target loop transfer function and the output
feedback based one in some H., sense. The main
result then is to show that this generalised LTR
problem is equivalent to a known filtering
problem for sampled-data systems, which is
solved in terms of a pair of differential and
difference Riccati equations.

1 Introduction

A considerable amount of attention has been paid to
the theory and application of loop transfer recovery
(LTR) in the past decade; see, for example [1-10]. The
standard loop transfer recovery problem is as follows:
Given a plant G(s) as in Fig. 1 and a target loop Ls),
designed using state feedback control, find a dynamic
output feedback controller (see Fig. 1), v(s) = M(s)y(s)
+ N(s)u(s), where N(s) + I is invertible, such that the
following two properties are satisfied:

(i) the closed-loop input-output response is the same as
in the state feedback case, and

(ii) the target loop is ‘recovered’ in some sense.
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The state feedback control is normally designed by
using a linear optimal quadratic regulation procedure.
A Luenberger observer-based output feedback is often
used to ensure the first property above. Two loop
transfer recovery problems have been widely studied:
exact LTR and asymptotic LTR. The exact LTR prob-
lem is to find a suitable controller, u, such that the
actual loop transfer function L(s) is exactly equal to a
target loop L(s), i.e. L(s) = Ls). The asymptotic LTR
problem is to find a parameterised controller, u;, such
that the actual loop transfer function Ly(jw) point-
wisely converges to the target loop Lfjw) as 6 — 0 for
almost all —o < @ < oo,
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Fig.1  Control system for loop transfer recovery

The research on LTR was originated by the work of
[11] for continuous-time systems which demonstrated
that any target loop designed via LQR can be arbitrar-
ily closely approximated by using an observed-based
output feedback controller, provided that the plant is
minimum-phase. That is, the asymptotic LTR problem
is always solvable for minimum-phase continuous-time
plants. The design procedure for asymptotic LTR has
been enhanced by a number of authors; see [3, 9, 10].
The problem of LTR for nonminimum-phase systems
was studied in [3, 6, 12], and necessary and sufficient
conditions for asymptotic LTR are established. It is
realised that these conditions are very severe. There-
fore, alternative LTR problems have been studied. In
[6], an H./H, sensitivity recovery problem is proposed
and shown to be solved via the standard H,, optimisa-
tion techniques. In [3], an optimal LTR problem is pro-
posed aiming at minimising a function, in an H_, sense,
which represents the difference between the target loop
and the actual loop. In particular, the LTR problem in
[6] is a special case of that in [3]. Once again, this opti-
mal LTR problem is shown to be solvable via standard

333



H,, optimisation techniques. The results mentioned
above have also been generalised to discrete-time Sys-
tems; see, for example, [7]. However, to the authors’
knowledge there are no LTR results available for sam-
pled-data systems.

In this paper we design an observer-based state feed-
back controller for a linear continuous-time system
using sampled measurements such that the input-out-
put mapping of the closed-loop systems is the same as
given by some ideal state feedback and the target loop
given by the state feedback is best approximated in
some H,, sense. We first point out that the exact LTR
or asymptotic LTR is not possible in sampled-data sys-
tems. One reason is that the discrete-time LTR requires
the system to be minimum-phase and of small relative
degree, usually equal to 1, which are not possible in
general due to sampling. Another reason is that the dis-
crete-time LTR results cannot deal with the intersam-
pling behaviour of the system. The main contributions
of this paper are to set up the concept of generalised
LTR in sampled-data systems and to obtain necessary
and sufficient conditions for it, i.e. to find a controller,
if possible, such that the system under this controller
satisfies a required H..-like performance. This perform-
ance contains both continuous and discrete time
signals. It will be shown that, similar to the continuous-
time and discrete-time cases [3, 4, 6, 7, 12], the general-
ised LTR problem is equivalent to an H,. filtering
problem for sampled-data systems, which can then be
solved via the technique developed in [13-15].

Notation: Throughout this paper the superscript ‘7"
denotes matrix transposition and the notation X =2 Y
(respectively, X > Y), where X and Y are symmetric
matrices, means that X — Y is positive semi-definite
(respectively, positive definite). L,[0,7] stands for the
space of square integrable vector functions over the
interval [0,7], while 5(0,7) is the space of square sum-
mable vector sequences over (0,7). || refers to the
Euclidean vector norm, whereas ||||g7 denotes the
Lo[0,T]-norm over [0,7] and |-,z is the 5(0,7)-norm
over (0,7). F(6") stands for the left limit of a function
F(0).

2 Problem Formulation

Let the plant model be represented by a state-space
realisation,

(31): (t) = Az(t) + Bw(t) + Bu(t), z(0) =20 (1)

y(ih) = Cz(ih) + Dv(ih) (2)
where x(f) € R" is the state, xy an unknown initial con-
dition, u(f) € R’ is the control input, w(f) € R” is the
input disturbance, y(ih) € R™ is the sampled output
measurement, ~# > 0 is the sampling period, 7 is a posi-
tive integer, and 4, B, C and D are known real time-
varying bounded matrices of appropriate dimensions,
with 4 and B being piecewise continuous.

We shall adopt the following assumption for system
(Zp)-
Assumption 1: Rp = DDT > 0.
Remark 1: The above assumption means that the sam-
pled-data control problem considered here is ‘nonsin-
gular’.

Suppose a desired state feedback control law be

u(t) =r(t) + Kz(t) (3)
where r(r) € R! is the reference input and K € R™
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denotes the feedback gain. Hence, the closed-loop sys-
tem of eqns. 1 and 2 with the controller eqn. 3 is of the
form:

2s(t) = (A + BK)zs(t) + Br(t) + Bw(t) (4)
ys(ih) = Cx4(ih) + Dv(ih) (5)
When the state is not measureable, the control law,

eqn. 3, needs to be replaced by an observer-based com-
pensator (X.) in the following form:

(Ze): ult) =r(t) + Ki(t) (6)
2(t) = Ag@(t) + Bou(t), t # ih, #(0) = &g (1)
#(ih) = &(ah™) + Lly(ih) — Coz(ih™)] (8)

where £(¢) is the estimate of x(r), %, is the best estimate
of x5, and Ay, By, Cy and the observer gain matrix L
are to be chosen.

We know that when the state x(¢) is measurable, the
ideal feedback is

2(t) = Ka(t) )
The corresponding estimated feedback is
2(t) = Kz(t) (10)

The standard LTR problem, either the continuous-time
or discrete-time case, is to find an observer-based con-
troller such that the following two conditions are satis-
fled:

(1) The closed-loop transfer function from r to y is the
same as in the state feedback.

(2) The loop transfer function from w to % without
closing the loop best approximates the transfer func-
tion from w to z.

Now we can formulate the loop transfer recovery
problem for the system (X;) as follows.

Design a controller (£,) such that:
(i) (Separation principle): When we use the estimate of
X(), the input-output mapping, i.e. the mapping from
r(?) to y(ih) when w(f) =0, v(ih) = 0 and £, = x5 = 0, is
the same as in the state feedback case, and
(ii) (Loop transfer recovery performance): The feedback
error z(f) — z(f) is as small as possible in some sense.
For convenience, we define the state estimation error to
be

e(t) = x(t) — &(t) (11)

In order to satisfy the separation principle we choose
Ag = A, By = Band Cy = C. Then, the closed-loop sys-
tem of eqns. 1 and 2 with eqns. 6-8 is given by:

e (50) = (452 5 ()
; (ﬁ) "(t) + (g) W)t #ih(12)

(o) = (5 + %ue) (50 + (Lip ) vm

(13)
y(ih) = (C 0) (i%) + Do(ih) (14)

From eqns. 12 and 13, we can see that, if w(¢) = 0, v(ih)
=0 and xq — X, = 0, then

e(t)y =0
This implies that eqns. 12-14 will reduce to:
z(t) = (A + BK)x(t) + Br(t) (15)
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y(ih) = Cxz(ih) (16)
Comparing the system of eqns. 15 and 16 with the ideal
closed-loop system of eqns. 4 and 5, we conclude that
the controller of (Z,) of the form eqns. 6-8, with 4, =
A, By = B and () = C, guarantees that the input-out-
put mapping of the system (%) is exactly the same as
in the state feedback case.

For convenience, we introduce the ideal feedback in
eqn. 9 at the sampling instants i

za(ih) = Kx(ih) (17)
Also, the corresponding estimated feedback in eqn. 10
is denoted by

24(ih) = Ki(ih) (18)
To measure the loop transfer recovery performance, we
define the following index:

llz - 5”[20,7“] + Allza — 24”%0,7“)
1wl 1 + [0l 7 + 28 R

J-(A R, T) = sup

w,v, Lo

(w,0,20) € La[0,T] ® 1(0,T) & R : [wlfy oy + 0l

+af Rag #0 (19)

where 7" defines the time-horizon for the LTR perform-
ance, R = RT > 0 is a weighting matrix for x,, and A =
0 is a weighting parameter for the discrete-time error z;
— %z, The input disturbance w(r), measurement noise
v(ih) and the initial condition x; are all considered in
the performance index due to the obvious reason that
the feedback errors z — 2 and z; — Z,; are influenced by
all of them. Both the continuous-time feedback error
z(t) — £(¢) and the discrete-time feedback error z (ih) —
2 ih) are considered, depending on the designer’s
emphasis on the intersampling behaviour or sampling
point performance.

Given a matrix R, the LTR problem is to design the
observer gain matrix L such that J{(A,R,T) is suffi-
ciently small.

Definition 1: Given the sampled-data system of eqns. 1
and 2, with Assumption | and the performance index
JLR,T) in eqn. 19, we say that asymptotic LTR is
achievable if, for any € > 0, there exists an observer
matrix L for eqns. 6-8 such that J.(A,R.T) < &.

3 Impossibility of asymptotic loop transfer
recovery

As pointed out in the Introduction, the asymptotic
LTR is always possible for minimum-phase continu-
ous-time systems [11]. LTR results are also available
for relative degree one discrete-time systems [16-18].
However, LTR is much more difficult for sampled-data
systems. There are several reasons for this. First, it is
well known that a minimum-phase continuous-time
plant usually becomes nonminimum-phase after sam-
pling [19]. Secondly, relative degree 1 can rarely be
guaranteed after sampling [19]. These two points imply
that the asymptotic LTR is often impossible even at the
sampling points. Finally, we show below that asymp-
totic LTR is always impossible for sampled-data sys-
tems if the intersampling behaviour is considered. More
precisely, we show that the performance index J(R,T)
in eqn. 19 cannot be made arbitrarily small by choos-
ing the observer gain matrix L, no matter whether the
continuous-time plant or the discrete-time plant is min-
imum-phase or not. This problem is due to the fact
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that L does not help the observer attenuate noises in
the intersampling periods.

To see the impossibility of achieving asymptotic LTR
for sampled-data systems, we let v(ih) =0, x, = 0 and A
= 0, i.e. the performance index eqn. 19 reduces to

Jo(T) = sup { llz - ZH[O,T] )

et € L0, 7], ullon 0}
Choosing w(-) as follows:
-, te0,h)
=< Vr’ ’
ol ={ 50
obviously, for any T > A,

T
|mmﬂ=4wﬂmmm:1

=

Now,
l2() = 2(t) o, 71 = 1K e(®)]lj0,n)

. t
1 . t
= HKexp 0 Adt/ B—exp Jo AdtdtH[
0

Vh

0,h]

A

=75 >0
where 7, is independent of the observer gain L. Hence,
for any L, we have J(T) 2 vy, > 0, i.e. J(T) cannot be
made arbitrarily small. This shows that the asymptotic
LTR is impossible for sampled-data systems.

4 Generalised loop transfer recovery

Due to the impossibility of achieving asymptotic LTR
for sampled-data systems, we formulate a generalised
loop transfer recovery. To fulfil the ‘separation princi-
ple’ requirements, we shall consider controllers (Z,) as
in eqns. 6-8 with 4y = 4, By = B, C; = Cand %, = 0,
i.e. controllers of the form:

u(ty = r(t) + Ki(t) (20)
i(t) = AZ(t) + Bu(t),t # ih,2(0) = 0 (21)
#(ih) = 2(ih™) + Lly(ih) — C2(ih )] (22)

The generalised LTR problem we address is as follows.

Given a scalar vy > 0 and a matrix R = RT > 0, find
an observer gain L for the controller eqns. 20-22 such
that J(R,T) < y. We do not weight w and v because
such a weighting can be achieved by rescaling w and v
in the system eqns. 1 and 2.

Compared with known existing LTR techniques for
both continuous-time and discrete-time systems, our
new approach has the following features:

» It allows for both minimum-phase and nonminimum-
phase systems in the same framework.

» It also allows for different relative degrees of the dis-
cretised system in the same framework.

+ It considers not only sampling points for the perform-
ance, but also the intersampling behaviour, which can-
not be dealt with by discrete-time LTR techniques.

« It applies to both finite and infinite horizon cases.

* It emphasises the effect of non-zero initial condition
on the feedback error z — %, while zero initial condi-
tions are essential for known LTR methods.

+ It contains both input and measurement noises in the
performance, while the normal LTR performance con-
tains either input noise only or measurement noise
only.
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Before presenting our main results, we introduce a
mixed L,/l, filtering problem for sampled-data systems
and two lemmas; see [15] for more details.

Consider the following sampled-data system:

(S7):  &(t) = Aw(t)+Buw(t),t € [0.T).2(0) = zo (23)
y(ih) = Ca(ih) + Du(ik),ih € (0,T) (24)

2(t) = Ha(t),t € [0,T] (25)

24(ih) = Hyx(ih),ih € (0,T) (26)

where x(f) € R” is the state, x, an unknown initial
state, w(f) € R™ is the process noise, v(ih) € R™ is the
sampled output measurement, v(i#) € R¢ is the meas-
urement noise, z(7) and z{ih) € R” are linear combina-
tious of the state variables to be estimated, 4 > 0 is the
sampling period i 2 0 is an integer, and 4, B, C, D, H
and H, are known, real, time-varying bounded matrices
of appropriate dimensions with 4, B and H being
piecewise continuous. It is also assumed that the matrix
D satisfies Assumption 1.

The mixed L,//, sampled-data filtering problem is to
design a causal linear filter F to estimate z(¢) and zih)
based on the sampled measurements y(ik). The filter F
is of the following form:

2(t) = Aoz (t),t € [ih,ih + h),z.(0) =0 (27)
@(ih) = Auewe(ih™) + Baey(ih) (28)
2(t) = Hexe(t),t € [ih,ith + h) (29)
24(ih) = Hgex. (ih) (30)

where Z(f) and Z (ih) are the estimates of z(¢) and z k),

respectively. The dimension of the filter and time-vary-

ing matrices A,, 44, By, H, and H,, are to be chosen.

Note that eqns. 27-30 can be regarded as a linear dis-

crete time-varying filter with an interpolation function.
The filtering performance measure is given by

iz = 2l 7 +lza — Zallfo 1

J(Es,F,RT) = Sup{

wlZ ) + 101, 7, + 23 R

lwllf, 7y + 10lifo,ry + 2d Rzo #0 p  (31)
(0,7}

where R = RT > 0 is a given initial state weighting
matrix, and 2(f) and 24ih) are estimates of z(¢) and
z{ih) over a horizon [0,7], respectively.

Remark 2: The H,, filtering problem for a sampled-data
system was originally addressed in [13]. The perform-
ance index, eqn. 31, which has been used in [15], is
indeed generalised from [13], where the discrete term
Iz4 = Zdl.7)° is not present.

Lemma 1: [15] Consider the system of eqns. 23-26 and
let v > 0 be a given scalar. Then there exists a filter F of
the form of eqns. 27-30 such that J(Z;F,R,T) < y if
and only if there exists a bounded symmetric solution
o) > 0, Vi € [0,7], to the following Riccati differen-
tial equation with jumps:

QU=AQ(t)+Q()AT +4*Q(t)HT HQ(t)+ BB,
t # th (32)

Q(ih)=[Q™"(ih™) =y *H] Hy+CTRp |71,
ih e (0,T) (33)

Q0) = R™! (34)
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In this situation, a suitable filter is given by
(%) &(2) = Az(t), t # ih,2(0) = 0 (35)
(i) =2(th™ )+ Q(h) CT Ry} y(ih) ~ Ca(ih )],
th € (0,T) (36)
2(t) = HE(t),t #ih (37)
24(ih) = Ha&(ih),ih € (0,T) (38)

For the infinite horizon case, the performance index,
eqn. 31, becomes

12 = 2lIfy oo 120 — 2allfy o0y *

Jr(Z5,F, R, 00)=sup -
rZs {[uwnﬁ],w]+ango,oo)+x5Rmo

and we require the asymptotic stability of the filter,
eqgns. 27-30. We have the following result.

Lemma 2: [15] Consider the system of eqns. 23-26 and
let y> 0 be a given scalar. Then there exists a filter F of
the form of eqns. 27-30 such that J(Z,F,R,) < y if
and only if there exists a bounded symmetric solution
0(r) > 0, Vt € [0,00) to the following Riccati differential
equation with jumps:
Q) = AQ() + QM)AT + 7 *Q()HTHQ(t) + BB”,
t # ih (40)
Qih)=[Q™ (k™) —v*H{ Ha+ CT RS CT ™,
ih € (0,00) (41)

Q) =R} (42)
and the system
§(t) = (A+~2QHT H)q(t), t # ih (43)

a(if) = [+ Q(ih) (v~ 2HT Hy— O RGICYq(ih7), ih € (0,00)
(44)
is exponentially stable. Moreover, if the above solution
Q() exists, the filter given by eqns. 35-38 with T
approaching infinity is stable and achieves J(ZsF,R o)
< ‘Y
In the following, we call the solution Q(¢) to egns.
40-42 which renders the system of eqns. 43 and 44
exponentially stable a stabilising solution. In the fol-
lowing, we show that the generalised LTR problem is
equivalent to a H,, filtering problem for systems with
sampled measurements. Note that this equivalence has
been demonstrated in both the continuous-time and
discrete-time cases [3, 4, 6, 7, 12]. First, we give a solu-
tion to the generalised loop transfer recovery problem
of eqns. 1 and 2 over a finite horizon [0,7].

Theorem 1: Consider the system of eqns. 1 and 2 satis-
fying Assumption 1, and let v > 0 be a given scalar.
Then there exists an observer gain L for the controller
eqns. 20-22 such that J(A,R,T) < v if and only if there
exists a bounded symmetric matrix function Q(r) > 0,
Vvt € [0,7], which satisfies the Riccati differential equa-
tion with jumps:

Qt) = AQ+QAT+7 2Q(t)KTKQ(t)+ BBT t # ih

(45)
QUR) =R (h ) — v AKTK+CTRp A1, ih € (0,T)

(46)
Q) =R (47)
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Under the above condition, a suitable observer gain
matrix is given by

L(ik) = Q(ih)CT (ih) R, (ih),ih € (0,T) (48)

Proof: Considering the system of eqns. 1 and 2 and the
controller eqns. 20-22, it is easy to see that a state
space realisation for z — 2 and z; — 2, is given by

é(t) = Ae(t) + Bw(t),t # ih,e(0) = zq (49)
e(ih) = e(ih~) — L[Ce(ih™) + Du(ih)] (50)
2(t) — 2(t) = Ke(t) (51)
24(ih) = 24(ih) = Ke(ih) (52)

Hence, it follows immediately from eqns, 49-52 that
finding L such that J.(A,R,T) < yis equivalent to solv-
ing the H,, filtering problem for the following system:

(So): () = Ax(t) + Bw(t),Vt € [0,T],2(0) = 2o

z(t) = Kz(t),Vt € [0,T]
za(ih) = VAKz(ih,Vih € (0,T)
y(th) = Cz(ih) + Dv(ih),Vih € (0,1

to achieve the performance J(X,,F,R,T) < v. Finally, in
view of Lemma 1, the desired result follows.

A solution to the generalised loop transfer recovery
problem for the system of eqns. 1 and 2 over an infinite
horizon [0,e0) is provided in the following theorem.

Theorem 2: Consider the system of eqns. 1 and 2 satis-
fying Assumption 1, and let y > 0 be a given scalar.
Then there exists an observer gain L for the controller
eqns. 20-22 such that J,(R,e0) < v if and only if there
exists a stabilising solution Q() = QT(¢) > 0, Vi €
[0,00), to the Riccati differential equation with jumps:

Qt) = AQI)+QM AT+~ 2QWKTKQ(t)+BBT t #£ih

(53)
QUh) =R (Gh™) — v PAKTK +CTRpI AL ih € (0, 00)
(54)
Q) =R~ (55)

When such a solution exists a suitable observer gain
matrix is given by

L(ih) = Q(ih)CT (ih) Ry (ih),ih € (0, 00) (56)

Proof: It can be carried out using the same argument
as in the proof of Theorem 1 except that now 7 —
and Lemma 2 is used in lieu of Lemma [

Remark 3: In view of Lemmas 1 and 2, Theorems 1
and 2 imply that the generalised loop transfer recovery
problem for the system of eqns. 1 and 2 is equivalent to
an H,, filtering problem for a related sampled-data sys-
tem.

Remark 4: A number of algorithms are available for
solving the matrix Riccati differential equation (RDE)
eqns. 45-47 [20, 21]. In particular, [22] proposes a new
matrix-valued algorithm based on a matrix generalisa-
tion of the backward differentiation formulas, which is
much faster to compute the solution per time step than
the classical approaches [20, 21].
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5 Conclusions

The LTR problem for continuous-time systems with
sampled output measurements has been studied. It has
been shown that exact LTR and asymptotic LTR for
sampled-data systems are not possible in general. Con-
sequently, a generalised LTR problem is formulated
with the aim of minimising the difference between the
target loop and the actual loop in an H,, sense. It is
shown that the generalised LTR problem is equivalent
to an H., filtering problem for a related sampled-data
system.
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