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ABSTRACT

A procedure for the adaptation of multistage multirate fil-
ters is developed in the context of a system identification
perspective. The system to be identified is the cascade of a
multistage decimator followed by a mulistage interpolator.
For this structure, an identifiability condition is established
which is sufficient to guarantee that the stagewise systems
may be uniquely determined from input-output data in the
ideal, exact model order case. An algorithm is then de-
scribed that achieves exponential convergence of the system
parameter estimates to their desired values given satisfac-
tion of these identifiability conditions.

1. INTRODUCTION

Multistage implementations of sample rate converters and
narrow-band filtering operations are known to enable sig-
nificant computational efficiencies [1, 2]. However, current
design procedures for such multistage, multirate filters ap-
proach specification of each stage on an individual basis,
rather than simultaneously optimizing all filter stages [3].
In this paper, we formulate a simultaneous optimization
by casting the design problem in the framework of adap-
tive filtering or equivalently system identification. We es-
tablish fundamental identifiability conditions within this
framework, and define a globally convergent algorithm for
achieving the identification. This work is perhaps the first
effort in adaptively optimizing these multirate operations,
though [4] has considered adaptive techniques for optimiz-
ing lossless filter banks. Two points to note are that our
identification procedure minimizes a mean-square error, and
that we do not address selection of decimation and interpo-
lation factors nor the distribution of the filter orders among
the stages.

2. MODEL AND NOTATION

We pose the multistage multirate filter adaptation in terms
of a system identification problem in which the “true sys-
tem” to be identified has the structure shown in Fig. 1, with
£; and m; denoting the time indices at the various sample
rates.

Assumption 1 Each Gi(¢™!), Hi(¢™") is FIR. Treated as
polynomials in ¢~*, each is monic and of known respective
degrees ny;, and np;.

We use the polyphase decompositions

M;—-1

Gi(g ") = E a7 G (™) 1)

j=0
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and
L;—-1

Hi(@™) =) ¢ Hy(a ™). 2
i=0
to describe various manipulations of the blocks in Fig. 1.
We first illustrate these manipulations with two simple ex-
amples.
To wit, the system depicted in Fig. 2 is equivalent to the
system in Fig. 3, with appropriate definition of the subsys-
tems Gzj. Points to note are first that

Gao(g72) + a7 G (¢7?) = Gro(g™*)G2(a7") (3)
Ga2(q7?) + ¢ Gas(g7%) = Gu(g7")Ga(a™") (4)

and second that for each £, {ugz)(l)}i-;o represents a collec-
tion of disjoint samples of {u(k)}.}
Likewise, Fig. 4 is equivalent to Fig. 5. In this case,

Izzo(q_z) + q_lfzm(q_z) = HLO(Q—'I—)Hz(q_l) (5)
Haa(q )+ q " Has(a7?) = Hu(a ) Ha(a™) (6)

and for each m, {ygz)(m)}?ﬂ represents a collection of dis-
joint samples of {y(k)}.
In general, the output of Gi(g™') can be expressed. as

vi(ti) = Gi(g ) U(&) )
where

gty =[ Gala™ - Gz ], ®

where U()(£;) is a column vector whose elements are certain
disjoint samples of u(k), and

i
ﬁ'; = H M;. (9)
i=1
Further,
Gii(g7') = Gui(a™), (10)
and for each 0 <j < M; - 1,
.Y A
Gii(@)Ci(@™) = Y a7 Currinipai(g75H),
k=0

(11)
1In fact, for k a multiple of four, {u(k), u(k—1), u(k—2),u(k—~
3} = () (/4), u?) (/4), 87 (/2), ) (k/ )}
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u(k) = vo(k) vi(4)

Gl(q—l) -l M

Vp—1(£p-1) Gp(q—l ) A vp(£p)

(k) =w°(k)‘H1(q“) 1L, wi(mi)  wr—i(mp1) Ho(g™) |1 L wr(m,)

Figure 1. General multistage, multirate filter.

_y_(_l_c_). Gl(q_l) >~ | 2

Gala) of L2 PO

Figure 2. Simple two-stage decimator.

In a similar vein, with Y{9)(m;) a column vector with ele-
ments that are disjoint samples of y(k),

YO (ms) = Hi(g™" wi(my) (12)

where

~ ~ ~ T
B = Hala™) - Bz ], @)

where

Li=]] s (14)
i=1

The vectors ﬁ;(q"l) follow recursions very similar to (10)
and (11).

Remark 1 Because of Assumption 1, the highest degree el-
ement of each Hi:(¢g™') and Gi(¢™") is monic and of known
degree, greater than zero.

Finally observe that one can write
Y (m,) = H(a7)Gela WWPNG)  (15)

where H, is a column vector and 5, is a row vector.
We note here that m, and £, are time indices at the

same sample rate, henceforth both denoted n, and that

M,=I.,%N.

3. IDENTIFIABILITY

For the identification algorithm of the next section to offer
globally convergent parameter estimates it is essential that
the “true” parameters can be uniquely identified, given a
suitable choice of input sequence. In this section we give a
sufficient condition for the system in Fig. 1 to be identifi-
able. To this end we first formally define lack of identifia~
bility.

Definition 1 The system in Fig. 1 is unidentifiable if there

ezist monic polynomials Gi(¢™), i = 1,...p and Hi(¢g™"),

i =1,...7 with respective degrees ng, and nn; such that
()G, - Gp By --- B]#[G1 -+ Gp Hy --- H,);
(i) the input output behavior of the system obtained by

replacing {G;, H;} by {é}, Ii} in Fig. 1 is identical to
the actual system.

k) 5]
142

Figure 3. Decomposed simple two-stage decimator.

Hz(q_l) — 12 M

4’1—(—@- Hi(q_l) le— T2

Figure 4. Simple two-stage interpolator.

ﬁzo(q“) ]

Fln(q"l) [+

f?zz(q_l) [+

w(m)

Has(g7?)

Figure 5. Decomposed simple two-stage interpola-
tor.
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The sequel makes extensive reference to the concept of co-
primeness, which we now define.

Definition 2 The set of poly-
nomials {A1(g7"),..., An(g™")} is coprime if there is no
complex o for which Ai(a) =0 forall1<i< N.

We are now ready to state the main result of this section.

Theorem 1 Under Assumption 1, the system in Fig. 1 is
identifiable if the following hold:

(i) foralll1 <i<p—1, the set

{Gio(g™*),-- -, Gipry—1(g7*)} (16)

i3 coprime;
(i) for all1 < i< r—1, the set

{Hio(g™"),..., Hini—1(a7h)} (17)

is coprime;

(i11) at least one of the sets

{GPO(Q—l)r LR GP,Mp—l(q_l )} (18)
{Heolg™), .o, Hrpo—a(a™*)} (19)

is coprime.

We will prove the theorem as follows. From (15) and the

fact that the elements of Y{")(m,) and U(P)(£,) can be inde-
pendently manipulated, it will follow that all elements of the

rank 1 matrix polynomial H.(g7*)Gp(g™") can be uniquely
estimated. Subject to Assumption 1 and (3), we then show

that f[,.(q_l) and G,(¢™') are uniquely fixed. Following
this, through an inductive argument we show that (1) and
(2) respectively fix the Hi(g™') and Gi(¢™*) uniquely. We
need the following lemmas.

Lemma 1 Suppose the set of polynomials

{Bi(¢™"),...,Bu(g")} (20)

is coprime. Define for 1 < j < M

AMHB Y = S R ()

where
N-1

Ag™h) = ¢ Ag™) (22)

for some N > 0. Then the set of polynomials

{Plo(q_l), erey P]_,N_.L(q—.l), Pgo(q_l), ...... ) P)\'[,N—l(q_1 )}
(23)

is coprime if the set

{Ao(q-l ) RPN AN—1(q_1)} (24)

is coprime. Further, regardless of the coprimeness of (20),
(23) cannot be coprime if (24) is not coprime.

Proof: Observe that each element of (23) is a linear combi-
nation of the elements of (24). Thus the lack of coprimeness
of (24) implies the same for (23).

Now suppose (20) and (24) are coprime but that (23) is
not. Thus, there is @ such that Pj(8) = 0forall 0 <i <

N—-1,1<j<N. Let ai,...,an be the N*® roots of 8.
Then for each 1 < k < N, Pji(al) = 0.

Then from (21) :

A(ax)Bj(ar) =0, 1<k N,1<j<M. (25)

Since (20) is coprime, for all 1 < k < N A(ax) = 0. Thus
g~ — B is a factor of A(g™"), and there exists

™)=Y ule™) (26)

such that
A(g™)

I

(@ -Balg™) (27
E e = Bai(a™).  (28)

Comparing (28) to (22) we get
A(g) = (g7 = Pai(a™),

Thus, (24) cannot be coprime. The contradiction proves
the result. o

0<i<N-1. (29)

Lemma 2 Let A(g™") be a (column or row) vector polyno-
mial with elements A1(g7'),..., An(q7"), and let B(¢g™Y)
is a scalar, monic polynomaial of known degree. If

{A(a™), -, An(g )} (30).

is coprime, then A(q')B(¢™') suffices to determine
{4:(g™")} and B(g™") uniguely. '
Proof: Suppose ai(g™') = Ai(g”')B(g7'). Then as
(30) is coprime, B(¢™') is the unique common factor of
a1(g™"), ..., an(g™") with degree equaling the specified de--
gree of B(¢7!). Hence B(g™') can be determined as can’
then be A;(q_l). B '

Proof of Theorem 1: From Lemma 1, for each 1 <7 <

p—1 - -
{Gio(a7*)y+ s G, 5. (a7} (31y

is coprime. Similarly, for each 1 <1 <r—1

{Hio(g™),-. Bz, (7)) (32)

is coprime. Thus, the recursions given in Section 2., to-
gether with Lemma 2, prove that the unique knowledge of

I?,.(q_l) and ép(q_l) uniquely fixes Gi(g™'),...,Gs(g™")
and Hi(¢™'),..., Hr(¢g™). Now, without loss of general-
ity assume (18) is coprime. Then again from Lemma 2

and Remark 1, " ,.(q—l) is uniquely determinable from
Ho(g7*)Gp(g™"). Hence, sois Gp(g™) as Ha(g™ ') is a col-
umn vector and Gp(g™') is a row vector. Hence the result.

-]
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4. ADAPTIVE ESTIMATION

This section outlines a globally convergent algorithm for
adaptively estimating the coefficients of the G; and H;
blocks in Fig. 1. The algorithm contains several stages, all
implemented simultaneously. We assume that the system
in Fig. 1 is identifiable.

The basic idea of the algorithm is as follows. The re-
lationship (15) allows direct estimation from input-output
da.ta of the coefficients in the rank-1 matrix polynomial

H.(q" YGy(g™ 1), using standard technlques Label as

Fij(g7") the i,5*® element of H, (¢74)Gp(g™"). The first
algonthm stage is this estimation of the coefficients of
Fij(¢7'). The next two stages are the estimation of the
coefficients of Gpi(q~") and H,:(g™') using the estimates
for Fij(¢™'). Finally, from these one recovers Gi(¢™') and
Hi(g™") in the last stage.

Given that the first stage is straightforward to accom-
plish, say using equation error approaches, we proceed now
with the development of the second and third stages. From
the discussion in Section 3. and our assumption of identi-
fiability, either or both the set of elements of H,(¢™') and
the set of elements of Gp(g™") is coprime. Without loss
of generality, assume the elements of H.(¢™") are coprime.
Equally, at least one among the elements of Gp(g™*), with-
out loss of generality Gpx(g™"), is monic with known degree.
With this in mind, consider the set of simultaneous polyno-
mial equations

I‘.I'7-1(!1—1 YPiu(g™t) = ﬁri(q_l VFa(g™ ) =0; i=0,... ,(.;\73)
Viewing the {Fix(¢™")} as known, and subject to the re-
quirement that the highest degree polynomial among the
{H,-.(q 1)} is monic and of known degree, the set of
{Hﬂ(q—l)} that solve (33) is unique.

We need here some further notation. Let hn; be the coef-
ficient vector for I;,i(q"l), and concatenate the kn; vectors
together in k.. Similarly define §p; and Gp. The coefficient
vector for Fij(¢™') is denoted fi;, with fi the concatena-
tion of fix as i varies. Also, let the coefficient vector for

H.i(g™*)Fij(g™") be denoted ki ® fij. With this notation,
(33) reduces to

Ve, ) Y lhes ® fis — hei ® finl® = 0. (34)
Assuming for the moment that the fix are known, and de-

noting “hatted” quantities as the estimate of their “unhat-
ted” counterparts, one can show that

s T

fn(n + 1) = hn(m) — g | LVonlBn(m), fi) (35)
Ohr(n)

is globally convergent for sufficiently small u. Of course, as

only estimates of fr would be available at a given time, we

would instead implement

- R T
he(n +1) = he(n) — ——av"‘(h’(”)’f"("))] . (36)

hin(n)

The iteration of (36) comprises the second stage of the al-
gorithm.

Now assume that the {H.i(g™*)} are known. Then with
H ,.m(q ' the highest degree monic polynomial among the
{H"(q 1)}, a unique set of §p: solve

= def |- . .
Vog,i(Brm, Gpiy Fmi) = ||Got ® hrm — fmil? =0.  (37)

For each i, we then implement as the steps in the third stage
of the algorithm

Vpgi(hrm(n), §i(n), Frmi(n))
3.3,,{(”)

Gpi(n+1) = Gpu(n) -

(38)
In principle, these together estimate I?,‘(q_l) and 5p(q'l).
The final stage of the algorithm is to extract the Gi(¢g™")
and Hi(¢g™'). To do this, one can use the coprimeness con-
dition and (11) to formulate similar algorithms for estimat-
ing Gp—1(g™") and Gp(g™"). Continuing in this vein one ob-
tains, one after the other, steps for estimating each Gi(g™').
Similarly one formulates algorithms for estimating H;(¢™').
Space constraints prevent the provision of further details re-
garding these steps.
The convergence properties of this multistep algorithm
are summarized below.

Theorem 2 Let v be the hzghest degree among the poly-

nomial elements of H,(q_l)G (¢7") and N = Mp = L,.
If there exist ay,0a, T > 0 such that for all n and all
0<i<N-1,

n47T

a I < Z U;('n.)U.;(n)T < a2l (39)
where
GEOw
Ui(n) = : )

u((n — V)N +1)
then for every initial error there exists u* such that the
multistep algorithm given above with step size p in each
step is exponentially convergent for all 0 < u < u*.

5. CONCLUSION

This paper’s contributions are an an algorithm formulation
that adaptively optimizes the coefficients of a multistage
multirate filter, and the detailing of a sufficient condition for
the filter’s identifiability. Thes algorithm is exponentially
convergent in the exact modelling case, given identifiability
and suitable input excitation.
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