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ABSTRACT

This paper considers the problem of robust He, control
for a class of nonlinear systems. The nonlinear uncer-
tainities which we allow include are those satisfying in-
tegral quadratic constraints (IQCs), and those nonlin-
ear bounded terms satisfying matching conditions. We
adopt an LMI approach to designing a state feedback
controller which guarantees the so-called Lo-gain from
the exogenous input noise to the controlled output to be
no larger than a prescribed value. We then extend this
robust Hq, result to systems for which the nonlinear un-
certainty satisfies a generalized matching conditions.

1. INTRODUCTION

There has been some substantial interest over the past
several years in extending the Heo control theory for lin-
car systems to nonlinear systems; sce [1, 2, 3, 4] for ex-
ample. Like the linear case, the idea of nonlinear Hoo
control is to find a feedback controller, cither full state
or output-based, such that the mapping from an exoge-
nous input to a controlled output is minimized in terms
of an induced Ls-gain. The common feature of the re-
sults in [1, 2, 3, 4] shows that the nonlinear H,, control
can be solved via a particular type of Hamilton-Jacobi
equations, known as Isaac equations. The solvability of
an Isaac equation has been addressed in [1]. It is known
[1] that if a lincarized Isaac equation at an equilibrium
point, which is a Riccati equation, has a solution, then
the Isaac equation has a solution in the neighborhood
of the equilibrium point provided that some smoothness
conditions are satisfied.

The motivation of this paper stems from two facts: i)
solutions to the Isaac equations are generally difficult to
find, especially when the rcgion of interest in the state
space is non-local or global. Altcrnatively, we seek for a
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special class of nonlinear systems for which simple solu-
tions exist. ii) The nonlinear Ho, control results provided
in {1, 2, 3, 4] assume a perfect model of the system, i.e, no
modeling uncertainty is permitted. What we intend to
do in this paper is to consider some type of uncertainty
in the system model, aiming at developing a controller
which is robust with respect to the modeling uncertainty.

In this paper, we consider a class of nonlinear systems
which consists of a linear nominal model and nonlin-
ear uncertainties. More precisely, the nominal model in-
volves an exogenous input, control input and controlled
output. The nonlinear uncertainties we allow include,
those satisfying IQCs, and those nonlinear bounded non-
linear terms satisfying matching condition. See Section 2
for details.

For the systems discussed above, our main results in Sec-
tion 4 show that the robust He, control problems can
be solved via a fixed full state feedback controller if an
LMI (rather than an Isaac equation) has a solution. Fur-
thermore, a simple procedure for constructing a desired
robust nonlinear controller is also provided..

2. ROBUST H, ANALYSIS

Consider a class of nonlinear uncertain systems described
by a state-space model of the following form:

i(t) = Az + Y7, Di&i(t) + Biw(t) + Bf(z)x

y(t) = Ciz(t) + D,W (2.1)

where z(t) € R™ is the state, w(t) € R? € L£3(0,00)
is the bounded disturbance, y(t) € RY is the penalty
variable related to some performance cost, &(t) € RS,
the uncertain variables satisfying the following IQCs

T
/0 (MBI~ 1&]) dt > 0, VT > 0. (2.2)
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A, B, By, Cy, D,, D; and E; are known constant matrices
with appropriate dimensions. f(z(t)) is an q X m matrix
function representing the nonlinear uncertainty in the
autonomous part of the plant which assumes to satisfy

p((t)) — | f (&) 2 0, ¥ € R (2.3
for some p(z(t)) > 0

Remark 1. Norm bounded uncertainty has been consid-
ered in a number of papers. For instance, in [5) authors
have investigated the following type of uncertainty:

&i(t) = F(t) By (t) (2.4)
with
FY)F(t) < I, Vt > 0. (2.5)

Obviously, this type of uncertainty corresponds to our
case with p = 1. Moreever, condition (2.5) is much more
restrictive than condition (2.2).

Now, we state the robust H., analysis problem as fol-
lows: Given the system (2.1) and vy, determine if the sys-
tem is asymptotically stable and that the following con-
dition holds

T T
[ Wwoirar <+ [ lo@Pa, vr 2o,
Jo Jo
z(0) = 0,w e R? € £L2(0,T) (2.6)
for all admissible uncertainties satisfying the IQCs (2.2)
and condition (2.3).
For the sake of notational convenience, we define:
Bl = [Bf --- E3l; &(t)=[a(t) -+ &(1)]
J=diag{m I, -, 7p1;,} (2.7)
where 1,---,7, are scalars and s; arc the number of
columns of D;.

Applying the well-known S-procedure, we have the fol-
lowing result:

Lemma 2.1. The system (2.1) is exponential stable with
condition (2.6) holds for all admissible uncertainties sat-
isfying the IQCs (2.2) and condition (2.3) if there exist
a K-function [6] V(x), scaling parameters 11,---,7p > 0
and € such that the following condition holds:

L+ 50, m(ExtP - [&®)]2) + [Crat)
+ D2 — 4wl + eV'(z) < 0,

Ve € R™; &(t) € R™ andw € R? € £5(0,T), (2.8)
YT > 0, with (z,w,&) #0
where
A V(). OViz) Sy
L2 —ti = o [An(t) + ;D,,g,,(t)
+Biw(t) + Bf(x(t))] (2.9)

Proof. First, we need to show that the system (2.1) is
exponential stable when w = 0. Obviously, the time
derivative of V(z) along the trajectory of the system
(2.1) reads

ov(z). oV(x)

Viz)=L= St = o AT(t) +

3" Di(t) + Butt) + BF(a(0)] (2.10)
Clearly, 1f;(1)m (2.8) we have
V(z) < —€eV(x) (2.11)

which implies that system (2.1) is exponential stabe.

To prove that condition (2.6) holds, we intergrate the
left hand side of the inequality in (2.8) from 0 to T along
the trajectory of the system (2.1), we have VT > 0

V(r(T)) = V(x(0)

+ o S mlllBa®)? ~ 1&@)?) at (212)
+ [T (ICw(t) + Dowl® = 2 |fw||?) dt < 0.
Let T +— oo and z(0) = 0, we obtain (2.6). WV

3. ROBUST H, SYNTHESIS

Consider a class of nonlinear systems described by a
state-space model of the following form:

#(t) = Azx(t) + 2.0 , Di&(t) + Biw(t)
+B(I + T((t)u(t) + +Bf(=()=(t)  (3.1)
y(t) = Ciz(t) + Dow

where z(t) € R™ is the state, u(t) € R? is the input,
w € R? € £4(0,7) is the bounded disturbance, y(t) € R?
is the penalty variable related to some performance cost.
The uncertain matrix function f(z(#)) and the uncertain
variables &;(t) are assumed to satisfy conditions (2.2) and
(2.3), respectively. The uncertain matrix J(z(t)) is a
function satisfying:

JJ(x())|—n < 0for some 0 <7 < 1, Va(t) € R™.(3.2)

The robust H,. synthesis problem associated with un-
certain system (3.1) is as follows: Given v > 0, find a
controller of the form

u(t) = ¢(z) (3.3)

such that the closed-loop system is asymptotically stable
and satisfies the condition (2.6) for all admissible uncer-
tainties satisfying conditions (2.2), (2.8) and (3.2).

Now we are ready to state our main result:

Theorem 3.1. Given a scalar ¥ > \/Amax[DED,), the

uncertain system (8.1) whose uncertainties satisfying
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conditions (2.2), (2.3) and (3.2) is asymptotic stable with
condition (2.6) holds if there exists 71, -+, 75 >0, € >0
nmx[D Do]

and a > s v 5 such that the following LMI

M PB PB, PD
BP -1 0 0

< 3.
Bp o N o |S0 (3-4)
DIP 0 0 -J

has symmetric positive-definite solution P. Where Ml =
AP+ PA+(1+a)CiCy +ELJE; + 3¢l and N = —[y%] -
&) DD,

If this is the case, then a suitable feedback control law is
given by

g2 fe2e)

= 5+ (3.5)

Proof. The closed-loop of system (3.1) with (3.5) reads

z(t) = Az(t) + 3.0, Di&(t) + Bf(z)x
_ B{I+J(z(t)))B'Px [%+£3€ﬂ] +Bw()  (3.6)

1-9
2(t) = Ciz(t) + Dow

First, we choose our K-function V(z) = z*Pz. It follows
from Lemma 2.1 that the robust He control problem
is solvable using the controller in (3.5) if the following
inequality holds

2zt (t) P {Ax(t) + Y0_, Di&i(t) + Biw(t)

+B (o) ~ BT (1

i il Bz () ~ &0 )+ Cra(t)

+D w]] — ¥?|lw||? + ex?(t)z(t) < 0,Vz € R™ and
w€EeR? € ﬁg(O,T), VT >0, with (rz,w,&,;) #0

(3.7)

We can rewrite Eq. (3.7) as

zt(t)P {Az(t) + 30, Dibi(t) + Biw(t)}

EXL (B 1601 (59
+IC1z(t) + Dowl|? — y2lw]? + ex’z < —2G(z),
where
. 2*PB(I + J(z(t)) Bt Px
G(z) = z'PBf(z)z — - X
2(x
B N ”—E—)] L (3.9)

Let us derive an upper bounds for term G(z) apply tri-
angular inequality and condition (3.2) on it will lead
to

G(x) < %x”PBBthp2(m)+ertm

~lm’PBBmep2(m) - %thBBth
€
= exfy —

-;—thBBth. (3.10)

Also by applying triangular inequality on the term

|C 1z + Dow||?, we have
(|C1z + Dowl||? < (1 + a)||C1z(t) 2
+(°‘+1)Dtp wl?, (3.11)

where o > ?%‘ Substitute these two upper

bounds into (3.8), we have

+zl= n(llE 2( >u2 eI
+ (1 + a)|Ciz())1? — [v?1 — S DE D, |jw))?
+ext(t)z(t) < —2xt(el — -é—PBB"P):c,

(3.12)

or we can rewrite it as follows:

BtP N 0

M- PBB'P PB, PD
Xt
Dp 0 -J

] X<o. (3.13)

where X = [z w £]*. Clearly, to have (3.13) holds Vz €
R™ and w € R? € £5(0,T), VIT' > 0, with X # 0 is
equivalent to having

BtP N 0
DtpP 0 -J

(3.14)

M - PBB'P PB, PD
<0

Apply well-known Schur complements on (3.14) will lead
(3.4), hence we conclude our proof. VWV

4. EXTENSION TO GENERALIZED
MATCHING CONDITIONS

This section extends the main result in previous section
to a more general class of nonlinear uncertain sysems,
namely nonlinear systems satisfying the so-called gener-
alized matching conditions. The reader is referred to [7]
and [8] for the definition of generalized matching condi-
tions and the back stepping robust control design proce-
dure.

In this section, we allow the following type of systems:

p
Az +> " Di& + B(I + J(z1))z2

T, = (4.1)
i=1

+Bfi(z1)r1 + Brw(t) (4.2)

Ty = fz(Xg)Xz + x3 + bow (43)

T, = fv(X,)X, + Tipy + b;w (4.4)

Tn = [olXn)Xn +bow+u (4.5)

y(t) = (X)) +do(Xp)w (4.6)

A
where z1(t) € R™, X; = [z1 -+ =], and fi(X;) are
uncertain nonhnear matrix functions satisfying the same
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condition as in (3.2). The functions ¢(Xy) and do(X,)
are assumed to satisfy the following inequalities:

(T @ TE)) < 3 L )
k=1
IDo(T(Z))] < D (48

where Z,, 2 [z1 22 +--, z] and T(-) is any known non-

linear matrix mapping.

Corollary 4.1. The system (4.2)-(4.6) satisfying con-
ditions (2.2), (2.3), (3.2), (4.7) and (4.8) is asymp-
totically stabilizable with condition (2 6) if there exists

2max (D Do) such that the

Tl,--~,Tp>0,€>0and(x> o [DiDs

following LMI

M-£I PB PB, PD
B'P -1 0 0
BiP 0 N 0
ptp 0 0o -1

<0 (4.9)

has symmetric positive-definite solution P.

For proof refer to Appendix A.

5. CONCLUSION

In this paper, we have solved the problem of robust
Heo control problem for a class of nonlinear systems.
The nonlinear uncertainities which we allow include,
those satisfying integral quadratic constraints (IQCs),
and those general bounded nonlinear terms satisfying
matching conditions. We have presented a state feed-
back control design technique by using an LMI. This re-
sult extends the standard Ho, state feedback results for
lincar uncertain systems [5] and some robust stabiliza-
tion results for uncertain system with matching condi-
tions [9, 10}.

Appendix A : Proof of Corollary 4.1

Proof. Step 1. Define z; = z1 and zo = 29 — ¢1(21,1),
where ¢1(21,%) is a smooth function yet to be deter-
mined. The first equation of the system (4.2) can be
written as

P
21 = Az + ZDkEk + Biw+ Bf(z1)z
k=1

+B(I + J(Zl))[ZQ + (]51(21)] (Al)

First ignore the term B(I + J(z))z2s.
Vi(z1) = 2t P2z, and

If we choose

BtPZ;[ 1 /)2(21)
$1(z1) = — -7 [54— p }, (A.2)
we have
L} é 8V1(Zl) 2'1

821

= 24 (t)P {Azl(t) + Z Dy&r(t) + Brw(t)
k=1

+ Bf(z (b)) + B(I + J(lz:(trz))Btpzl )

R "

22 P {Az1 + Z D&y + Biw(t) — —BB le}

k=1
+2e2]7. (A.4)

IA

Note that ¢1(z1) given in (A.2) is a smooth function,
hence its partial derivative exists,

Step i (2 <4 <n-—1). We repeat the above procedure,
defining zi41 = Tip1 —¢s(21,- - -, 2;), then

3
z; = Zfik(zlal"
k=1

s 2)zk + [Zigr + @iz, -+, 25)

O¢i—1(21,- -, 2i_1)

b;
+b;w + o Bw
6¢‘L* (217 B Zi—l)
+ Z aZk bkw
a¢7 1 (21 >

"+, i) zp:DkE (A5)
oz = R A

The functions fix(z1,---,2;) are defined as follows:

Zflk(zh

)2k = fi(21, 22 + ¢1(21), -

21
+dio1(z1, -, 2i-1)) 2 ¢1(z1)
zi+ Gi 1(11, S, 2i1)
+ic1(21,- -, 2) (AB)
where

1/)1'—1(21, T

in1
z) = Z 0di_1(21,- -, 2i1) y

k=1 sz

2p) 2% + (241 + rl21, -, 21)]

k
{kal(zla" )
=1

121, -, 20)}. (AT

Chpose our new function Vi(zy,---,2;) = 2Pz +
> heo 22, we have
i
A BVE(Zly"')zi).
L & Y omE LA,
! kZ=1 8zk
i
= Li—l -+ 22’,,;._121' -+ 22.,; {Z f,-l(zl, e Zi)zl
1=1

+ [z + ¢ilz1, -+, 7))
8¢i—1<217 ) Zi—l)Bw
8251

+
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2 Zi_l) bkw

Opi_1(21,-
+Z sz

ad’z 1 21 sy R 1
D
+ 6z1 E kfk}

(A.8)

Applying triangular inequality, we have

i—1
2213 Zfik(Zh T '1Zk:)zk S
k=1

i—1
?ﬁzngigk(zh ‘ z1)+z szk
¢ k=1
6¢i——1(21,"',2'1 1)
‘ Dipéy <
221, 621 kzzl kgk
P 9 »
1 Oiy 21,"-,27;_1) ) )
% oi Dy | + ) oullék
kz___l Oik ( Oz k ’; Al

922 [3@:—1(21,"',21:—1)8 4

021

i—1
Zd¢i—l(z17"'1zz—l)bk "‘l’bz w S
pard Oz
<()¢1 1(217 Zi~1)B
ﬂ ()Zl

+Zd¢1 lzla"'v

2
zi-1) by, + bi) + Billw|)? (A.9)
()Zk

Substituting these upper bounds into (A.8) yields
Li < Licy 4+ 2z[p(z1, -+ - 2:) + 2ic1 + ¢i(21, -+, 20)]
i—1 »
+ z Q_F,r;zlfrzk + Z Uik”ék‘,H? + [_}7”“]“2
k=1 k=1
where

P21,y 2) 2 l n [(fi(i—-l)(zl""

+Zf1k-(zl’ ) +f71(zl7 ) 1)

P 2
1 (0¢i1(z1, -+, 2i-1)
— D
+ kz=1 Tik ( 0z k

1 6¢77-1(z1y"'72i—1)
* ——( Jz

fi
2
’zi_l)bk + bi)

Opi—1(21,"
+ Z o
is a known smooth function. Following the design given
in Step 1, for i = 2,3,---,n — 1 we choose we choose for
1=2,3,.n—1

72,;) + 1)2

B

(A.10)

(21, 2z) = —zilpim1(z1, -, z) 2+ %],(A.ll)

and for i = n we choose

U= —2y [cpn_l(zl, ey Zn)  Zpoa + %J . (A.12)

Then

Li S.L"’“l + Z;c 12 ;nzkzk + Zk =10ik HEz”
+E;=1 Brllw|?

Note that ¢o(z1,---,2;) is also a smooth function, that
is, it does not contain first order Euclidean norms.

(A.13)

Now we need to show that with the choice of u given in
(A.12), the following condition holds:

T

T
[ e + da)lPat <07 [ fuolde (a14)
JO JO

YT > 0, z(0) = 0,w € R? € £,(0,T).

In terms of z coordinates, we need to show that VT' >
0, 2(0) = 0,w € R € L5(0,T)

T T
/O HC(T(Zn)Hdo(T(Zn))ll2dt<72/0 lw(t)]*dt,(A.15)

where the transformation mapping T is given as follows:

T Zy
T2 BEaR) (A.16)
Iy Z»,,,+¢n(zl,"',z'n,)

Following Lemma 2.1 we know that if we can show that
VZ, € R™*"; &(t) € R** and w € R? € L5(0,T), VT >
0, with (Z,,,w,&:) # 0

Ln+ Zk L eI Brza (DN — 11€x()]1)
HA(T(Za)) + Do(T(Ze)l|2 = 72|10
+ezb(t)z () <0

(A.17)

which also implies that condition (A.15) holds. First we
look the term Ly, by using L; derived in (A.13), it is
easy to show that

L, <——Zk_2zkzk+ L2tz

+E D i 1‘71k“£k“2+2k L Bellwl?

Substituting (A.18) into (A.17), we have

(A.18)

P
1
QZ{P {Azl + ZDkfk + Bﬂu(t) — §BBtP21}

k=1

+i2642321 - % Z Zhzp + ZﬂkllwW
Z {Z k= Tk} “fk”2 + ZT7HE z1( f)”2
(Z

k=1 i=1

H|e(T(Zn)) + Do(T(Zn))wl® ~ 7*|lwl|* < 0 (A.19)
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Applying triangular inequality and the conditions (4.7)
and (4.8) on ||(T(Zn)) + Do(T(Zy))w||* , we have

I(T(Zn)) + Do(T(Zn))w||* <

(1 + )@@ + EEL D@,y

(@ +1)
«

n
<(1+0)>  #ACiCrze +
k=1

| Dow])?
Substituting this upper bound into (A.19) yields

P
1
22§P {Azl + Z Dk&m + Blw(t) — ~2-BBT'PZ1}

k=1
4e , 2 e 2 2 P 9
+5 A - 2[5 - Clz + ZT¢|]E¢Z1('5)H
k=2 i=1
P n
- Z {Tk, - ka} I€xll* + (1 + )2{CiCrza
k=1 =1

. {,YZ _ Zﬁk _ g(%_l_).DZDO} Hw“2 <0 (A.20)
k=1 )

To simplify our argument, we make the following choices:

Z;m = % (A.21)

€ > 2max{C%C%,---,C%} (A.22)

> B = 1 (A.23)
[¢3

k=1

Using the above choices, we have

P
1
224 P {Azl + ‘; Dp&r + Brw(t) - §BBth1}

- P P

O€ 4 2 Tk 2
+32§21 + 2Til|Eﬂl(t)ll - ;1 "2—||£k[[
MD:;DO] wll? < 0

X

+(1+a)2iCiCrz — ['yz -
or we can rewrite it as follows:
M- ¥I-PBB'P PB, PD

Xt BiP N 0
D'P o -1

X <0. (A.24)

where X = [z; w &}t. Clearly, to have (A.24) holds Vz; €
R™ and w € R? € £3(0,T), VT > 0, with X # 0 is
equivalent to having

M~ L1 - PBB'P PB, PD
BiP N 0 <0.
D'P o -1

(A.25)

Apply well-known Schur complements on (A.25) will lead
(4.9), hence we conclude our proof. \avv)
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