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ABSTRACT

In this paper the robust stabilization problem for a class
of systems with both norm-bounded and nonlinear uncer-
tainties will be considered. The nonlinear uncertainty is
assumed to satisfy a matching condition but the norm-
bounded one may not. By generalizing an Hos control
result, we develop a Riccati equation technique for de-
signing state feedback control to globally exponentially
stabilize the system for all admissable uncertainties. This
stabilization result is then extend to static output feed-
back and to systems for which the nonlinear uncertainty
satisfies a generalized matching conditions. Furthermore,
we point out that the global stability in the presence of
nonlinear uncertainty may be destroyed by some arbitrar-
ily small mismatched uncertaintyin the input matrix, and
proceed to establish the region of semi-global exponential
stability of the controlled system.

1. INTRODUCTION

Robust stabilization of nonlinear systems has been an im-
portant research problem in recent years. Its origin can
be traced back to Leitmann’s paper[1] who introduced the
matching conditions and a technique for robust stabiliza-
tion of systems under these conditions. Subsequently, a
great deal of work has been done to study various robust
stabilization issues for matched nonlinearity and uncer-
tainty ; see [2, 3, 4] for example. Most recently, the gener-
alized matching conditions and also known as the triangu-
lar structure has been used to capture a much larger class
of nonlinearity and uncertainties ( see e.g., (5. 6, 7, 8])
along with a back-stepping approach for designing a guar-
anteed state feedback robust stabilizer.

A significant drawback of the aforementioned results is
that the closed-loop system may not very robust against
additional mismatched nonlinearity and/or uncertainty.
Although, there are a number of papers appeared to deal
with mismatched uncertainties (see, e.g., [9, 10, 11]) the
results are not quite satisfactory because the additional
uncertainty is not taken into account in the design of the
controller. That is, the controller is designed based on
the matched uncertainty only and the size of the allow-
able mismatched uncertainty is then calculated depending
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on the robustness margin of the resulting closed-loop sys-
tem. Although, this method may work for linear systems
when the mismatched uncertainty is sufficiently small. It
would fail for nonlinear systems in general. As we will
show that even an arbitrarily small mismatched uncer-
tainty (in certain sense) will cause the closed-loop system
to lose global stability.

In this paper, we consider the robust stabilization prob-
lem for nonlinear systems with both matched and mis-
matched nonlinearities and uncertainties. The matched
nonlinearities are not restricted to be Lipschitz bounded.
In fact, they can be bounded by almost any continuous
nonlinear and time-varying functions. The mismatched
part is allowed to be of large size but restricted to be
Lipschitz bounded (i.e., norm-bounded) and to be in the
autonomous part of the system. We show that this type
of uncertain and nonlinear system can be stabilized via a
fixed state feedback controller in the sense of global expo-
nential stability if and only if the same system with the
norm-bounded uncertainty alone can be robustly stabi-
lized. The latter task can be solved by using a standard
H.,s result [12]. That is, the robust stabilizability of the
system with mismatched norm-bounded uncertainty can
be determined by the solvability of an algebraic Riccati
equation. If the algebraic Riccati equation has a desired
solution then the robust controller can be designed by a
simple procedure.

The aforementioned robust stabilization result is also ex-
tended in two cases. The first extension is to convert
the state feedback controller into a static output feed-
back controller under some additional conditions. The
second extension is to relax the matching conditionsto the
generalized matching conditions by restricting the norm-
bounded uncertainty to a sub-system and a similar result
is provided.

Another related robust stabilization problem of interest
to us is when the control input matrix is subjected to
some mismatched uncertainty. As mentioned earlier, we
will show, via a simple example, that global exponential
stability is impossible to establish even when this addi-
tional mismatched uncertainty has an arbitrarily small
size. Hence, one has to settle for semi-global stability.
We provide an estimate of the size of the semi-global sta-
bility region (in the state space) in terms of the size of the
additional mismatched uncertainty. Furthermore, we use
this estimate to show that the global stability is restored
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when either the mismatched uncertainty in the input ma-
trix completely vanishes, or when it is sufficiently small
and the matched uncertainty or nonlinearity in the au-
tonomous part of the system is Lipschitz bounded.

2. SYSTEM AND PRELIMINARIES

The class of systems to be considered in this paper are
described by the following state equations :
Z: i(t)= (A+ AA(z,t)z(t) + Bf(z, 1)

+ (B + AB(z, t))u(t) (1)

y(t)= Cu(1)

where z € R" is the state, u € ®™ is the input, y € R” is

the control output, A, B and C are known constant matri-

ces with appropriate dimensions, f(z,t) is an m x 1 vec-

tor representing the nonlinear uncertainties in the plant,

AA(z,t) and AB(z,t) are matrix functions representing

uncertainties in the matrix A and B.

The following structure for the uncertainties AA(z,t)and
AB(z,t) will be assumed throughout of this paper:

Assumption 1.

AA(z,t) = DF(z,t)Ey 2)
AB(z,t) = BJ(z,t)E; -
where F(z,t) € R/ and J(z,t) € R™*9 are

Carathéodory matrix functions® bounded by
F(z,)' F(z,t) < £ for some £ > 0 (3)
and
1 (z, ) E2|| < ¥ (4)

max
J(x,t)i(2,t)ER™ xR

for some 0 < ¥ < 1, and D, F; and E; are known real
matrices which characterize the structure of the uncer-
tainties. The nonlinear function f(z,1) is also assumed to
be a Carathéodory function and to satisfy the following
assumption :

Assumption 2. There exists a  positive  scalar
Carathéodory function p(z,1) such that

N (2 Ol < o(z,1); (3, 1) € R” x R (5)
where || - || denotes the Euclidean norm. Also,

lim¢ o p(:,t) < 00,Vz € R™.

The following linear system associated with (1) will be
called the nominal system :

i(z,t) = Az(t) + Bu(t) (6)

1A function V : ® x R” s R is called Carathéodory if : i)
V (-, 2) is Lebesque measureable for each z € R?; i) V(¢,) is con-
tinuous for each t € R; iii) for each compact set U C R x R?P, there
exists a Lebesque integrable function m,(-) such that v, <
my(t) for all (1,2) € U. This type of function is needed primar-
ily for ensuring the existence and continuity of the solution to a
differential equation; see [4] and reference thereof.
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Remark 1. Two special cases of system (1) have been well
studied. If AA(z,t) = 0 or the matrix D in (2) is equal to
B, then we have the so-called matching conditions. It is
well known that an uncertain system with matching con-
ditions can be robustly stabilized via a fixed state feed-
back controller if and only if the nominal system (6) is
stabilizable, see [2, 1] for example. Furthermore, when
f(z,t) = 0, the robust stabilization problem can be solved
by using an H, control method; see [12]. That is, the
robust stabilizability of the system via state feedback is
equivalent to the solvability of an algebraic Riccati equa-
tion. What we intend to do in this paper is to develop a
unified method to treat the general case.

Remark 2. We emphasize that the assumption on
AB(x,t) is not too restrictive because even an arbitrar-
ily small mismatched (i.e., unstructured) uncertainty may
cause the system to lose the global stabilizability, provided
that f(z,t) is not Lipschitz bounded. See Section 4 for
example.

The notion of exponential stability plays an important
role in this paper. The definition of it can be found in
[13]. For our purpose, the following result suffices.

Lemma 1. [13] Given an n-dimensional continuous-time
system

(1) = f(2(8), 1), ™
where f(z(t),t) is a Carathéodory vector function, sup-
pose there exists ¢ Lyapunov function V(z, t) with the fol-
lowing properties:

Mlle®I* < Ve, 1) < Dl ¥(z,1) € R* x R, (8)

Vi, 1) < =Dallz(t)]? + ee™#;¥(z, 1) € R" x R, (9)
where A1,A2,A3,¢ and B are some positive scalar con-
stants. Then, the system (7) is globally exponentially sta-
ble. Furthermore, suppose (9) is replaced by
V(z,1) £ =Xa(1 - a(@))la(®)]]” + ee ™ (10)
for some continuous function a(z) with |e(z)] <
LV|lzlf < €& > 0. Then, system (7) is semi-globally ez-
ponentially stable with the stability region given by M =
{z(t) : izl < &, € R").

Remark 3. [13] The convergence rate of the system (7
with (8)-(9) is given as follows:

2 2,-A | e, ~At]h

L@ + e
ifB =2,

[#hl7e + sige™

Hz(ll < (11)

- svime™]
fB# A,

where A = %‘
2




3. MAIN RESULTS

In this section, we present a state feedback stabilization
result for the system (1) under Assumptions 2.1-2.2. This
result will then be extended to static output feedback un-
der additional assumptions, and to systems with gener-
nalized matching conditions.

3.1. State feedback

Given the system () in (1), we are searching for a state
feedback stabilizer of the following form:

u(t) = ¢e(z, 1), (12)

where ¢c(z,t) is a Carathéodory function. We now state
our main result:

Theorem 2. The system (T) satisfying Assumptions 2.1-
2.2 is globally ezponentially stabilizable via a nonlinear
state feedback controller (12) if and only if there exists
€ > 0 and a positive definite symmetric matrix Qen™
such that the following algebraic Riccati equation

%{A‘P+PA+£EPDD'P—2PBB‘P (13)
+ %Ei El} +Q=0

has a positive definite symmetric solution P. If this is the

case, then a suitable stabilizing control law s given by

1
u(t) = —KI(i) - -(1—_—7)‘¢¢(I,t), (14)
where
K=B'P {15)
B*Px(p(z,!) + 1|B* Px)? 6

c 1t =
¢<(2:) = T5 P (p(s, 1) + 7B Pzll) + e 7
B and ¢* are any positive scalars.

Proof. The necessity follows from the fact that robust
stabilization via nonlinear state feedback controller imn-
plies robust stabilization via a linear state feedback con-
troller [14]. To prove the sufficiency, we let V(z) = %z'Pm
be a Lyapunov candidate for system (T) with (14). The
upper and lower bounds in (8) on V' (z) are given by
A = %:\min[P] and A2 = %Amu[P]. The time derivative
of V(z(t)) along (X) is given by
V(z(t)) = z'P(A+DF(t)Ey~BK)z

- 11,1 ' PB¢c(z,1)
—ﬁ—}_ﬁx‘PBJ(:c,t)tquSc(z,i)
' PB[f(t,z) + J(z, )1 E2 K'z]

(17)

Using the triangular inequality

+*PDF(z,0)Erz < =z'{e€PDD'P + %E,’E. }z

o=

(18)
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for any z € R and € > 0. Then, we obtain

V(z(t)) < Liz'[A'P+PAlz+3e6PDD'Pz
+ -;—x‘E{Elx ~z*PBB'Px

+ 2 PB[f(z,t) + J(z,t) E2 K1)
- U—L’-)-x'PBFJ(z,t)Ez%(:c,t)

— 111 z*PBo(z,1)

(19

Then by using (13) , we have

Viz(t)) <

+*PB[f(z,1) + J(z,t) B2 K]
- ﬁ#jz'PBJ(z,t)Eg¢c(z,t)
- o= 2 PBé.(z,t) - °Qz(1).

(20)

Consider the last two terms of (20). Using the bound on
J{z,1)E; given in (4), we have the following inequality

ﬁz'Pquc(z,t) + (1—_1_;51:'PBJ(z,t)Eg¢c(:c,t)
L s PB(I + J(z, ) Ea)e(, 1)
> 2! PBée(z, 1)

(1)

This leads to the following result:

V(z(t)) < +z'PBf(z,1) + J(z, ) B2 K — $c(z, )]
— z'Qx(1). (22)

Then, utilizing (16), we have

Viz(t)) < =z'(0)Qz(d)IB'Pz|l(p(z,t) + vI|K=ll)
___{l1B'Pali(e(=,1) + 1l K=z}
1Bt Pxl[(p(z, 1) + 1K z|]) + €*e="*
_  _lIB'Pzfi(p(z,1) + 2 Kzll)e"e”?
1Bt Pli(p(z. 2) + MK =) + e*e=
- z'(t)Qz(t) (23)
< —z'Qz+ee”. (249)

Therefore, {S) is globally exponentially stabilized, accord-
ing to Lemma 2.1.

wv

Remark 4. We note that Theorem 3.1 is a generalization
of some known results. More precisely, when J(z,t) and
f(z,t) in (T) are set to zero, our result will reduce to a
result by Petersen [15]. Also Dawson, Qu and Carroll’s
result [16] will follow by setting F(z,t) and J(z,¢) in (X)
to be zero.

3.2. Static output feedback

In certain applications it is more desirable to use output
feedback control rather than state feedback. The output
feedback control problem for nonlinear uncertain systems
is very difficult to solve in general, because observers are
hard to construct. It is, however, simple to extend the
state feedback stabilization result in Theorem 3.1 to the
static output feedback under some additional conditions.



Assumption 3. There exists a positive  scalar
Carathéodory function
p(y,!) 2 Ilf(z,t)ll, Y(z,t) € R" x R, (25)

where y = Cz as in (1).

Now, we state our static output feedback stabilization re-
sult :

Corollary 1. The system (L) satisfying Assumptions 2.1
and 3.1 is globally ezponentially stabilizable via @ nonlin-
car and time-invariant stalic output Jeedback controller, if
and only if there erists ¢ > 0, positive-definite symmelric
matriz Q € R"*" and a constant matriz H € R™*P such
that the following algebraic Riccati equation

${A'P 4+ PA+ ¢PDD'P - 2PBB'P

9
+%€EfE1}+Q=0 (26)

has a positive definite symmetric solution P which salis-
fies the following constraint:

B‘'P=HC. (27)

In this case, a suitable stabilizing control law is given by

! 2
u(t) = —Hy(t) - m‘ﬁc(y, t), (28)
where
be(v,t) = Hy(p(y, t) + || Hyl)) (29)

WHyll(e(y, t) + VI Hyll) + e*e=Fr,
B and ¢* are any positive scalars.

3.3. Extension to Generalized Matching Condi-
tions

This section extends the main result in Section 3.1 to
a more general class of nonlinear uncertain systems,
namely nonlinear systems satisfying the so-called gener-
alized matching conditions [5]. These systems are of the
following form:

1 = fi(z1,t) + g1 (z1, 72, 0) (30)
2 = Jfa(z1,72,8) + g2(21, 72,73, 1) (31)
Em = f,,.(z,,...,r,,.,t)+y,,,(z:1....,1m,u,t) (32)

where, for simplicity, zi(t) € R,g:() : N2 — R are
continuous functions satisfying

z.—+1g((t],...,z.'+1,t) > 7gz?+,,V2:1,....zi+1,t € N,

for some constants ¥, > 0, filzi,...,zi,t) are
Carathéodory functions with similar boundes as flx,t)in
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Assumption 2.2. This system can be stabilized by using
a recursive design procedure called backstepping method
(5. 7). The first step of this method involves the sta-
bilization of (30) by using z, as a fictitious control in-
put. Denoting the control law by z, = ¢1(z1,1), a co-
ordinate transformation is then carried out : z, = z,
z2 = z2—¢1(21,1), and equation (31) is rewritten in terms
of

Z = fz(zl,zz,t)+§2(Z1,22,13,1). (33)
Now the same procedure above is applied to (33). That
is, 3 is used as a ficitious control input and a control law
is designed to globally exponentially stabilizes (33). The
design will be completed when the above recursive proce-
dure reaches u(t) and a stabilizing control law is found. It
is known [5, 7] that the system (30)-(32) is globally expo-
nentially stabilizable under some very mild assumptions.

In this sub-section, we further generalize the generalized
matching conditions to allow the following type of sys-
tems:

g1 = (A+ AA(z1,1)z1 + Bf(ny,1)

+ (B + AB(z1,1))z2 (34)
&2 = fo(z1,22,1) + g2(21, T2, T3, 1) (35)
F—— fm(-'tlw«-,zm;t)+9m(zly~--yzm,“:t) (36)

where z:(1) is allowed to be a vector and AA(z1,1),
AB(z1,t) and f(x1,t) are as in section 3.1, and the rest
of the system is same as in (30)-(32).

Now, the design procedure is very similar to the one for
the system (30)-(32), except that in the first step of de-
sign Theorem 3.1 is applied. It is not difficult to see that
as long as the algberaic Riccati equation (13) has a solu-
tion, then the generalized system (34)-(36) can be globally
exponentially stabilized in the same way as for (30)-(32).

We finally point out that the conditions for the system
{30)-(32) can be relaxed [5]. For example, z; can be al-
lowed to be multi-dimensional to some extend, and weaker
conditions on g(-) are also allowed. In these cases, our
generalization still applies.

4. ROBUSTNESS ANALYSIS OF THE
CLOSED-LOOP SYSTEM

The purpose of this section is to analyze the robustness
of the closed loop system (£) with (14) or (28). We first
show via an example that the global stability of the closed-
loop system is very fragile in the sense that it may be de-
stroyed with a slight additional perturbation in the input
matrix. This nonrobustness property is due to the pres-
ence of nonlinear f(z,1), i.e is not only for the controllers
given in Section 3, but for a large class of stabilizing con-
trollers. Based on this observation, we derive a robustness
analysis result which gives a relationship between the size
of additional uncertainty(in certain sense) and size of a
guaranteed semi-global stability region of the perturbed
system.



4.1. Nonrobustness of Global Exponential Sta-

bility
Consider the following simple example :

£1(2)
z2(t)

= z2(t) — 6u(t) (37)
= zi(t) + 23 (1) + u(t)

where § is a constant to be specified. When § = 0, the
system (37) satisfies the matching conditions (i.e., As-
sumption 2.1), and therefore is globally stabilizable. We
claim that the system (37) is not globally stabilizable
when 6 # 0. Indeed, define

2(t) = z1(t) + 6z2(t) (38)
then we have
(1) = za(t) + 623 (1) + b3 (2). (39)

Without loss of generality, we assume & > 0 (otherwise,
we can change the sign of u). Choose the initial condition
£1(0) and z2(0) such that

2(0) = 672, 22(0) + 623(0) + 623(0) > 0. (40)

Then, we argue that Z(f) > 0 V¢ > 0. Indeed, from (39)
and (40) it is obvious that 7(0) > 0. Let, on the contrary,
to > 0 be the least time at which #(t,) = 0. Then, (39)
implies that

—67! < z2(t0) < 0

and in this case,

. 5!
#(to) > -3 + 623 (to).

Note that
r1(te) = z(to) — 8z2(1o)
> z(te) 2 2(0) =871
Hence,
. 5! - 36!
Z(to)Z—T+6 l_—4—>0

contradicting the assumption z(t,) = 0. That is, () >0
¥t > 0 and the system(37) is not globally stabilizable.

We emphasize that the loss of global stabilizability above
holds for arbitrarily sufficiently small |6] and this phe-
nomenon actually exists for a large class of systems.
4.2. Estimate of Semi-global Exponential stabil-
ity Bound

Consider the robust controller (12) for the system (X)
with an additional uncertainty in the input matrix satis-
fying the following assumption:
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Assumption 4.

ABy(z,t) = DuFu(z,t)Ey and ||Fu(z, )| S, (41)

where, D, and E, are matrices representing the structure
of the additional uncertainty.

The time derivative of the Lyapunov function V{z) =
z' Pz along the trajectory or trajectories of the system
(Z) will be given by (see (24))

Viz(t) = -='PABu(z )G )¢c(=(t)) tete™
— ' PABy(z, ) Kz = Asllz|? (42)

Due to Assumption 4, Eq.(42) can be rewritten as
V(z(t) < =dallz|l® + '™ +nr(z, 1), (43)
where,

(e, 0) = I PDUIEN(EEE) + K62, (44)
Rewriting it in a more compact form, we get

V(z(t)) € =2s(1 = Mha(z, W@ +e'e™™,  (45)
where

Az, t) = '\(m), (46)

Note that the term ¢*e~?* can be chosen to be uniformly
arbitrarily small. According to Lemma 2.1, the exponen-
tial stability region of the system can be determined by
the function Au(z,t) in (45). This is summarized in the
following result:

Theorem 3. Suppose the system (1) satisfying Assump-
tions 2.1-2.2 is globally ezponentially stabilized via the
stabilizing control law (18)-(15) in Theorem 3.1. Also
suppose the system’s input matriz is subject to an addi-
tional uncertainty given by (41). Then for any £ > 0,
= {z:||lzll € £:z € R} is a region of semi-global
exponential stability of the closed-loop system if

7 < A7 (z,1),Yz € M,V >0 47

provided that ¢* and B are chosen to be sufficiently small.

Remark 5. The function Au(z,t) in (46) is unbounded in
general, hence, no global exponential stability is guaran-
teed by (45) for the system (I), except for two special
cases. The first case is obvious: 5 = 0; i.e, the unmod-
elled uncertainty A B, (z,t) disappears completely. In this
case, (45) recovers (24). The second case is if p(z,t) is
Lipschitz bounded then it is straightforward to see from
(44) and (46) that ||Au(z, t)|| is uniformly bounded. Thus,
the global exponential stability of the system (X) is estab-
lished by (45) as long as

0 < g <min{A;'(z,1): (z,t) € R" x R}. (48)



5. CONCLUSION

In this paper, we have solved a robust stabilization prob-
lem for systems with both norm bounded and nonlinear
uncertainties. We have presented a state feedback con-
troller design technique to globally exponentially stabilize
the system. In a special case, the state feedback controller
can be implemented via static output feedback. We have
further analyzed the robustness of the controller in the
presence of some unmodelled uncertainty which causes a
possible loss of global exponential stability. Consequently,
some estimate of the region of semi-global exponential sta-
bility in the state space is provided.
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