544

Consider the general case where the zeros are to be restricted in p

regions D, i = 1, -+, p where D; C {D,,, D} in a given fashion. Let
dy;i=1,+,p;j=1," -, k; be the shortest distances from ¢ in (1) to
each of the surfaces defined by the boundaries of D;, i = 1, -+, p.

We now state a general theorem for the polynomial P(z) with
perturbation Ar where all the zeros of P(z) lie within or on the regions D;
in a given fashion.

Theorem 2: The largest hypersphere Hj centered at ¢+ € D, and
containing polynomials whose zeros lie within or on the regions D,, i =

1, --+, pin a given fashion has a radius R given by
Ri=min {d};i=1, -+, p;j=1, -, k}.
Proof: The proof is geometrically obvious because the hypersphere
of radius R is contained within those of radii dfj; i=1,-,p;j=1,
-, ki

III. AN EXAMPLE
To provide an illustration of the approach. consider the polynomial

P(z)=2%+482%+ 75227+ 44802 + 12800 (6)

which has two zeros in the region D, C D where f(x, y?) = (x + 20)2 +
y? = 25 and two zeros in the regions D, C D,, where f(x, y) = (x + 4)
+ y> = 1and @ = 4. Find the maximum allowable perturbation Az,
which confines the zeros of (6) to be in D) and D, as specified above. In
accordance with Theorem 2, we find the shortest distance to the
hyperplane defined by P(— 15) [2], that is

3 =1.02.

Similarly, the shortest distance to the hyperplane defined by P(—25) [2]
is given by

d3,=0.53.

The shortest distance to the hypersurface defined by the movement of
zeros on the boundary of D, is obtained by numerical minimization [2].
where E;; = x2 + 25 — (x + 20)2and x € (—25, —15), that is

di,=0.72.

Finally, the shortest distance to the hypersurface defined by the movement
of zeros on the boundaries D, is again obtained numerically as given by
Theorem 1. In this case we need to consider two minimizations, that is

E;=x"+(4+ (1 (x+4)Y)' )?
and

EL=x'+(4—(1-(x+42)'2)?
where

X € (-5, -3)

The shortest distance is then given by the smaller
minimizations, that is

magnitude of these

Using Theorem 2

At! - At,=min {1.02, 0.53, 0.72, 105.95} = 0.53.

m
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Polytopes of Polynomials with Zeros in a Prescribed Set
MINYUE FU AND B. ROSS BARMISH

Abstract—In Bartlett, Hollot, and Lin [2], a fundamental result is
established on the zero locations of a family of polynomials. It is shown
that the zeros of a polytope P of nth-order real polynomials are contained
in a simply connected set D if and only if the zeros of all polynomials
along the edges of P are contained in D. This note is motivated by the fact
that the requirement of simple connectedness of ) may be too restrictive
in applications such as dominant pole assignment and filter design where
the separation of zeros is required. In this note, we extend the ‘‘edge
criterion’” in [2] to handle any set D whose complement D¢ has the
following property: every point d € D¢ lies on some continuous path
which remains within D¢ and is unbounded. This requirement is typically
verified by inspection and allows for a large class of disconnected sets. We
also allow for polynomials with complex coefficients.

1. INTRODUCTION

In this note we address a special case of the following problem. Given a
family of nth-order polynomials P (real or complex) and a set D in the
complex plane, determine whether all polynomials p(s) in P have all their
zeros interior to D. When this is the case, P is said to be D-stable. A first
seminal result on this problem is given in a paper by Kharitonov [1] for
the special case when P corresponds to a family of real interval
polynomials and D is the left-half plane. More precisely, bounding
intervals {c;, ;] are specified a priori and polynomials p(s) € P are of
the form

p(s)=s"+a;s" '+ - +a, s+a,

with @; € |y, B;) for i = 1,2, -+, n. Subsequently, Kharitonov's
theorem indicates that D-stability of only four extreme polynomials
(generated using the ; and §;) are sufficient to guarantee the D-stability
of P.

From a system theoretic point of view. there are two fundamental
limitations of Kharitonov's theorem. The first fundamental limitation
stems from the assumption that D is the left-half plane. Hence, the result
does not apply to discrete-time systems where D is the open unit disk or
to problems where specifications on pole locations must be satisfied. For
example. for a so-called dominant pole location problem, it is desirable to
have two closed-loop poles within some prescribed e-neighborhoods of a
giventargeta + j8 (a < 0) with the remaining poles having real part less
than some specified o < a. A second example is the Butterworth filtering
problem where the set of ideal poles should be uniformly distributed on
the circle with radius w. where w, is the cutoff frequency of the filter. In
view of the fact that variations in the filter parameters may lead to
perturbations in the pole locations, the following robustness problem is of
interest. Given a prescribed e > 0 and a range of variations for the filter
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parameters, determine if the poles of the perturbed filter stay within the -
neighborhoods of their ideal locations.

The second fundamental limitation of Kharitonov's theorem stems from
the assumption that coefficients vary within prescribed intervals [«;, 8;].
This assumption is tantamount to ‘‘independence’’ between coefficient
variations and is rarely met in practice. For example, in a mechanical
system, perturbations in a coefficient of friction typically enter into more
than one coefficient in the transfer function of the system.

An important result aimed at overcoming the limitations of Khari-

>

K(9) Im (s") Re(s") Im(s" 1)

tonov’s theorem is given in Bartlett, Hollot, and Lin [2]. These authors
take D to be simply connected and allow for linearly dependent
coefficient perturbations by taking P to be a polytope of real nth-order
monic polynomials. That is, they consider a polytope of monic nth-order
polynomials P generated by polynomials py(s), p(s), - - -, p.(s). Hence,
P is described by

P= {p(s)=2 rpis) T 3 =1 n20,i=1,2, -, m} . (1)

i=1 i=1

Subsequently, it is shown that P is D-stable if and only if all edges of P
are D-stable. Hence, to determine if P is D-stable, it suffices to show
that rp;(s) + (1 — r)p;(s) is D-stable for all i, j € {1, 2, -+ -, m} and all
r € [0, 1]. This result is further refined (see, for example, [3] and [4])
where it is shown that the r-sweep associated with the D-stability test
above can be replaced by a ‘‘one-shot’’ test if D is the open_ left-half
plane.

The main motivation for this note is derived from the fact that the
assumption of simple connectedness of D might be too restrictive in many
applications. Recalling the examples (dominant pole specification and
Butterworth filter design) given above, notice that although D violates the
simple connectedness requirement in [2], its complement D¢ satisfies the
following condition: through every point D¢, there is an unbounded
continuous path which remains within D¢. More precisely, we say that D¢
is pathwise connected on the Riemann sphere. This will be the
fundamental property of D which we exploit in the derivation of our main
result. Indeed, we extend the *“edge criterion”” in [2] to accommodate this
class of D-sets. For examples of practical interest, it is not hard to see that
simple connectedness of D implies pathwise connectedness of D¢ on the
Riemann sphere; i.e., this theory not only handles disconnected sets but
also those considered in [2]. Other (perhaps less important) differences
between this paper and [2] are that we do not require the generating
polynomials py(s) for P to be monic and that we allow for polynomials
with complex coefficients.

II. PRELIMINARY NOTATION
A complex nth-order polynomial p(s) is described by

p(s)=aps"+ays" '+ - +a,; a,#0 Q.1

with @; = a; + jB;; oy and 3; € R. We denote the coefficient vector of
p(s) by
ay Bal”.

p=lao Boay By - 2.2)

Given a polytope of nth-order polynomials P (not necessarily monic, with
n = 1) generated by pi(s), pa(s), **+, pm(s), we denote the set of
coefficients by

P={E npii 3, n=1; r,zo,i:I,z,--~,m} (2.3)
i=1 i=1

where p; is the coefficient vector for p;(s). Note that if P is a polytope of
real polynomials, then P is nth order if and only if all the generating
polynomials p;(s) are nth order with the same sign of their highest order

Re(s") —Im(s") Re(s"') —Im(s"')---Re(s) —Im(s) 1 O
Re (s" ') -+ Im (s)
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coefficients. In general. a polytope of polynomials P is nth order if and
only if the highest order coefficients of all the generating polynomials
Ppi(s) stay within any half plane which does not include the origin. We
denote the affine hull of P by aff (P). We call s a zero of P if s is a zero of
some polynomial p(s) € P. Equivalently, there exists some p € P such
that

K(s)p=0

where

2x2An~1)
Re(s) 0 1] €R . (2.4)

III. MAIN RESULT

Theorem 3.1: Consider a polytope of nth-order (real or complex)
polynomials P and a set D in the complex plane such that D¢ is
pathwise connected on the Riemann sphere. Then, P is D-stable if
and only if the edges of P are D-stable.

Proof: Throughout the proof we use £(Q) to denote the edges of a
polytope €.

{Necessity): Suppose P is D-stable. Then it follows trivially that £(P)
is D-stable because E(P) is a subset of P.

(Sufficiency): We assume that E (P) is D-stable and must show that P
is D-stable. First, we dispose with the trivial case when dim aff P) =1
because E(P) = P in this situation. Hence, we assume dim aff P) =2
and proceed by contradiction. Indeed, assume that P is not D-stable.
Then, there exists some p € P and some o € D¢ such that

K(a)p=0. 3.1

To obtain the desired contradiction, we need to show that there exists
some ¢ € E(P) and some 8 € D¢ such that

K(B)g=0. (3.2)

To this end, we consider two cases. In Case 1, we assume dim aff (P) =
2. Subsequently, for the case when dim aff (P) > 2, we argue that the
proof can be reduced to Case 1.

Case 1: dim aff (P) = 2. First we express aff (P) as

aff(P)={p+Ax:x € R}

for some appropriate 2(n + 1) x 2 dimensional matrix 4. We now
consider two subcases.

Subcase 1A: rank (K()A4) = 1. Notice that the set of coefficients of
polynomials associated with aff (P) having « as a zero is

P.={p+Ax: K(a)(p+Ax)=0; x € R?}
={p+Ax: K(a)Ax=0; x € R?}.
Furthermore, P, is contained in aff (P) and since P, has dimension 1 or
2, it follows that P, intersects E(P). Choosing ¢ € P, N E(P), we
obtain the desired contradiction with 8 = «.

Subcase 1B: rank (K(a)A) = 2. Now, since D¢ is pathwise connected
on the Riemann sphere, there exists some unbounded continuous path T' in
D¢ passing through «. Furthermore, by compactness of P, there must
exist some y € T which is not a zero of any polynomial in P. Now let

J():[0, 1] = T be a continuous function associated with the segment of I
between « and v, i.e., f(0) = « and f(1) = v. Furthermore, we define

N £ sup {\ € [0, 1] rank (K(f({)A)=2 forall { € [0, \)}.
By definition of A\*, the equation
K(fO\)(p+Ax)=0
has a unique solution

= =IK(fONAI'K(f\)p
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for all A € [0, A*). This solution generates a continuous path in aff (P)
described by

P=p+Axy, N €10, N¥).
There are two possibilities. The first possibility is that p. & P for some ¢
€ (0, N*). In this situation, there must exist some 6 € [0, {) such that p;
€ E(P). Hence, we obtain the desired contradiction with ¢ = p; and 8
= f(3).

The second possibility is that p, € P for all A € [0, A*). By
compactness of P and continuity of p,, there must exist some sequence
{\,} in [0, X*) converging to N\* and some p* € P such that

p*=1lim p, .
Ao

Furthermore, we have

K(/(M*)p*=0 (3.3)

because

K(fp*=lim K(f(\))p,

and
K(f(A)pr,=0

for each n. Since f(1) = v is not a zero of any polynomial in P, (3.3)
implies that A* < 1. In view of the openness of the set of nonsingular
matrices and the fact that A* < 1, it follows that the supremum in the
definition of A* is not achievable. Hence,

rank (K(f(AM*)A)=<1.

Now, by repeating the analysis used in Subcase 1A [withp = p*and o =
S(N9)], we obtain some ¢ € E(P) and 3 € D¢ such that K(8)g = 0.

Case 2: dim aff (P) = r > 2. In view of Case 1, it suffices to prove the
following: there exists an (r — 1)-dimensional face F of P, some f € F,
and some y € D¢ such that

K(y)f=0.

Once F and f are found, it is apparent that this argument can be repeated
(note F is a polytope) until we obtain a two-dimensional face of P
containing the coefficient vector for a polynomial which is not D-stable.
Then Case 1 applies. Indeed, let P denote any two-dimensional affine set
passing through p and notice that

PLpPnyp

is a subpolytope of P of dimension 2 containing p. Hence, from Case 1, it
follows that there exists some f € E(P’) and some y € D¢ such that
K(y)f = 0. The proof is completed by noting that E(P"’) is contained in
some (r — 1)-dimensional face F of P. a

1V. CONCLUSION

The next step in this line of research is to develop stability criteria for a
more general family of polynomials. The polytopic assumption on P
clearly restricts the class of physical perturbations which can be handled.
Another important point to note is that the edge criterion given here does
not easily degenerate into Kharitonov’s theorem for the special case when
the polytope corresponds to a family of real interval polynomials, i.e., in
this special case, it is not obvious (from the theory given here) why it
suffices to test four polynomials in lieu of all the edges. This leaves open
the possibility that for polytopes of polynomials, there is some alternative
to the edge criterion which specializes to Kharitonov’s theorem in the
“‘correct manner.”’ Besides having aesthetic appeal, such an alternative
would be desirable for two reasons. First, as the number of extreme points
of P increases, one might be able to avoid the **combinatoric explosion™
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in computation associated with checking stability of all convex combina-
tions of extreme points taken two at a time. Second, such an alternative
for the polytopic case might suggest approaches to stability analysis for
more general families of polynomials.
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Strict Aperiodic Property of Polynomials with Perturbed
Coefficients

C. B. SOH anp C. S. BERGER

Abstract—Let a family of polynomials be P(s) = tos® + £;5" ' + -+
+ t,where 0 < g; < t; < b;. Recently, Kharitonov [2] derived a necessary
and sufficient condition for (1) to have only zeros in the open left-half
plane. This note derives some similar results for (1) to be strictly aperiodic
(distinct real roots).

1. INTRODUCTION

Consider the characteristic polynomial of a linear continuous-time
system

P(s)=1s"+ ;5" '+ +1, (1)
or the characteristic polynomial of a linear discrete-time system
Q@) =62"+0 (= D'z 4 (= 1) 03]

where
tT=[t, - t,).

The real vector ¢ can be represented by a point in (7 + 1)-dimensional
Euclidean space. The polynomial (1) is said to be asymptotically stable if
its zeros lie in the open left-half complex plane. Let G” be the set of all
asymptotically stable polynomials [of the form (1)] of order n. Denote by
S” the set of all polynomials (1) and (2), satisfyingo; < 1, < f3,,i = 0,
++, n and let ST be the family of polynomials in S” in which each
coefficient (£;) is equal to either «; or ;. Recently, Kharitonov [2] has
proved the following theorem.
Theorem 1: In order that S” C G”, it is necessary and sufficient that §7
C Gn.
This note derives some similar results for $” to be strictly aperiodic.
The problem of aperiodicity arises in obtaining a response that has no
oscillations or that has oscillations of a finite number only. It is customary
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