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H,, Control and Quadratic Stabilization of Systems
with Parameter Uncertainty Via Output Feedback

Lihua Xie, Minyue Fu, and Carlos E. de Souza

Abstract—This note focuses on linear systems which are subject to
both #i ying norm-bounded par uncertainty and exogenous
disturbance, and addresses the following robust H_ control problem:
designing a linear d output feedback controller such that the
closed-loop system is quadratically stable and achieves a prescribed
leve! of disturbance attenuation for all admissible parameter uncertain-
ties. It is shown that such a problem is equivalent to a scaled H, control
problem.

1. INTRODUCTION

The last decade has witnessed significant advances in the H,
control theory; see [5]-[8], [13], [15], and the references therein.
It is a well-known fact that H,. control is closely associated with
many robustness problems such as sensitivity minimization [20]
and stabilization of uncertain systems [8], [9], [12]. However,
when there is parameter uncertainty in plant modelings, no
robust behavior on H, performance along with stability can be
guaranteed by the standard H, control method. To date, little
attention has been paid to designing H., controllers which would
be robust against time-varying real parameter uncertainty in the
controlled system.

Stabilization of systems with parameter uncertainty is one of
the most vital subjects in control research. Among various tech-
niques for robust stabilization (e.g., [9], [12], [17]), the so-called
quadratic stabilization theory (1], [8], [10], [12], [14] seems to be
most effective in dealing with time-varying parameter uncer-
tainty. The problem of quadratic stabilization is to find a feed-
back controller such that the closed-loop system is stable with a
fixed (uncertainty-independent) Lyapunov function. This prob-
lem was initially proposed in [10] to study the control of uncer-
tain systems satisfying the so-called “matching conditions.” Since
then, numerous results have been reported in the literature,
including a necessary and sufficient condition given in [1] for
quadratic stabilizability via nonlinear state feedback control and
the Riccati equation approach proposed in [14]. Recently, it was
remarkably shown in [8] that a certain type of quadratic stabi-
lization problem is essentially an H, control problem. Similar
results for discrete-time systems can be found in [12]. Despite
the richness of the existing results on quadratic stabilization, no
guarantee on system performance, such as disturbance attenua-
tion, can be offered along with stability, even for the “nominal
system.”

In attempting to further bridge the gap between H,. control
and robust stabilization, we in this note consider linear systems
subject to both time-varying parameter uncertainty of a certain
type (as in the robust stabilization case) and input disturbance
(as in the H, control case). The problem addressed is to design a
linear dynamic output feedback controller such that the closed-loop
system is quadratically stable and achieves a prescribed level of
disturbance attenuation. Since this problem involves the notions
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of both robust stabilization and H, control, we refer to it as
robust H,, control; see Section 11 for its precise definition. Such a
problem in the linear state feedback setting has been completely
solved in [18], [19] by using a Riccati equation approach. In the
case of output feedback, sufficient conditions for designing ro-
bust H,. controllers with a fixed order have been derived in [11],
while [16] has developed H,. controllers for systems with uncer-
tainty in the state matrix only. The focal point of this note is the
linear dynamic output feedback and we consider uncertain sys-
tems with parameter uncertainties appearing in all the state,
input, and output matrices. It should be noted that a similar
robust H, control problem for complex uncertainties has been
tackled in [3], [4] and the so-called u-synthesis method has been
developed which employs the structured singular value and the
H, control techniques to search for a suitable controller. The
result in this note can be viewed as an analogy of those in [4] for
time-varying parameter uncertainties. However, due to the fact
that time-varying uncertainty is considered in this note, a dif-
ferent machinery based on Riccati equations is used rather than
a transfer function approach.

Our first main result establishes an interconnection between:
i) a robust H,, control problem; and ii) a scaled H,. control for a
system without parameter uncertainty, thus allowing us to solve
the robust H, control problem via existing H, control tech-
niques. As a special case, the problem of quadratic stabilization
via linear dynamic output feedback control is shown to be equiva-
lent to a standard H,, control problem, which slightly generalizes
a result in [8] to systems with more general uncertainty struc-
ture.

11. PROBLEM STATEMENT AND DEFINITIONS

Consider the class of uncertain linear systems described by
state-space models of the form

(%))

)2(1:) =[A4+ AA]x(t) + Byw(t) + [B, + AB(t)]u(t)
(2.1a)

2(t) = C,x(t) + Dy u(t) (2.1b)

y(t) = [Cy + AC(D)]x(¢) + Dyw (1) + [ Dy + AD(8)Ju(t)
(2.1¢)

where x(¢) € R” is the state, u(¢t) € R™ is the control input,
w(t) € R is the disturbance input, y(¢+) € R” is the measured
output, z(t) € R” is the controlled output, 4, By, B,, C;, G,
D,,, D, and D,, are real constant matrices of appropriate
dimensions that describe the nominal system, and A A(-), AB("),
AC(-), and AD(-) are real-valued matrix functions representing
time-varying parameter uncertainties. The parameter uncertain-
ties considered here are norm-bounded and of the form

AAC) ABC)| _|H:

[AC(-) AD(") ~ | H, FOE, E] (2.2)
where H, € R"*/, H, € R™i E, € R/*", and E, € R/*™ are
known constant matrices and F(1) € R/ is an unknown matrix
function satisfying

FT(1)F(1) < 0!I (23)

with the elements of F(-) being Lebesgue measurable and ¢ > 0
a given constant. In the above, the superscript “7” denotes the
transpose.
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This note addresses the problem of designing a linear dynamic
output feedback controller for the system (2.1) such that the
closed-loop system is quadratically stable and achieves a pre-
scribed level of disturbance attenuation in the H.-norm sense
for all admissible uncertainties which satisfy (2.3). We will also
discuss the problem of quadratic stabilization of system (2.1) via
linear dynamic output feedback.

To motivate the technique used in this note, we will first recall
the notions of quadratic stability and disturbance attenuation
and some related results.

Let us consider the following system simplified from (2.1):

(=,): #(t) = Ax(t) + Bw(t) (2.4a)
2(1) = Cyx(1). (2.4b)

Definition 2.1 [13]: Given a scalar y > 0, the system (2.4) is
said to be stable with disturbance attenuation v if it satisfies the
following conditions:

i) A is a stable matrix; and

ii) the transfer function from disturbance w to controlled
output z satisfies

le st —a) "B, < y. a)

Lemma 2.1 (See [8] for Proof): Let y > 0 be given. The system
(2.4) is stable with disturbance attenuation 7y if and only if there
exists a symmetric matrix P > 0 such that

AP + PA + y ?PB,BTP + CIC, <. (2.5)
vvyv
When there is parameter uncertainty A A(¢) in the state matrix

of (2.4), the system reads
(Z5): (1) =[A+ AA()]x(t) + Bw(r) (2.6a)
2(t) = Cyx(1). (2.6b)

Definition 2.2 [1]: The system (2.6) is said to be quadratically
stable if there exists a positive definite symmetric matrix P such
that for all admissible uncertainty A A(-)

[A+AA] P+ P[A+AA()] <0. 2.7)

Similarly, the uncertain system (2.1) is said to be quadratically
stabilizable via linear dynamic output feedback if there exists a
linear dynamic output feedback compensator K(s) such that
with u = K(s)y the resulting closed-loop system is quadratically
stable. 0

Remark 2.1: Note that quadratic stability implies uniformly
asymptotic stability for all admissible A A(-). However, it is a
conservative notion for robust stability since a fixed P matrix is
required which results in a fixed Lyapunov function V(x) = x"Px
for all uncertainties A A(-). Nevertheless, the simplicity of this
notion has been proven to be an effective means to deal with
time-varying uncertainty [1], [8], [10], [12], [14]. a

In order to guarantee an H, performance of (2.6) for all
admissible parameter uncertainties, we adopt the technique used
in quadratic stability, i.e., we incorporate A A(-) in (2.5). This
leads to the notion of quadratic stability with disturbance attenua-
tion.

Definition 2.3 [19]: Given a scalar y > 0, the system (2.6) is
said to be quadratically stable with disturbance attenuation vy if
there exists a symmetric positive-definite matrix P such that for
all admissible uncertainty A A(:)

[A+AAD)]) P+ P[A+AA()]
+ y 2PB,BTP + CIC, < 0. (2.8)
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Similarly, given a scalar y > 0, the uncertain system (2.1) is said
to be quadratically stabilizable with disturbance attenuation y via
linear dynamic output feedback if there exists a linear dynamic
output feedback compensator K(s) such that with u = K(s)y
the resulting closed-loop system is quadratically stable with
disturbance attenuation vy. m}

The notion of quadratic stability with disturbance attenuation
implies the following result. (The proof is similar to that of [19,
lemma 2.1] and thus is omitted.)

Lemma 2.2: Suppose the system (2.6) is quadratically stable
with disturbance attenuation <y > 0. Then, this system is
quadratically stable. Moreover, with zero-initial condition for
x(1), llzll2 < ylwll> for all admissible uncertainty A A(-) and all
nonzero w € L,[0, =), where |||, denotes the usual L,[0,%)-
norm. vVVvvVv

Remark 2.2: The notion of quadratic stability with disturbance
attenuation is a natural extension of quadratic stability to incor-
porate H, performance and its conservativeness lies in the
requirement of a fixed P matrix in (2.8) for all admissible
parameter uncertainties as in the quadratic stability. Despite its
conservativeness, we feel that this notion naturally combines
both quadratic stability and disturbance attenuation, providing a
feasible way of treating both parameter uncertainty and distur-
bance input.

III. MAIN RESULTS

Our main results will develop the interconnections between
both robust H, control via linear dynamic output feedback and
a scaled H, control problem, and between quadratic stabiliza-
tion via linear dynamic output feedback and a standard H,
control problem.

In connection with the system (2.1) we now introduce a system
below that will allow us to establish the equivalence between
robust H, and a scaled H, control problem.

(Z4):
£(1) = Ax(1) + [VeoH, vy 'B]w(t) + Byu(r) (3.1a)
1 1
(1) = 75 v + 252 lucy (3.1b)
C‘] D12

y(t) = Cox(t) + [VeoH, v 'Dy1w(t) + Dypu(t)
(3.1¢)

where x(t) € R” is the state, u(¢+) € R™ is the control input,
w(r) € R7" is the disturbance input, y(¢) € R” is the measured
output, #(t) € RP*/ is the controlled output, A, By, B, C;, C;,
D,y, Dy, Dy, E;, E,, Hy, and H, are the same as in the system
(2.1), €> 0 is a parameter to be chosen, and y > 0 is the
disturbance attenuation performance we wish to achieve for the
system (2.1).

We first establish a key lemma which will lead to an intercon-
nection between quadratic stability with disturbance attenuation
of the unforced system of (2.1) (setting u(¢) = 0) and stability
with disturbance attenuation of the unforced system (3.1) (set-
ting u(z) = 0).

Lemma 3.1: Let the constant y > 0 be given. Then there
exists a matrix P > 0 such that

[A + H,F(1)E,\)'P + P[A + HF(1)E,]
+ y72PB,BTP + CTC, <0 (3.2)
for all F(¢) satisfying (2.3) if and only if there exists a constant
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€ > 0 such that
ATP + PA + y~2PB,BTP + €0?PH H[P

1
+—ETE, + CTC, <0. (33)
€

Proof: The sufficiency part of the proof follows immediately
from the fact that for any F(¢) satisfying (2.3) and for any € > 0
we have that

1
ETFT(t)HIP + PH,F(1)E, < €¢’PH H[P + —E[E,.
€

To show the necessity, we suppose there exists a matrix P > 0
such that (3.2) holds, i.e.,
Z 2 ATP + PA + y *PB,BIP + C{C,

< —ETFT(¢)H[P — PH,F(1)E,
for all F(t) satisfying (2.3). By a technique similar to that used in
[8, proof of theorem 3.2}, it follows that there exists a constant
€ > 0 such that

e0?PH,H]P + €Z + ETE, <0,
i.e., (3.3) holds. vVvvVv

In view of Definition 2.3 and Lemma 2.1, Lemma 3.1 leads to
the following corollary.

Corollary 3.1: Given a constant y > 0, the unforced system of
(2.1) (setting u(¢) = 0) is quadratically stable with disturbance
attenuation <y if and only if there exists a scaling parameter
€ > 0 such that the unforced system of (3.1) (setting u(t) = 0) is
stable with unitary disturbance attenuation.

Theorem 3.1: Let y > 0 be a prescribed level of disturbance
attenuation and K(s) denote a given linear dynamic controller.
Then, the system (2.1) is quadratically stabilizable with distur-
bance attenuation y via the output feedback controller K(s) if
and only if there exists a constant e > 0 such that the closed-loop
system corresponding to (3.1) and K(s) is stable with unitary
disturbance attenuation.

Proof: Let the controller K(s) be of the following state-space
realization:

£(1) = A £(t) + B.y(1) (3.42)

u(r) = C.&(t). (3.4b)
It should be noted that there is no loss of generality to assume
the controller to be strictly proper. This follows from the fact
that the design of a proper H, controller can be converted to
the design of a strictly proper one [15). Now, letting x, =[x
£TY, the closed-loop system of (2.1) with the controller (3.4) is
given by the state-space equations

£(t) = [A + HF(t)E]x(t) + Bw(¢) (3.52)
2(1) = Cyx (1) (3.5b)
where
I B,C. _ [ H
A=1Bc, 4, + BCDZZCC]’ H= [BCHZ]’

— _ — B
E = [E1 Ezch c =[G D;,C.]l, By = [B D121]'

Also, the closed-loop system of (3.1) with the controller (3.4) is
of the form

(1) = A (1) + [VeoH v 'B|w()  (3.6a)
1 _
—E

)y = | Ve |x(0) (3.6b)
C
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where A, B,, H, E, and C, are as in (3.5). The desired result
now follows immediately from Corollary 3.1. vvVvvY

Remark 3.1: Theorem 3.1 established the equivalence between
the robust H, control problem for the system (2.1) and the
scaled H. control problem for the system (3.1). Therefore, a
complete solution to the robust H, control problem can be
obtained via existing H,, control techniques. Moreover, Theo-
rem 3.1 also allows us to parameterize all strictly proper linear
dynamic output feedback controllers that solve the robust H,
control problem. O

Next, we discuss the quadratic stabilization problem of system
(2.1) via linear dynamic output feedback. The result to be given
is similar to that in [8, theorem 3.4]. However, we include a more
general structure of parameter uncertainties which allows for
uncertainties in the output equation.

Similar to the robust H,, control, quadratic stabilization of the
system (2.1) will be shown to be equivalent to the H, control of
the following system:

(25): x(t) = Ax(t) + Hw(t) + Byu(?) (3.7a)
(1) = Ex(t) + Eju(t) (3.7b)
y(t) = Cyx(t) + Hyw(t) + Dpu(t) (3.7¢)

where x(¢) € R" is the state, u(t) € R™ is the control input,
w(t) € R is the disturbance input, y(¢+) € R" is the output,
3(t) € R/ is the controlled output, and A, Hy, By, E,, Ej, C,,
H,, and D,, are the same as in the system (2.1). The equiva-
lence between quadratic stabilization and H,, control is given in
the following theorem. (The proof is similar to that of Theorem
3.1 and thus is omitted.)

Theorem 3.2: The system (2.1) is quadratically stabilizable via
a given linear dynamic output feedback controller K(s) if and
only if the closed-loop system corresponding to (3.7) and K(s) is
stable with disturbance attenuation o~ .

Remark 3.2: In view of Theorem 3.2, it results that the
separation principle for H, control also carries over to quadratic
stabilization of (2.1) via linear dynamic output feedback. More-
over, Theorem 3.2 also allows us to parameterize all strictly
proper linear dynamic output feedback controllers which
quadratically stabilize (2.1). O

IV. CONCLUSIONS

This note has developed a linear dynamic output H, control
technique for systems subject to time-varying parameter uncer-
tainties in both the state and the output equations. Based on the
notion of quadratic stability with disturbance attenuation, the
problem of robust H, control and quadratic stabilization via
linear dynamic output feedback have been solved.
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Abstract—In this note the effect of weighted input and output spaces
on the stability of feedback sy is ex d. For a weigk space,
the recent past of a signal is emphasized and the remote past is
deemphasized. Tapered spaces are a subclass of weighted spaces. Re-
sults concerning weighted spaces used on linear systems are given. The
circle conditions are recovered for feedback systems with exponentially
tapered spaces.
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1. INTRODUCTION

In this note, we analyze the effect weighted input and output
spaces have on the stability of a feedback system. Tapered
spaces (a subclass of weighted spaces) have the property that for
a bounded subspace of time functions, given a tolerance e, a
finite time interval § may be found such that a time function
may be determined up to a time 7, to within &, just by observing
it over [T — 8, T'] rather than the entire past. For a continuous
input—output system for which a tapered input space is appropri-
ate, the effect on the system from the remote past part of the
input is small. Such systems are in some sense “highly” causal.
In the analysis of what may be called “natural systems,” for
example, the inputs may be measured but only over a finite time
span, while the system will have been “running” for a long time
previous to when the measurements are taken. Tapered input
spaces are reasonable for systems which are better modeled
with, or would have a better design with, the property that
stimuli in the remote past do not have as much effect as recent
stimuli.

Weighted spaces of some form have been discussed in connec-
tion with many topics. For example, Boyd and Chua {2] show
that if a particular weighted input space is used (sufficiently a
tapered input space), approximations by Volterra series of non-
linear operators can be made over an infinite time interval. They
site Volterra and Wiener having considered weighted spaces for
physical reasons. They state that weighted spaces are “an old
assumption whose full power has not been used” [2]. Michael
and Miller analyze the stability of a coupled core nuclear reactor
with the variables representing core powers living in weighted
spaces [4]. Weighted spaces have been used in connection with
Kalman filtering [1]. Use of weighted input spaces is one method
of preventing divergence in a Kalman filter.

The input and output spaces in this note are examples of
“fitted families of seminorms,” developed by Root; see [6]. This
approach is more general (inclusive) than the procedure where
time-projection operators are used on the spaces of time func-
tions. Weighted (or tapered) spaces of time functions are more
easily handled by the fitted families approach than by time
projections.

In Section III, it is shown that the small gain theorem, which
guarantees the stability of a feedback system, can be generalized
to hold for weighted input and output spaces. The bounding
space stability and BIBO stability of a linear system with weighted
input and output spaces is analyzed in Section IV. A frequency
domain result is presented. These results are applied to feed-
back systems. A Nyquist stability test and a circle test are
recovered for systems with exponentially tapered input and
output spaces. In Section V, an example is presented where we
use the circle conditions, as they are generalized here, to com-
pute how long it takes the output of a system with effort limited
controller to die down after a pulse is applied to the input. Some
of the results in this note appeared in the conference paper [5].

I1. PRELIMINARIES

An input—output system (Y, F,U) is, in the context of this
note, a mapping F from an input space U to an output space
Y(y = F(u)), where U is a translation invariant subset of a
normed linear space A4 of time functions, and Y (also translation
invariant) is either a Banach space B or an extended space B¢
of time functions. A proper definition of the spaces A, B, and
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