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Robust Stability Under a Class of
Nonlinear Parametric Perturbations

Minyue Fu, Member, IEEE, Soura Dasgupta, Senior Member, IEEE, and Vincent Blondel

Abstract—This paper considers the robust stability verification
of linear time-invariant systems admitting a class of nonlin-
ear parametric perturbations. The general setting is one of
determining the closed-loop stability of systems whose open-
loop transfer functions consist of powers, products, and ratios
of polytopes of polynomials. Apart from this general setting,
two special cases of independent interest are also considered.
The first special case concerns uncertainties in the open-loop
gain and real poles and zeros, while the second special case
treats uncertainties in the open-loop gain and complex poles and
zeros. In light of the zero exclusion principle, robust stability
is equivalent to zero exclusion of the value sets of the system
characteristic function (a value set consists of the values of
the characteristic functions at a fixed frequency). The main
results of this paper are as follows. 1) The value set of the
characteristic function at each fixed frequency is determined by
the edges and some frequency-dependent internal line segments.
2) Consequently, Hurwitz invariance verification simplifies to that
of checking certain continuous scalar functions for avoidance
of the negative real axis. 3) For the case of real zero-pole-gain
variations, the critical lines are all frequency independent, and
therefore, the determination of the robust stability is even simpler.
4) For the case of complex zero-pole-gain variations, the critical
internal lines are shown to be either frequency independent or
to be confined in certain (two-dimensional) planes or (three-
dimensional) boxes.

I. INTRODUCTION

HE following problem is of interest in the robust stabil-

ity verification of linear time-invariant control systems
depicted in Fig. 1. Suppose we are given a stability region D
and a family of open-loop transfer functions parameterized by
a real vector v:

T() == {t(s,v): y €T} (1.1)

where (s, ) is the transfer function of the plant and con-
troller, and T is a connected set in RY . Determine as simply
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Fig. 1. Closed-loop uncertain system.

as possible if all members of the family of the corresponding
characteristic functions

H(D) :={h(s,7) =1+1t(s,7): y€T} (1.2)

have all zeros contained entirely in D (i.e., the family is D-
stable invariant). Generally, the transfer function coefficients
depend nonlinearly on +.

One approach to this problem is to treat it in its broadest
generality, as is done in [1], [2] where a very broad class
of H(T) is considered. Alternatively, one can consider par-
ticular parameterizations reflecting specific forms of structural
information supplied by the modeling process. This allows
formulation of stability verification schemes which are compu-
tationally less demanding. Examples of this approach include
[3], which considers a family of polynomials admitting inde-
pendent variations in the coefficients; [4]-[6], which account
for affinely dependent variations; and [7]-{9], which consider
multilinear dependence (see [10], [11] for surveys). Each of
[3]1-[9], exploits the underlying structural information and
demonstrates consequent simplifications.

This paper adopts the second approach by focusing on a
special class of nonlinear parametric dependence. To keep the
presentation simple, only Hurwitz invariance is investigated
(i.e., D is the open left-half plane), although the results do, in
fact, generalize to more general stability regions. Specifically,
the family of characteristic functions to be considered in this
paper admits the following form

[T, (pio(s) + 7 Pis))™
[l s1 (Pio(s) + 4 Pi(s))”
where go(s) and the p;o(s) are real scalar rational functions
and polynomials in s, respectively, v; € T'; C R represent
a partition of 7, i.e.,

y=E, g, )T (1.4)

h(s, 7) =1+ go(s) (1.3)

and

F:F1XF2X~-~XFH (1.5)
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Pi(s) are real vector polynomials with dimension N;, and
11; and v; are fixed positive exponents. The quantities go(s),
pio(s), Pi(s), n, N, pi, vi, and I are assumed known. The
jth element of «y; [respectively, Pi(s)] is denoted by ~i;
[respectively, P,;(s)]. Since T' is an axis parallel box, each
7;; varies independently of the others within an interval

V5 < v < (1.6
Thus, each factor (pio(s) + vF Pi(s)) forms a polytope of
polynomials as ~; varies in I';. Notice that a polytope can
simplify to model an uncertain gain in the open-loop transfer
function. Furthermore, in the case where the exponents p;
and v; are restricted to be +1, the robust stability verification
of (1.3) is equivalent to that of a subclass of the multilinear
problem, i.e., the characteristic polynomial associated with
(1.3) depends on +;; in a multilinear fashion. To simplify our
notation, we rewrite (1.3) as follows:

n

h(s,v) =1+ go(S)H(PiO(S) + 'Yz'TPi,(s))k’

i=1

(1.7)

where k; are allowed to be nonzero integers (either positive
or negative).

There are several situations in which the setting of (1.7)
becomes important. By way of background, we cite the results
of [4], where the setting considered translates to one involv-
ing an uncertain plant having numerator and denominator
polynomials lying in polytopic sets. Essentially, [4] asks the
following question: Given a fixed controller go(s), how can
one determine if the uncertain closed loop is stable? Thus,
the problem considered in [4] can be viewed as a subclass of
(1.7), with n = 2, k; = 1, and k2 = —1. In many applications
involving process control, the overall plant is itself a cascade
of several subplants, such that physical uncertain parameters
of a given subplant enjoy physical independence from those
of the other subplants. Now, if one models each uncertain
subplant individually as lying in sets analogous to those in [4],
one readily obtains a special case of the structure exhibited in
(L.7).

To further illustrate the scope of (1.7), two more examples
are considered. The first example is of a plant with independent
real zero, pole and gain variations and is as follows

n—1

h(s, v) =1 +dgo(s) H (54 X))k
i=1

(1.8)

where d and )\; are uncertain real parameters lying in given
bounds. In this case, go(s) can be a given controller, d the
gain, and ); the zeros and poles of the plant whenever the
k; are, respectively, positive or negative. The uncertainty
assumes that the \; vary independently within given bounds.
The objective is to verify if go(s) stabilizes the plant for all
possible parameter variations. Therefore, under the assumption
of no zero-pole cancellation (which is trivial to check in
this example), the closed-loop system associated with (1.8)
is robustly stable if and only if the corresponding H(T') is
Hurwitz invariant. Note that the terms involving cases where
k; # £1 reflect structural preservation of multiplicities.

To allow for complex zero and pole variations, one may
include factors of the forms (s24a;s+b;)¥, with a; and b; also
varying independently in intervals. The version of (1.7) given
in (1.9) below will be referred to as the complex zero-pole-gain
variation problem:

T n—1
h(s.v) = 1+dg0(s)H(s+)\,')k1 H (s>4a;s+b;)% (1.9)
=1 j=7+1
with
Y= (Al-, )\2« ) )\‘n Ar41, br+1-, cotyAn-1, bn—lv d)T

(1.10)
Throughout this paper, we adopt the following assumptions
on the function h(s, v) in (1.7).

Assumption 1.1: The function h(s, ) has no unstable zero-
pole cancellation for any v € T'.

Assumption 1.2: Continuous variations of ~ result in con-
tinuous changes in the zeros of h(s, 7).

Assumption 1.3: The function h(s, v) has no purely imag-
inary poles for any v € T.

We note that Assumption 1.1 is essential to assure the
internal stability of the closed-loop system. However, violation
of this assumption will not cause any difficulty for constructing
the value set H(jw, T'). Further, in light of the recent results of
[20], the verification of this assumption is a relatively simple
matter.

Assumption 1.2, on the other hand, is a standard one
that requires the leading coefficient of the overall numerator
polynomial in (1.7) not to equal zero within the specified
uncertainty bounds.

Finally, Assumption 1.3 can be simply tested through a
series of straightforward algebraic [18] techniques.

A. Approach and Main Results

As in [8], [9], [12], [13], we follow the so-called value set
approach to robust stability analysis. For the family of rational
functions (1.2), the value set at a frequency w is defined as

H(w,T):= {h(jw, v): vy €T}, (1.11)

and its boundary will be denoted by OH (w, I').

Our approach exploits a slight variation of the zero exclu-
sion principle (see, e.g., [9]). Under assumptions (1.1), (1.2),
and the fact that the value set changes continuously with w,
this principle reduces to the following conditions as being
necessary and sufficient for the Hurwitz invariance of H(T'):

1) at least one member of H(I') is Hurwitz, and

2) 0 ¢ O(H(w,T)), Vw € R, where 9 denotes “the
boundary of.”

There are several appealing qualities of the value set ap-
proach. First, it provides a unifying framework within which
most of the currently known robust stability results can be
understood. Second, it can be used to obtain simple and
transparent proofs of these results (see, for example, [13], [14],
[19] for proofs of [3], [4], [15]). Furthermore, while for certain
special classes of uncertainties the robust stability of a family
of polynomials reduces to that of some easily characterizable
members of this family, the same does not hold for general
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parameterizations. For example, when the uncertainty set is
one of multiaffinely parameterized polynomials, in general
there are no easily characterizable internal subsets of the
parameter box I', whose Hurwitzness implies the Hurwitz
invariance of the entire set [23]. In the same vein, it is shown
in [16] that in considering the Hurwitz invariance of the
characteristic polynomials of a polytope of (n x n) matrices,
one has to check all (2n — 4)-dimensional boundaries of the
parameter space, a task which is computationally prohibitive
even for matrices of reasonably small sizes. In such a case,
the zero exclusion condition 2) above provides a relatively
simple frequency sweeping procedure for verifying Hurwitz
invariance. Such a graphical approach has been advocated
through successful application in [9], [12], [13], and provides
the conditions of [8], [9]. Recently, the so-called finite zero ex-
clusion principle has been developed by Rantzer [21] to avoid
frequency sweeping, and to thus permit fast computation. This
approach too relies on the ready calculation of pertinent value
sets. Besides their utility for robust stability analysis, value sets
play an important role in the determination of the frequency
response of a family of transfer functions; see, for example,
[17]. Consequently, they can be used in designing robust
controllers which meet performance considerations that go
beyond mere closed-loop stabilization; see [22], for example.

Accordingly, in this paper, we consider both the determina-
tion of value sets as well as the Hurwitz invariance of (1.3).
The principle contribution is to show that for the general fam-
ily (1.7), at each fixed frequency w, each member of 3H (w, T')
has preimages in certain line segments in the parameter set
T'. These critical line segments are simply characterized,
vary with frequency, are independent of the exponents k;
[see (1.7)], and consequently the Hurwitz invariance of the
family of functions in (1.7) becomes equivalent to checking a
finite number of continuous and piecewise differentiable scalar
functions in w for avoidance of the negative real axis.

For the case of (1.8), we show that the critical segments
are, in fact, the edges of T" plus certain simply constructable,
frequency-independent, 45—degree line segments in the pa-
rameter space. Further, the Hurwitz invariance of H(I') is
guaranteed by that of these frequency-independent line seg-
ments (including the edges).

For the case of (1.9), we show that the critical lines
determining the value set boundaries are either frequency
independent or, as frequency varies, vary on certain (two-
dimensional) planes and certain (three-dimensional) boxes in
I". To check for robust Hurwitzness, it then suffices to check
these frequency-independent lines, planes, and boxes.

It is instructive to compare this paper with the work of [24],
which considers the set of uncertain polynomials

ZF,'(S) HP”(Q)
=1 =1

where the F;(s) are fixed polynomials while the P;;(s) vary
in independent interval sets. Several points of difference are
noteworthy. First, the set in (1.12) is broader than ours in
the sense that it allows the sum of more than two factors. It
is narrower than (1.7) in that the P;;(s) vary in independent

(1.12)
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intervals and have unity power, whereas in (1.7), polytopic
variations with arbitrary powers are allowed. However, the
greatest difference lies in the approaches employed and the
results derived in this paper and [24]. The latter employs
a parameter space as opposed to the value set approach to
Hurwitz invariance verification. Its result states that one needs
to check the Hurwitz invariance of internal manifolds that are
of the dimension

max {n;}. (1.13)
k3

Thus, even for the cases of (1.8) and (1.9), [24] requires check-

ing Hurwitz invariance over manifolds that have dimensions

that increase with the number of factors in (1.8) and (1.9).
Section II considers the general case. The special cases

of (1.8) and (1.9) are addressed in Sections III and IV,

respectively. Section V is the conclusion.

II. VALUE SET BOUNDARIES

A major objective of this paper is to achieve the following.
For a given frequency w, identify a critical subset I'c(w) of I’
having the property that for all

v € O(H(w, T)) (2.14)
there exists v € T'c(w) such that
h(jw, v) =v (2.15)

ie., every point on the boundary of the value set at this
frequency has at least one preimage in I'c(w). In characterizing
such a I'.(w), we will not attempt to extract the smallest
possible such set, but will be content with one particular choice
that enjoys the above properties, and at the same time has a
relatively simple analytical description.

To this end, we adopt a somewhat indirect approach. Specif-
ically, given w, we give necessary conditions on a parameter
vector 7y such that

h(jw, v) € 8(H (w, T)). (2.16)

Clearly, parameter vectors satisfying these necessary condi-
tions together suffice to define a I'.(w) meeting the require-
ments specified above.

In the sequel, a k-side of the parameter box I' will refer to
a subset of " in which only k parameters vary and all others
are fixed at their extreme values. By the same token, a point
« in the interior of a k-side has exactly k-elements that do
not take extreme values. A point on the boundary of a k-side
lies on this k-side, but not in its interior. If v is in the interior
of a k-side of I, then the elements of « not fixed at extreme
values will be called the variables on this k-side. We note, that
every k-side of I is also a hyperrectangle, that all its [-sides,
I < k are also [-sides of T, and that corners and edges of I"
are its respective O- and 1-sides. Further, the ., N;-side of
T (recall that this sum is the dimension of I') is I itself.

In characterizing ['.(w), we will assume that all edges of T’
are automatically included in I'c(w). Thereafter, for all

1<k< ZNi (2.17)
=1
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we will provide for each k-side of I' necessary conditions for
~ in its interior to obey (2.16).

The main results of this section can be summarized in the
following way.

Result 1: Not all sides of I' need contribute interior points
to I'.(w). In fact, certain sides are such that, irrespective
of w, their interior points need never be included in I'.(w).
In Section II-A, we give a result which characterizes what
the sides that potentially contribute interior points to I'c(w)
are. A feature of this characterization is that, for each side
which in Section II-A is identified as a potential interior
point contributor, all the sides of this side are also similar
contributors.

Result 2: Having eliminated a vast majority of sides by
virtue of Result 1, we restrict attention to an arbitrary side
@ of T whose interior points have been ascertained by Result
1 as being potential members of I'.(w). For every such @, at a
given frequency w, we associate a unique, possibly frequency-
dependent affine line L,{Q) such that a 7 in the interior of
Q obeys (2.16) only if v belongs to this line. Consequently,
together with the edges of I, the union of the intersections of
all L,(Q) with the interior of the corresponding contributing
sides @) comprise I'.(w). The affine line L, (Q) associated with
a given contributing boundary @ is characterized in Section
1I-B.

The results to be presented will be illustrated through the
following example.

[(w? = 2)711 + (jw + Dy12)[w? + a1 + ¥32]
[(1 - w? + jw)yar + jwy2e)[0.55w + ya1]
(2.18)

h(jw,v)=1+

To proceed with the development, observe first that as far
as the determination of I'.(w) is concerned, one need only
consider the transfer function

9(s, 7) = [[(pio(s) + 47 Pi(s))*.

=1

(2.19)

For unless go(jw) in (1.3) is zero, at any frequency w,
g(jw, v) € 9(G(w, T)) (with G(w, '), obviously defined),
iff h(jw, v) € O(H(w, I')). Of course, if go(jw) = 0, then at
this w, H(w, I') collapses to a single point, and any v € T,
including any corner, describes 3( H (w, T')). Thus, in this case,
I.(w) can be trivially constituted by a solitary corner of T'.

Thus, here onwards, attention will be restricted to the
sets g(jw, 7), 8(G(w, I)) instead of h(jw, v), O(H(w, I')),
respectively.

A. Result 1

We have the following theorem.

Theorem 2.1: For a given w and every v € O(H(w, I')),
there exists a vy obeying (2.15), such that [see (1.4)], for each
i, at most one <y;; is a variable. Consequently, a boundary Q
of T need contribute internal points to I'.(w) only if, for each
1, at most one -;; is a variable in the interior of Q.

Thus, for example, in (2.18), any side on which both 71,
712 are variables is not included in I'.(w). The proof of this
theorem relies on the following lemma, proved in Appendix

A, which involves boundary determination of the power and
the product of sets of complex numbers.

Lemma 2.1: Let Dy, Dy,---,D, be bounded and closed
sets of complex numbers. Define, for integers k;,

D) = {d¥:dieD;:i=1,2,--,0}, (2.20)

and

o

HDf'“) = {der cd; €D i=1, 2,---,0}. (2.21)
=1

i=1
Then

[T@p)*) >0 <HD§’“')) . (2.22)
i=1 i=1
We can now prove the theorem.
Proof of Theorem 2.1: In Lemma 2.1, identify
D = {pi,(jw) + 7 Pi(s): v €T:}  223)

and ¢ = n. Then the result follows by noting that every
element in 8(D;) has at least one preimage in an edge of
T [14].

B. Result 2

From here onwards, in determining contributions to I'c{w)
from the interior of a given side of I', attention need only be
restricted to sides Q of I on which ar most one element of
each I'; is a variable.

Call such a prototype side (). Lump the variables defining
this side into the vector ¢ = [g1,--,qk], K < n. Suppose
the coefficient polynomial of each ¢; in (2.19) [ie., the
corresponding P;;(s)], evaluated at s = jw, is nonzero. (If
the coefficient polynomial is evaluated to be zero, then the
corresponding ¢; need not be included in g; see discussion
later.) Then, through a suitable extraction of the frequency-
dependent coefficients of ¢; in (2.19), at every w, the image of
the side Q under the mapping defined in (2.19), i.e., G(w, Q),
can be described by a set of complex numbers

k
Q) = {f((I) = fOH(Qi +a;+ i) qe Q} (2.24)
i=1

where f; is a complex constant, o; and 3;, 4 =1, 2,-- -, k are
real constants, and k; # 0 forall : = 1, 2, -, k.

Fact 1: Notice that, as w varies, fo, ;, and §; vary in a
rational fashion with w. Further, f(Q) is bounded because of
Assumption 1.3 and the fact that the coefficient polynomial of
each ¢; in (2.19) evaluated at s = jw is nonzero.

Thus, for example, in (2.18), consider the interior of the 2-
side defined by 12 = Y3, Y32 = Va2, Y21 = Va1, Va1 = Vi1
Y22 = 7Vao- In this case, g1 = Y11, g2 = Y31

Q={q=ln, )" ¢ <a@<q,i=12}

Further

flg) =

(2.25)

(w?-2)

[(1 = w2 + jw)vd + jwrgs][0.55w + 7]

(jw + )7
(w? -2)

g+ [g2 +w® + 93] (2.26)
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Observe that, at w? = 2. the coefficient of y1(= @) is
zero. Consequently, the representation in (2.26) is infeasible.
However, we argue now that at this w, no interior point of
the @ under consideration need be included in I'.(w). This is
because, at this w, H(w, I') is independent of ;7 = q;. Thus,
if we select y1; at an extreme value, without changing the
variable v31 = go, one does not alter the value of h(jw, 7).
Thus, corresponding to each point ¢ in the interior of @, there
lies a point ¢* on a boundary of @ having precisely the same
image in the value set space as does g. Then, in determining
contributors to I'.(w), one need not consider any point in the
interior of (), as these points are covered by points on the
boundary of (). This observation leads to the following formal
fact.

Fact 2: Suppose ) is a side of T' that conforms to the
requirements of Theorem 2.1. Further suppose, with g¢; the
variables on (), at some frequency w, and some j, the
coefficient polynomial of ¢; in (1.3) is zero. Then, I'.(w)
will not contain any points in the interior of Q. Also, if the
coefficient polynomial of each ¢; is nonzero, then fg in (2.24)
is nonzero.

Finally, observe, from the foregoing that the basis for limit-
ing the sides that contribute to I'.(w) is that the edges of each
individual factor by themselves cover the value set boundary of
that factor. Although, in general, an N-dimensional polytope
has N2V~! edges, at a given frequency, at most 2N of
these edges need be considered for constructing the value set
boundary of the polytope. These special 2V edges are easily
characterized (see [18]). Thus, the number of contributing
sides is even smaller than that specified in Theorem 2.1.
However, to prevent notational encumbrances, henceforth we
will adhere to the somewhat conservative characterization
given in Theorem 2.1.

Provided in (2.24), §; # 0, Vi € {1,---,k}, we will call
the affine line in (2.27), below, the line associated with Q

La@Q)={(q1q2qx)T = p(B1 Pz B)T
~(araz-ap)T: —co< p<oo}. (227)

The situation where one or more of the 3; equal zero will be
dealt with later. Observe that the intersection of L,(Q) with
the interior of (Q is given by the segment

LQ) ={g=(q1-a)": q: = pBi — s,

Vie{l,-- k} p7(Q) <p<p™(Q),g€Q} (228
where
Q)= ie{Hllf?‘?flc}rnin{igi_&7 qi_;i O‘i} 229)
and
+ _ . QZL +ao; g +o
pT(Q) = ie{l{{{r}’k}max{T, _ﬂz—} (2.30)

where qi+ and g; are the extreme values of the variable g;.
Note the following important facts.

Fact 3: If p*(Q) < p~(Q), then this set is empty, in which
case, as will be shown soon, the interior of () contributes
nothing to T'c(w).
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Fact4: As the a;, 8; depend on w (Fact 1), so does the
line L(Q). Equally, while at some frequencies, L(Q) may not
be empty, at others, it may well be.

Fact5: As noted earlier, whenever ) conforms to the
requirements of Theorem 2.1, so do all its boundaries. It is easy
to see from the foregoing definitions that the line associated
with a boundary of @ is, in fact, a projection of the above
line onto this boundary.

We now present the main result of this section, proved in
Appendix B.

Theorem 2.2: Consider Q a boundary of I' obeying the
conditions of Theorem 2.1, with the various quantities as
defined in the foregoing and f # 0 (see Fact 2).

i) Suppose in (2.24) that, for some i € {1,---,k}, 8; = 0.
Then for every q in the interior of Q such that f(q) € 3(f(Q)),
there exists a ¢* on an edge of Q such that f(g) = f(g*). ii)
Suppose f§; # 0, Vi € {1,---,k}, and there existsq in the
interior of @) such that f(¢) € 9(f(Q)). Then ¢ € L(Q). iii)
Suppose, in addition to the conditions set out in ii)

(2.31)

Then there exists ¢* on a boundary of Q such that for all

q € L(Q)

HOESICHE (2.32)

Before illustrating this theorem with the example of (2.18),
we highlight some of its features. First of all, if any 3; = 0,
then no point in the interior of @ is included in the formation
of I'c(w). For, given any ~ in the interior of ¢) obeying (2.16),
there is a parameter vector on an edge of I' that has the same
image in the value set space as does <. Since I'.(w) already
includes the edges of I', the image of this -~ stands covered
from the outset.

Likewise, if (2.31) holds, then all interior points of @
mapping to the value set boundary have the same image on
this boundary, an image also shared by another parameter
vector lying in the interior of a boundary of ). Thus, these
points need not be included as they will be covered when one
considers the boundaries of ().

Further, in the event that i), iii) of the theorem do not hold,
then the critical subset contributed by interior points of @
lies exclusively on the associated line segment. Thus, indeed,
at every w, ['.(w) comprised exclusively of line segments, at
most one for each side conforming to the requirements of
Theorem 2.1. Of course, these segments in general vary with
w, and should their intersection with an associated ¢} be empty,
then the interior of that () fails to contribute elements to I'.(w).

Finally, we note that the equations describing the internal
line segments do not depend on the powersy,; and v;.

We now illustrate these results by invoking the example of
(2.18). In the example, assume w = 2, Vi = 0, and '*/i"]'- =1.

Consider first any side on which v3; or 732 are variables
[recall that if both were variables, then such a side will not
contribute an interior point to I'.(w)]. Then i) of Theorem 2.2
holds, and no point in the interior of this boundary is included
in T'o(w).
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Next, consider the 2-side defined by ~3; = Ya1 = 0
and 32 = 712 = 792 = 1. Then, on this boundary, with
q1 = 711 and g2 = 721, (2.31) holds. Consequently, this side
too contributes no interior points to I'.(w).

Finally, consider the 3-side 712 = 721 = 1 and v3; = Y39 =
0. Choose g1 = 711, g2 = Y22, and g3 = ~4;. Then, we have

@ +05+]

fla)=4j [g2 + 1+ 1.55][gs +j]

(2.33)

Then the interior points of such a 3-side to be included in
[e(w) are given by the segment

L(Q) = {[lq1, g2, 3] = p[1, 1.5, 1] = [0.5, 1, 0] :
2/3<p<1}. (2.34)

C. Hurwitz Invariance

Having shown that d(H (jw, I')) is mapped from the critical
line segments in I, we now turn to verifying the Hurwitz
invariance of (1.7). Essentially, 8(H (jw, T')) must be checked
for zero exclusion.

In view of the definition of I'.(w), the Hurwitz invariance
of (1.7) is equivalent to the requirement that: 1) at least one
member of (1.7) is Hurwitz, and ii) that at every w and all
v € T'e(w)

h(jw, ¥) # 0. (2.35)

Since at every w, I'.(w) comprises the edges of I" and certain
w-specific line segments, to check for Hurwitz invariance, it
suffices to check that all transfer functions corresponding to
the edges of (1.7) are Hurwitz, and that the image, in the value
set space, of each aforementioned w-specific line segment is
zero exclusive. The principal contribution of this section is
to demonstrate that the zero exclusivity of these segments
can be verified by checking certain piecewise continuous and
piecewise differentiable functions of w for avoidance of the
negative real axis,

To avoid notational complexities, we show this fact in a
somewhat informal fashion. Consider a side Q of I", which
meets the requirements implicit in Theorem 2. 1. Recall that for
each such @, potentially there exists an internal line segment
that contributes to T'.(w).

For a prototype @, the internal line segment is as given in
(2.28)~(2.30), with the value set G(w, ') as in (2.24). Observe
that the various quantities in these equations depend on w,
and that at certain frequencies, this segment could be empty
(Facts 3 and 4), or may not be a member of I'.(w) (c.g., when
i) and/or iii) of Theorem 2.2 holds, or when Jfo (see (2.24)
and Fact 2) or go(jw) is zero. Call the set of frequencies
at which L(Q) is a nonempty subset of I'.(w), Q(Q). Then
we need to check that the image in the value set space of
L(Q) is zero exclusive at all w € Q). Direct substitution
of (2.28)—(2.30) into (2.24), together with the relation among
G(w,T), H(w, I"), and (2.24), shows that at all w € QQ), the
image of L(Q) is given by (2.36)(2.38). In these equations,
to avoid confusion, unlike (2.28)~(2.30) and (2.24) the various
quantities have been expressed explicitly as functions of w

and
h(jw, ) = 1+ F(Q, w)(j + p)™M@;
P (Q w) <p<pt(Q, w) (2.36)
where
k(Q)
F(Q, w) = go(jw)fo(Q. ) [] B:(Q, w)* @ (2.37)
=1
and
E(Q)
(2.38)

M@Q) =Y k(Q).
=1

Recall that the choice of Q (see (2.31) and the discussion sub-
sequent to Theorem 2.2) ensures that M(Q) # 0. Moreover,
from the definition of £2(Q),

FQ w)#0,  VweQQ) (2.39)

and

p=(Q, w) < pT(Q. w), (2.40)

We claim that the bounds p™(Q, w) and p~(Q, w) are contin-
uous and piecewise differentiable in these frequency ranges.
To see this, we note that «;(Q, w) and 3;(Q, w) [see (2.24)]
are continuous and differentiable. The minmax functions in
(2.29)~(2.30) preserve continuity, and the lack of differentia-
bility occurs at the isolated frequencies where the minmax
selections “change.”

Thus, from (2.36), one can see that (2.35) holds for all v in
the interior of this prototype @ and belonging to I'.(w) iff

1Q, w) = (—F(Q, w)) /M@ _;

¢ (r(Q. w), p*(Q, w)),
In the above, if M(Q) # +1, then all the roots of (-)~1/M(Q)
should be considered. Define the functions

wQ, w)—pT(Q, w)
Q. w) = {;t(Q,w —p=(Q,w) Vw € Q(Q)
1 otherwise.

Vw € Q).

Yw € Q(Q). (2.41)

(2.42)

The functions £(Q, w) defined above are piecewise continuous
and differentiable. Moreover, Yw € {(—oc, o0) — Q(Q)},
£(Q, w) = 1. Recall that, at these frequencies, there are no
contributions from the interior of @ to T.(w), and (2.41) need
not be checked. Furthermore, the required zero exclusion of
h(jw. v) for all v in the interior of this prototype @ and
belonging to T'.(w) is equivalent to

€(Q, w) ¢ (00, 0).

We therefore have the following theorem.

Theorem 2.3: The family of transfer functions H(I') de-
scribed in (1.7) is Hurwitz invariant if and only if the following
conditions hold:

a) h(s, ) is Hurwitz for all -y in the edges of I"; b) For each
w € R, and all Q satisfying the requirements of Theorem 2.1,
the piecewise continuous and differentiable functions £(Q, w)
defined in (2.42) avoid the negative real axis.

(2.43)
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III. REAL ZERO-POLE-GAIN VARIATIONS

We now consider the special case of (1.2) where the
uncertain parameters are real poles, zeros, and gains.

Consider the family of transfer function H(T') described by
(1.8) and (1.2). The parameters d and \; vary independently
within given bounds, i.e.,

d”<d<db AT <AN<A, =12 m—1
(3.44)

and

AN_i] % [d™, d*]. (3.45)

n-—17

yeT =\, A\f]x - x [\,

Notice that Assumption 1.3 implies that if a given k; is
negative, the corresponding interval of A; cannot include zero.

Recall, from Section II, that apart from the edges of T,
we need to consider an internal segment associated with each
side of I', which conforms to the requirements of Theorem
2.1. Observe that every k-side @) of I', & > 1 conforms to
this requirement. Consider, now, two possible cases of such
k-sides Q.

Case I: The interior of () has das a variabie.

Observe that, with ¢g; = d in (2.24), 3, = 0. Thus, because
of i) of Theorem 2.2, no parameter vector in the interior of such
a Q is included in I'.(w). Consequently, for each v € I'.(w),
d is at an extreme value.

Case I1: The variables of @) exclude d

Assume the variables in @) are for some S C {1,---,n—1},
Ai, © € S. Observe, in (2.24), that each 3; = w and «; = 0.
From i) of Theorem 2.2, one concludes that at w = 0, I'.(w)
comprises only the edges of I'. Also from Theorem 2.2, when
w # 0, a parameter vector in the interior of @ is in I'c(w)
only if it obeys

Ai=pw,Vp (Q)<p<pt(Q), i€S  (3.46)
where
P (Q) = max A;” (3.47)
and
P*(Q) = min A (3.48)
In addition [ii) of Theorem 2.2], we must have
> ki #0. (3.49)

=
Thus, we have the following theorem.

Theorem 3.1: Consider the parameter box I' in R™ given in
(3.45). Then I'.(w) is frequency invariant, and comprises the
edges of I, and all line segments of the form in (3.51)—(3.53),
for every S C {1,---,n — 1}, obeying (3.49) and

max A < ); < min A, Vi€ S. (3.50)
€S €S

A =, Vi,j €S (3.51)

A e (AT AT VigS (3.52)
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de{d",d}. (3.53)
Furthermore, the family of functions H(I") is Hurwitz invari-
ant if and only if h(s, ) is Hurwitz invariant on these line
segments and the edges of T

A. A Special Case

Notice that if some of the A; vary in nonoverlapping
intervals, then the number of critical segments reduces, as can
be easily seen from (3.51). A case of special interest is when
all the poles and zeros vary in intervals that do not overlap. In
such an event, the projections mentioned above are empty, and
edges suffice for value set boundary and Hurwitz invariance.
One thus obtains the corollary below, itself a variation of the
results (see Remark 3.3 for comparison) of [25], [26].

Corollary 3.1 (An Edge Theorem): Consider the parameter
box I' in (3.45) and the family of function H(I") described
by (1.8). Suppose (A;, A7) N (A7, Af) are empty for all
1 < i < j < n. Then the boundary of the value set H(w, I') at
any frequency w is mapped from the edges of I'. Furthermore,
H(T) is Hurwitz invariant if and only if all the edges of H(I")
are Hurwitz invariant.

Remark 3.1: For overlapping intervals of \;, however, the
45-degree line segments are indeed necessary. To show this,
we provide the following simple example. Consider

h(s, A1, Az)

0.1(0.85% + 0.85 + 4.5)(s + A1)(s + A2)
544 1053 + 11.852 + 11.85 + 0.2

A1, Ag € [—30, 0].

1

(3.54)

In this example, there are four edges with the associated
transfer functions given by

h(s, 0, )\2), /\2 c [—30, 0],
h(s, -30, /\2), Ao € [—30, 0],
h(s, A1, 0), A€ [—30, 0];

h(s, A1, —'30)7 A € [—30, 0].
There is only one 45-degree line segment given by
h(s, A, A), A € [-30, 0].

It is straightforward to verify that the transfer functions on all
the edges are Hurwitz, but some on the 45-degree line segment
are not. For example, at A = —15, h(s, A, ) has the unstable
zeros 0.2424 + 1.89147.

Remark 3.2: In actual fact, the result in [26] is stronger. It
requires that only 2n edges be considered. This fact is also
recoverable from [27], which also employs the Jacobian rank
deficiency approach underlying our development.

Remark 3.3: Neither [26] nor [25] deals with the overlap-
ping root situation considered in Theorem 3.1 above; nor do
[26] and [25] permit the structural preservation of pole-zero
multiplicities.
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IV. COMPLEX ZERO-POLE-GAIN VARIATIONS

In this section, the complex zero-pole-gain variations case
of (1.9) is treated. As before, I'.(w) comprise line segments.

We note that the case w = 0 is trivial. At this frequency, for
every () obeying Theorem 2.1, all the §; in (2.24) are zero.
Thus, from Theorem 2.2, I'.(0) comprises the edges of I only,
and w # 0 will be assumed in the sequel.

The characterization of the line segments follows as in
Theorems 2.1 and 2.2. In this section, we will focus mainly
on showing that these frequency-dependent line segments obey
the confinement rules stated in the Introduction. To this end,
we consider the various possible @ obeying Theorem 2.1,
and consider how the associated line segments change with
frequency. Observe, as in iii) of Theorem 2.2, that certain sides
@ can be eliminated according to the combinations of powers
of their defining factors. In the sequel, we will only consider
Q on which (2.31) does not hold. Then the only restriction
that Theorem 2.2 places on @ is that for no ¢ can both a; and
b; simultaneously be variables. Consider, now, the following
possible cases of Q.

Case 1: d is a variable on Q As in Section III, such a Q
does not contribute interior points to I'.(w).

Here onwards, we assume d is at an extreme value. In the
sequel, without loss of generality, all nonvariables will be
denoted with a superscript “+.” and the A; will always be
considered as potential variables.

Case 2: No a; nor any b; is a variable. As in Section III,
an interior point of @ is in I'.(w) only if it is on a frequency-
invariant 45-degree line segment similar to that in Section III
The set of all such segments will be called L;.

Case 3: No a; is a variable, but some b; are. Suppose,
as before, that ¢; are the variables. Then if ¢; = A;, in the
corresponding factor in (2.24), a; = 0 and

8 = w. (4.55)

Further, if g; = b;, then in the corresponding factor in (2.24)
o = —w? (4.56)

and

(4.57)

Bi = waf.

Thus, on the line segment associated with @, the variable \;
and b; obey

Xi =0+ pw (4.58)
bi = —w® + pwal. (4.59)
2

Defining p; = pw and py = w*, one finds that all interior
points of ) to be included in I'.(w) lie on the two-dimensional
plane,

v = p1C1 + p2Co (4.60)

where Cp, Co € RY are frequency-independent constant
veclors.

Case 4: No b; is a variable. If ¢; = a;, then in the
corresponding factor in (2.24)
a; =0 (4.61)
and
Bi = w—w 1bE. (4.62)

Then, as long as all the 3; # 0, on the line segment associated
with @, the variable A\; obey (4.58) and a; obey

a; =0+ p(w — w 'b¥). (4.63)

Thus, again, this segment is confined to a plane of the form
of (4.60) with different C; and C5. The corresponding p; and
p2 in this case should be defined by p1 = pw and py = pw™ L.

Case 5: For some 1, a; is a variable, for some others, b; is
a variable. As before, on the line segment associated with @,
the variable \;, b;, and a;, respectively, obey (4.58), (4.59),
and (4.63). Then with p1 = pw, po = w?, p3 = pw™!, and
C;, i =1, 2, 3 frequency-independent constant vectors (C1, Cs
different from those in Case 3), this segment can be seen to
lic on a three-dimensional plane of following form

v = p1C1 + p2C2 + p3C5. (4.64)

The set of two-dimensional planes covered by Cases 3 and
4 will be denoted Lo, while the set of boxes in Case 5 will
be called L3. The zero exclusion principle then immediately
yields the following theorem.

Theorem 4.1: With Ly, Lo, and L3 defined as above,
the family of transfer functions H(T') described by (1.9) is
Hurwitz invariant if and only if all the edges, the internal
segments in L, the rectangles in Lo, and the boxes in Ly are
Hurwitz invariant.

We note that the sets in L1, Lo, and L3 are easily char-
acterized from the critical frequency-dependent segments they
contain. As in Section III, many of these segments, rectangles,
and boxes will be empty.

V. CONCLUSIONS

In this paper, we have considered robust stability verification
of linear time-invariant systems characterized by the class
of nonlinear parametric perturbations given in (1.7). In light
of the zero exclusion principle, our focus has been on both
the verification of Hurwitz invariance and the construction of
value sets for the system characteristic function. The main
result on construction of value sets shows that for the class of
nonlinear parametric perturbations given in (1.7), the value
set boundary of the characteristic function at each fixed
frequency is determined by the edges and some frequency-
dependent internal line segments in the parameter box. This
result greatly simplifies the construction of the value sets,
and considerably eases the task of robust stability verification.
Indeed, a piecewise continuous and differentiable frequency
sweeping function is found such that Hurwitz invariance of
the set in question is equivalent to this function’s avoid-
ance of the negative real axis. For the special case of real
zero-pole gain variations, the critical line segments are all
frequency independent; hence, the determination of robust
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stability is even simpler. For the case of complex zero-pole
gain variations, the critical internal lines are either frequency
independent or vary in certain (two-dimensional) planes or
(three-dimensional) boxes.

The key device used in our development concerns a Ja-
cobian function which helps isolate certain critical subsets
of the parameter box whose elements collectively determine
the value set boundary. This Jacobian-based technique may
provide an effective tool for the robust stability analysis of
sets which are even more general than the ones considered
here. Indeed, a similar device is featured in [7], [28], [27] in
relation to the multilinear problem.

APPENDIX A
PROOF OF LEMMA 2.1

We prove this result in two parts. First, we show that for D

a bounded and closed set of complex numbers,
(0D)® 5 3(D®). (A.65)

We then show that for Dy, Ds,---, D, bounded and closed
sets of complex numbers, with

lei = {ﬁdi:diEDi:izl, 2,---,0}
i=1

=1
[T@D:) > oD i)

i=1

(A.66)

i=1

Together, these two parts prove the result.

Proof of Part I: Given any complex number z €
A(D™), we need to show that z € (8D)*). By the
boundedness of D) (from that of D), there exists a sequence
of complex numbers {z;} outside D) such that z; — z as
7 — oo. Since D® s closed (as D is closed), there exists
some d € D such that d¥ = z. Define dyj, daj,---,dk; to
be the kth roots of z;. Then for all ¢, j, d;; ¢ D because
zj = (dij)* ¢ D). On the other hand, the sequence {d;;}
has a subsequence converging to d{€ D). It follows that
d € 8D, or equivalently, z = d* € (9D)®).

Proof of Part 2: Given any complex number z €
O(17_; Di), we need to show z € [[;_,(0D;). This clearly
holds if one of the D; is just {0}. So, assume every D;
contains at least one nonzero element. This implies that every
OD; has at least one nonzero element. By the boundedness
of ([T;—, D;) (from that of D;), there exists a sequence of
complex numbers {z;} outside ([[;_; D;) such that z; — z
as j — oo. Since ([7_, D;) is closed (as D; is closed), there
existsome d; € D;, i =1, 2,---,0 such that z = dyds - - - d.
If z is zero, it follows that all d;, except for one which is
set to zero, can be chosen to be a nonzero boundary point of
0D;. In the sequel, we assume that at most one d; is zero.
We claim that d; € 0D;, 1 = 1, 2,---,0. Without loss of
generality, consider d;. From the foregoing, one can choose
d; € 9Dy if one of the other d; is zero. On the other hand,
if the remaining d; are nonzero, we define

Zj

dyj = oA

G=1,2,-. (A.67)
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Then, d;; converge to d; as j — oo because z; converge to z.
Yet di; ¢ D, for all j because zj = dyjda -+~ do & [[7; D
Therefore, d; € 8D;. Similarly, it can be shown that d; € 9D;
for all other 7; hence, the result holds.

APPENDIX B
PROOF OF THEOREM 2.2

To prove the theorem, we need three lemmas. The first of
these is well known (see, e.g., [28], [27]), and hence its proof
is omitted.

Lemma B.1: Consider the hyperrectangle

Q:={q=(nggn)"
¢ <¢<g,i=12--,m}CR™ (B.68)

and a differentiable complex valued function f(-): Q — C
with all its first derivatives continuous. In the sequel, we will
denote

Q) ={f(g):q€Q}. (B.69)

Then a point ¢ in the interior of ) obeys f(q) € 3f(Q) only
if the following Jacobian matrix, evaluated at g, has rank less
than two

of(q) 91(9) . of (@)
Ii(q) = Re o0 Re( 8@) Re .
(%) (%) - (%

(B.70)

It should be noted that the lemma above is of little value when
f(Q) degenerates to a real segment. For when f(-) is real, the
second row of the matrix in (B.70) is identically zero, and
hence rank deficiency occurs for all ¢g. For such a case, we
have the following result.

Lemma B.2: Consider the hyperrectangle @ in (B.68) and
a real continuous function f(-): @ — R. Then f(Q) can be
mapped from the edges of () if and only if the two extreme
points (minimum and maximum) of f(()) can be mapped from
the edges of Q.

Proof: Necessity is obvious. To prove sufficiency, sup-
pose ¢! and ¢ are the edge points corresponding to the
extreme points of f(Q). Observe that ¢! and ¢ can be
connected by a path entirely in the edges of (). By continuity
of f(-), the image of this path, which is a subset of the edges,
covers the whole of f(Q).

The final lemma needed is given below.

Lemma B.3: Consider the hyperrectangle ) and the
bounded set f(Q) in (2.24) with 3; = 0, Vi. Then each
point in f(Q) has at least one preimage in the edges of ().

Proof: Observe that the result will not be affected by the
value of fo. So choose fo = 1. Using Lemma B.2, we simply
need to show that both the minimum and the maximum of
f(Q) have preimages in the edges of @. Take the minimum,
for example, as the maximum can be dealt with in the same
manner. Denote the minimum by f,, and consider the two
cases: 1) f,, = 0; and 2) f,, # 0. Case 1) implies that some
¢; + «; is zero with k; > 0. In this case, it is obvious that
setting the other ¢; at extreme values does not change f,,. In
Case 2), we claim that all the ¢; must take their extreme value.
Indeed, if some ¢; were not at its extreme, f,, would not be
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minimum because we can decrease the value of the function
by increasing or decreasing this ¢;. Therefore, in both cases,
fm can be achieved at an edge point.

Proof of Theorem 2.2: Consider a point q in the interior
of @ such that

flq) € 9f(Q). (B.71)

Proof of i): Suppose first that 8; = 0, Vi. Then, Lemma
B.3 proves the conclusions of i). Next, suppose that at least
one (3, without loss of generality 3, is nonzero. Suppose also,
that for some ¢ in the interior of @, f(q) € 8f(Q). Then from
Lemma B.1, Vi, j € {1,---,k}, there exist real scalars = and
y, not both zero, such that

of(q) _ 9f(q)
r—— = y—=, (B.72)
dg; al]j
Thus, from (2.24), the above gives
k; k-
o) _,  kil@) (B.73)
g + o + 36 q; +aj + 455
which simplifies to
(g + @i)B; = (g5 + ;) B;. (B.74)

Now, suppose that at least one 3;, ¢ # 1. without loss of
generality s, equals zero. Then with 7 = 1, j = 2, one has
from (B.74) that
g +az=0. (B.75)
Thus, f(q) = 0. Moreover, this holds no matter what value
the ¢;, ¢ # 2 take. Setting these ¢;, ¢ # 2 to their respective
extreme values, one proves i).
Proof of ii): Follows from (B.74).
Proof of iii): Direct substitution of (B.74) into (2.24)
yields
fla) = clp+ )™ (B.76)
where c is a suitable complex constant and the integer M is
given by

(B.77)

Thus, when M = 0, f(g) has the same value on the whole
segment L((Q)). Thus, by continuity, the image of this entire
segment is covered by any one of its endpoints which is on
a boundary of Q.

ACKNOWLEDGMENT

The authors are grateful to the members of Laboratoire
d’Automatique at UCL for having fostered a productive,
intellectually stimulating, yet relaxed atmosphere which is
remarkably conducive to research.

(1]

2

13]

[4

(51

=

(71

[8]

91

(10

[11]

(12}

[13]

[14]

[15]

{16]

[17]

[18]

[19]

[20])

21
[22]

[23]

[24]

[25]

(26]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 2, FEBRUARY 1995

REFERENCES

A. Vicino, A. Tesi, and M. Milanese, “An algorithm for nonconservative
stability bounds computation for systems with nonlinearly correlated
parametric uncertainties,” in Proc. 27th Conf. Decision Contr., Austin,
TX, vol. 3, 1988, pp. 1761-1766.

V. Balakrishnan, S. Boyd, and S. Balemi, “Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems,” Tech. Rep., Inform. Syst. Lab., Stanford Univ., 1991.

V. L. Kharitonov, “Asymptotic stability of an equilibrium position
of a family of systems of linear differential equations,” Differential
Equations, vol. 14, pp. 1483-1485, 1979.

A. C. Bartlett, C. V. Hollot, and L. Huang, “Root locations of an entire
polytope of polynomials: It suffices to check the edges,” Math. Contr.,
Signals, Syst., vol. 1, pp. 61-71, 1989.

M. Fu and B. R. Barmish, “Polytopes of polynomials with zeros in
a prescribed set,” IEEE Trans. Automat. Contr., vol. 34, pp. 544-546,
May 1989.

H. Chapellat and S. P. Bhattacharyya, “A generalization of Kharitonov’s
theorem for robust stability of interval plant,” [EEE Trans. Automat.
Contr., vol. 34, pp. 306-312, 1989.

F. J. Kraus, M. Mansour, and B. D. O. Anderson, “Robust stability
of polynomials with multilinear parametric dependence,” Int. J. Contr.,
vol. 50, pp. 1745-1762, 1989.

B. R. Barmish and Z. Shi, “Robust stability of a class of polynomials
with coefficients depending muitilinearly on perturbations,” IEEE Trans.
Automat. Contr., vol. 35, pp. 1040-1043, 1990.

R. R. E. de Gaston and M. G. Safonov, “Exact calculation of the
multiloop stability margin,” JEEE Trans. Automat. Contr., vol. 33, pp.
156-171, Feb. 1988.

B. R. Barmish, “New tools for robustness analysis,” in Proc. 27th Conf.
Decis. Contr., Austin, TX, vol. 1, 1988, pp. 1-6.

M. P. Polis, A. W. Olbrot, and M. Fu, “An overview of recent results on
the parametric approach to robust stability,” in Proc. 28th IEEE Conf.
Decis. Contr., Tampa, FL, 1989.

B. R. Barmish, “A generalization of Kharitonov’s four polynomial
concept for robust stability problems with linear dependent coefficient
perturbations,” IEEE Trans. Automat. Contr., vol. 34, pp. 157-165, 1989.
J. J. Anagnost, C. A. Desoer, and R. J. Minnichelli, “Kharitonov’s
theorem and a graphical stability test for linear time-invariant systems,”
in Robustness in Identification and Control, M. Milanese, R. Tempo, and
A. Vicino, Eds. New York: Plenum, 1989.

S. Dasgupta, P. J. Parker, B. D. O. Anderson, F. J. Kraus, and M.
Mansour, “Frequency domain conditions for the robust stability of linear
and nonlinear dynamic systems,” JEEE Trans. Circuits Syst., vol. 38,
pp. 389-397, 1991.

M. Mansour, F. Kraus, and B. D. O. Anderson, “Strong Kharitonov
theorem for discrete systems.” in Proc. 27th Conf. Decision Contr.,
Austin, TX, vol. 1, 1988, pp. 106-111.

J. D. Cobb and C. L. DeMarco, “The minimal dimension of stable
faces required to guarantee stability of a matrix polytope,” IEEE Trans.
Automat. Contr., vol. 34, pp. 990-992, 1989.

M. Fu, “Computing the frequency response of a transfer function with
parametric perturbations,” Syst. Contr. Lett., vol. 15, pp. 45-52, 1990.

, “Polytopes of polynomials with zeros in a prescribed region:
New criteria and algorithms,” in Robustness in Identification and Con-
trol, M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum,
1989.

M. Fu, A. W. Olbrot, and M. P. Polis, “Robust stability for time-delay
systems: The edge theorem and graphical tests,” IEEE Trans. Automat.
Contr., vol. 34, pp. 813-821, 1989.

G. Chockalingam and S. Dasgupta, “Minimality, stabilizability and
strong stabilizability of uncertain plants,” /EEE Trans. Automat. Contr.,
vol. 38, pp. 1651-1661, Nov. 1993.

A. Rantzer, “A finite zero exclusion principle,” in Proc. MTNS, Ams-
terdam, Netherlands, 1989, pp. 239-245.

I. Horowitz, “Quantitative feedback theory,” Proc. IEE, part D, vol.
129, pp. 215-226, 1982.

J. E. Ackermann, “Does it suffice to check a subset of multilinear
parameters in robustness analysis?,” /EEE Trans. Automat. Contr., vol.
37, pp. 487488, 1992.

H. Chapellat, L. H. Keel, and S. P. Bhattacharya, “Stability margins
for multivariable interval control systems,” in Proc. 30th Conf. Decision
Contr., Brighton, England, 1991, pp. 894-899.

Y. C. Soh, R. J. Evans, 1. R. Petersen, and R. J. Betz, “Robust pole
assignment,” Automatica, vol. 23, no. 5, pp. 601-610, 1987.

B. T. Polyak, “Robustness analysis of multilinear perturbations,” in
Robustness of Dynamic Systems with Parameter Uncertainties, M. Man-




FU et al.. NONLINEAR PARAMETRIC PERTURBATIONS

sour, S. Balemi, and W. Tuol, Eds.
Basel, 1992, pp. 93-104.

B. D. O. Anderson, F. J. Kraus, M. Mansour, and S. Dasgupta, “Easily
testable sufficient conditions for the robust stability of systems with
multilinear parameter dependence,” Automatica, to be published, 1995.
E. Zeheb, “Necessary and sufficient condition for robust stability of
a continuous system—The continuous dependency case illustrated via
multilinear dependency,” IEEE Trans. Circuits Syst., vol. 37, pp. 47-53,
Jan. 1990.

Monte Verita, Birkhauser, Verlag

27

(28]

Minyue Fu (S’84-M’87) was bomn in Zhejiang,
China, in 1958. He received the B.S. degree in
electrical engineering from the China University of
Science and Technology, Hefei, China, in 1992, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Wisconsin-Madison in 1983
and 1987, respectively.

From 1983-1987 he held a teaching assistantship
and a research assistantship at the University of
Wisconsin-Madison. In 1987, he was a Computer
Engineering Consultant at the Nicolet Instruments,
Inc., WI. From 1987-1989, he served as an Assistant Professor in the
Department of Electrical and Computer Engineering, Wayne State University,
Detroit, M1, where he received an Qutstanding Teaching Award. In the summer
of 1989, he was a Maitre de Conferences Invited at the Universite Catholique
de Louvain. Since 1989, he has been with the Department of Electrical and
Computer Engineering, University if Newcastle, Australia, where he holds
a Senior Lectureship. His current research interests include robust control,
dynamical systems, stability, signal processing, and computer engineering.

Dr. Fu was awarded the Maro Guo Scholarship in 1983 for his undergrad-
uate study in China. He is currently an Associate Editor for TRANSACTIONS
ON AUTOMATIC CONTROL.

223

Soura Dasgupta (S'81-M’87-SM’93) was born
in 1959 in Calcutta, India. He received the B.E.
degree in electrical engineering from the University
of Queensland, Australia, in 1980 and the Ph.D.
degree in systems engineering from the Australian
National University in 1985.

In 1981 he was a Junior Research Fellow in the
Electronics and Communications Sciences Unit at
the Indian Statistical Institute, Calcutta. He has held
visiting appointments at the University of Notre
Dame, University of lIowa, Université Catholique
de Louvain-La-Neuve, Belgium, and the Australian National University. He
is currently a Professor with the Department of Electrical and Computer
Engineering at the University of lowa, Iowa City. His current research
interests include controls, signal processing, and neural networks.

Dr. Dasgupta served as an Associate Editor for TRANSACTIONS ON
Automaric ConTROl from 1988-1991. He is Presidential Faculty Fellow
and a corecipient of the Gullimen Cauer Award for the best paper published
in the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS in the calendar years
of 1990 and 1991.

Vincent Blondel was born in Antwerp, Belgium, in
1965. He received the M.Sc. degree in engineering
and the Ph.D. degree in applied mathematics from
the Catholic University of Louvain in 1988 and
1992, respectively, and the M.Sc. degree in pure
mathematics from Imperial College, London, in
1990.

Since 1992, Dr. Blondel has held research posi-
tions at the University of Oxford and at the Royal
Institute of Technology, Stockholm, where he was
the 1993-1994 Goran Gustafson Research Fellow.
He is currently with INRIA Rocquencourt (the French National Research
Institute in Computer Science and Applied Mathematics) near Paris. His
current research interests include robust control, linear systems, analytic
function theory, and computational complexity of control problems.



