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Abstract

This paper considers the problem of robust stabilization
of non-minimum phase linear time-invariant single-input
single-output uncertain systems. Under certain assump-
tions, we show that a non-minimum phase LTI uncertain
systems with known order and known and invariant rel-
ative degree can be controlled to achieve robust stability
by using a linear periodic output feedback controller. Our
result generalizes similar results for LTT minimum phase
uncertain systems.

1. Introduction

It has been widely acknowledged that minimum phase
systems have great advantages over their nron-minimum
phase counterparts. In general, an LTI minimum phase
stable controller can be applied to a LTI minimum phase
SISO uncertain plant to achieve robust stability alone [1]
or robust stability with specified robust performance si-
multaneously [2, 3]. An LTI minimum phase stable con-
troller can even be applied to a linear time-varying min-
imum phase SISO uncertain plant to guarantee both the
robust stability and the robust model following perfor-
mance [4]. However, since open-loop zeros are not affected
in the LTI cases by LTI feedback, the results mentioned
above are not directly applicable to non-minimum phase
SISO LTI uncertain plants.

This paper generalizes the robust stabilization results in
[1, 2, 3] to non-minimum phase SISO LTI plants.

2. Problem Statement
Consider a SISO LT1 uncertain plant
D(p,0)y(t) = N(p,0)u(t) 1)

where p = 3‘1‘ and
m n
N8 =D bns(8)p', D(p.8) = an-i(8)p
=0 =0
and # is an uncertain parameter vector belonging to a set

© € RY, D(p,8) and N(p,8) are both real monic polyno-
mials and they are possibly unstable.

We introduce the following assumptions:
Assumptions:

1: The plant order n is known,

2. The uncertainty vector § belongs to a known compact
set ©;

3: The relative degree r = n — m > 1 of the plant is known
and invariant;
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4. The coefficients of N(p,8) and D(p,#) are continues for
all 8 € ©;
5 ai(0) €la,, @], i=1,---,n; bi(0) € [b: Bl

i=1,---,m, where g, a;, b, and b; are known a priori;

6. N(p,8) and D(p, 99 are coprime for all § € ©.

Following Barmish and Wei (1], Bellman et al. [5] and
Lee et al. [6], we show that a linear periodic output feed-
back controller of order n can be designed to make the
averaged open loop system minimum phase. Further, the
averaged system can be made robustly stable by tuning
the parameters of the linear periodic controller.

Due to space limitation, we briefly describe our main re-
sult in the next section. The details can be found in {8].

3. Main Result

Lemma 1: [5] Consider the following fast periodic sys-
tems of the form:

i:(A+%B(§))z (2)
Let
NN Y A
R= 7}13(1” T/o @7 (7, 0)AD(r,0)dT (3)
where ®(r,0) is the state transition matriz of
3—: = aB(7)z, T = ; (4)

Assume that ®(1,0) is bounded for all 7 € (—o0,00).
Then there exists €o, such that for any 0 < € < €o, the
system is asymptotically stable if R is a Hurwitz matriz,
i.e., the system is asymptotically stable if its averaged sys-
tem is asymptotically stable.

We propose the following periodic controller for (1):

i = [F+%AF(;)]2+9C1! (5)
1 1
u o= (hthe(2)z (6)
where
0 ! I._ 3 Ogn— 0
= [ Sy '1'] CaF() = U - g

ge=[0 - 01)7, h=Tho b1 - hn_1)
he(8) = [Bo(3) -+ Bner=a(2) 0 --- 0]

7 is the plant relative degree, and fT, h, o(t/e) and
Bi(t/€) are design parameters (vectors). Both o(t) and
Bi(t) are periodic functions, and a(t) can be chosen a pri-
ors.
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Denote an invertible Sylvester matrix S(8) as follows:

SWF=PL7W£TT_E%ag?i'QPJ

where
bper—y -+ by O ... 07T
Ni(0) =
0 0 l bn—r—l bo
Gno1 -+ @y -+ ap 0 T
No(8) = .
0 cer 0 1 @noy -+ a0
T
H—U”‘P%ﬂﬂ_;i_%_g_:_9_4

The basic idea of controller design is as follows:

We first apply the Averaging Principle (see, e.g. [5]) to the
state-space realization of plant (1) with controller (5)-(6).
Then re-arrange the averaged closed-loop system to get
an equivalent averaged open loop system with unit output
feedback. This equivalent averaged open loop system is
time-invariant and its transfer function takes the following
form:

Teq—ol(plo’fT’h’ 9) = _D_(:;'(z—,)i),—:::)f” @

where D.(p, fT) is a nth order polynomial with the de-
sign parameter f7, 9(p,8,h,q) is a (2n — r — 1)th order
polynomial with its coefficient vector §(8) = S(6)[h ¢]7,

¢ = [gner-1gn=r-2 --* o]
t)de

. . 1 T _ ra( T T - .
qi Th—x-nooT'/; e -L /o. A Bi(t)(dt) dr

Note that the parameters h and ¢ can be arbitrarily cho-
sen, implying that §(6o) can be made Hurwitz where
8o € © denotes the nominal vector. The following as-
sumption will guarantee that the Hurwitzness of the §(6o)
implies that of all §(4) for all § € ©:

Assumption 7:

3 a constant vector § = [gan—r—1 - - ~yo]T such that

0 0 -5 1
N -
1 <o 0 ——a
J 92n—-r—1
; _M
0 1 92n-r=-1

is a stable matrix and the following inequality is satisfied:

1

1€l < e T+ e T e T+ Te U]

where
E=1[0 [N1(0 —60) N2(8 — 60)]S™(60)3]

and M = []Il—gifolc] [J* denotes a matrix obtained by re-

placed its elements with their absolute values, p is the spec-
tral radius.

Once the transfer function (7) is minimum phase for
all 8 € O, we then tune the design parameter vector
f7T such that the equivalent averaged open loop system
Teq—ot(p, 8, fT, h, ¢) with unit output feedback is robustly
stable for all § € O(see [8]). Therefore, the averaged
closed-loop system is robustly stable for all § € ©. The
robust stability of the closed-loop system of (1),(5),(6) is
then guaranteed by Lemma 1. This leads to our main
result as follows:

Theorem 1: Under Assumptions 1-7, there exists a sta-
ble linear periodic controller (5),(6) to the given TTT
uncertain plant (1) such that the closed-loop system is
asymptotically stable.

Remark 1. 1t is well known that periodic controllers will
introduce oscillation into the system and therefore worsen
the system performance or even make the system perfor-
mance unacceptable (see, e.g. [9]). As observed by the
authors, the same performance problem occurs in our de-
sign although our plant and controller are continuous. Ba-
sically, periodic controllers must use oscillation to obtain
extra design freedom which is not feasible for their LTI
counterparts. Therefore, the performance problem is gen-
erally unavoidable. However, it is usually very hard for a
non-minimum phase LTI uncertain plant to achieve satis-
factory performance using a LTI controller. In such cases,
linear periodic controllers may be used to achieve specific
design objective, for example, gain margin improvement
while still maintaining reasonable performance require-
ment. An open problem is how to analyze the tradeoff
systematically and to find possible applications for linear
periodic controllers.
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