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Robust H, Filtering for Continuous Time Varying
Uncertain Systems with Deterministic Input Signals

Carlos E. de Souza, Senior Member, IEEE, Uri Shaked, Fellow, IEEE, and Minyue Fu, Member, IEEE

Abstract—Many dynamical systems involve not only process
and measurement noise signals but also parameter uncertainty
and known input signals. When £, or H.. filters that were
designed based on a “nominal” model of the system are applied,
the presence of parameter uncertainty will not only affect the
noise attenuation property of the filter but also introduce a
bias proportional to the known input signal, and the latter
may be very appreciable. In this paper, we introduce a finite-
horizon robust H filtering method that provides a guaranteed
Hoe bound for the estimation error in the presence of both
parameter uncertainty and a known input signal. This method
is developed by using a game-theoretic approach, and the results
generalize those obtained for cases without parameter uncertainty
or without a known input signal. It is also demonstrated, via
an example, that the proposed method provides significantly
improved signal estimates.

I. INTRODUCTION

N contrast with the conventional £, estimation algorithms

that minimize the variance of the estimation error (see,
e.g., [1]), recent advancement in signal estimation has focused
on the development of H., estimation methods (123191,
[11]-[18]) that aim at minimizing the peak of the spectral
density of the estimation error. The motivation for the Ho,
approach is that the statistical assumptions and information
on the noise sources are often inaccurate, or unavailable, and
also that the £5 estimation methods are sensitive to parameter
variations in the signal process; see [14] for a survey of the
Ho estimation algorithms.

As in the £y case, Ho, filters are usually designed based
on a “nominal” model of the signal process. For this reason,
we shall refer to them as “nominal” H filters. Although the
“nominal” H, filter has been shown to be less sensitive to
parameter variations in the signal process than the correspond-
ing Lo filter (see, e.g., [13] and Section II), no guaranteed
performance is provided when the true signal process deviates
from the assumed model.

To solve the above problem, a robust H,, filtering method
has been developed in [6], [15], and [16] to guarantee a
prescribed H, performance in the presence of parameter un-
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certainty. It will be demonstrated, via an example, in Section II
that such a robust M, filter far outperforms the corresponding
“nominal” H., and the £, filters.

The focal point of this paper is to address the robust H,
filtering problem for signal processes with both parameter
uncertainty and a known input signal. Note that if the signal
process does not involve parameter uncertainties, it is well
known that for both £, and H, filters the existence of a
known input does not affect the estimation error, i.e., the
contribution of the known input signal can be completely can-
celled (see, e.g., [11, [11]). This significant feature is, however,
no longer valid in the presence of uncertain parameters. As a
result, the estimation error will have, in general, components
due to both the process and the measurement noise signals
and the known system input. In Section II, we shall show,
via an example, that the second component may be far more
appreciable than the first one, when the filter is designed based
on the nominal values of the parameters.

In this paper, we generalize the robust H,, filtering ap-
proach of [6], [15], and [16] to cope with the case where the
process has a known input signal. The goal of the filter is to
provide a uniformly small estimation error for any process
and measurement noise signals and for any initial state in
the presence of parameter uncertainty and a known input
signal. The problem will be solved in the finite-horizon setting.
As in [6] and [16], one of the key ideas is to convert the
parameter uncertainty into a fictitious £, noise signal and
to formulate an auxiliary problem that does not involve any
parameter uncertainty. It will be shown that the solution to
the auxiliary problem, if it exists, guarantees, when applied
to the original problem, a prescribed performance in an Hoo
sense. A game-theoretic approach is used to solve the auxiliary
problem, which gives a solution in terms of Riccati differential
equations. Three types of input signals are considered: causal,
causal with known average, and noncausal. Causal signals
are those that can be measured but not predicted, whereas
noncausal signals are known a priori. Different filters are
derived for the three cases.

The results of this paper will be demonstrated in an ex-
ample that illustrates the significant improvement that can be
achieved in signal estimation with the new technique.

It should be noted that the filtering methodology of this pa-
per resolves one of the major difficulties that was encountered
with H, filtering, namely, the filter design in presence of
measurable disturbances. This difficulty is easily resolved by
the theory of this paper by considering the measured part of
the disturbances as a known input signal.
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Fig. 1. Signal-generating mechanism.

II. MOTIVATION

To motivate the robust H filtering problem that is studied
in this paper, we show via an example that filter designs that
do not take into account parameter uncertainty may render a
very poor signal estimate.

Consider the signal-generating system in Fig. 1 with the
following mathematical model:

.o -1+6 —0.4545 g

v {1 ~05 }g” { 0.9090 ]“’J" [o]r @D
y=[0 100]z+wv 22
z=[0 100]z (2.3)

where z is the state, w is the process noise, r is a known
deterministic input signal, y is the measurement, v is the
measurement noise, z is the signal to be estimated, § represents
an uncertain parameter that satisfies |§] < § = 0.3, and g is
a known input gain to be specified later.

Both infinite horizon Kalman and “nominal” H, filters
are designed for the nominal system that has been chosen to
correspond to § = 0. These filters are of the form

() = ﬁ’ _‘0%5}55@) + [g}r(t) + K[y(t) — M(t))]
2(ty=[0 100]&(2)

with M = [0 100], where 2(t) is the estimate of z(¢) and
K is the filter gain. For the Kalman filter design, the noise
sources w(t) and v(t) were assumed to be uncorrelated, zero-
mean, white signals with unit power spectrum density. The
corresponding filter gain is given by

K = Ky =[0.447 0.909]7.

For the “nominal” H, filter design, we take v = 1.1 = 0.8
dB and design the filter to achieve

L
llellz < v [llwl3 + lI113]
where e(t) denotes the estimation error z(t) — 2(t). This yields
K=K, =[1.035 2181]7.

In the above, || - ||z denotes the norm in £3[0, c0). We then
apply the two filters to the perturbed plant of (2.1)—~(2.3), with
6 = —b6 and § = &. The frequency response magnitude of
the transfer functions from [w(t) wv(¢)]  and r(t) to e(¢),
denoted by [Gew(s) Geu(s)] and Ge,(s), respectively, are
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shown in Figs. 2 and 3 for both filters. From these figures, we
make the following observations:

1) The magnitude of [Geyw(jw) Gev(jw)] and Ger(jw)
are worsened for both designs when the parameter
uncertainty exists (note that G,.(s) = 0 when there is
no parameter uncertainty).

The magnitude of G,,(jw), which is identically zero
in the absence of parametric uncertainty, may be far
more significant than that of [Gey(jw) Gey(jw)] for
both designs, even in the case of a moderate 7.

The Kalman filter is more sensitive to changes in the
parameter § than the “nominal” H. filter.

Based on the above observations, there is a need to consider
the uncertainty in the design procedure, and a more robust filter
design methodology needs to be developed.

For the case where there is no deterministic input signal, i.e.,
r(t) = 0, a robust H filtering theory has been developed to
cope with parameter uncertainty (see [6], [15], and [16]). We

2)

3)
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now show, by using the above example, that this theory yields
signal estimates that are much more robust than those achieved
by the Kalman and the “nominal” H, filters. Applying the
results of [6] to this example, the resulting robust M, filter
is given by

5 -0.505 —-1.117
2.4)
2(t) = [0.077  100.018)(t) 2.5)

=[7.938 2.354]. (2.6)

The corresponding magnitude of (G, (jw) Gey (jw)] is shown
in Fig. 4 for § = 0, —&, and &. Note that this result is much
more robust than those in Figs. 2 and 3.

The above results demonstrate that it is crucial to take the
parameter uncertainty into account in the design of the fiiter.
The methods in [6], [15], and [16], however, are not readily
applicable to systems that have a known deterministic input
signal. The focal point of this paper is to generalize the theory
of [6], [15], and [16] to solve the robust H filtering problem
with such a known input signal.

III. PROBLEM FORMULATION AND A KEY LEMMA

Consider the uncertain linear system, described by

(B): 2(t) = [A(t) + AA®))z(t) + By (t)w(t)
+ Ba(t)r(t), =(0) == 3.1)
y(t) = [C(t) + AC(H)]z(t) + v(t) (32)
z(t) = L(t)z(t) (3.3)

where x(t) € R™ is the state, w(t) € R is the process noise,
r(t) € R" is a known deterministic input signal, y(t) € R™
is the measurement, v(t) € R™ is the measurement noise, and
z(t) € R7 is the signal to be estimated. A(t), By(t), Ba(t),
C(t), and L(t) are known real bounded piecewise continuous
matrix functions that describe the nominal system, and AA(t)
and AC(t) represent parameter uncertainties in the matrices
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A(t) and C(t), respectively. The admissible uncertainties are
assumed to be of the form

A(t) = Hi(t)F()E(t); = H()F(H)E(t) (3.4)

where F(t) € R is an unknown matrix function with
Lebesgue measurable elements satisfying

AC(t)

IF@OI <1, vt (3.5)
where ||.X|| denotes, for a matrix X, the maximum singular
value. Hy(t), Hx(t), and E(t) are known bounded piecewise
continuous matrix functions of appropriate dimensions that
specify how the uncertain parameters in F'(¢) enter the nominal
matrices A(t) and C(t). Note that the uncertain matrix F(#)
is allowed to depend on the state, as long as (3.5) is satisfied.
For the sake of notation simplification, we shall omit in the
sequel the dependence on t in the matrices when there is no
confusion.

In this paper, we are concerned with obtaining an estimate
2(t) of z(t) over the horizon [0, 7], using the measurement
history {y(7), 0 < 7 < t} and the known input signal, 7(-).
The filter is required to provide a uniformly small filtering
error, e(t) = z(t) — 2(t), for any w and v in £y [0,T]
and zo € R, and for all admissible uncertainties. We shall
consider the following performance index

= [llwll3 + [lv]l3
+ llzo — 2ol|%]

J(’LU,’L}71'0,7'72A1) = ”Z - 2”%
(3.6)

where v > 0 is a given scalar that indicates the level of “noise”
attenuation, Z¢ is an a priori estimate of zo, and R = RT >
0 is a given weighting matrix that reflects the confidence
in the estimate Zo. In the above, ||z||% denotes z7 Az and
||v||2 means the £5[0,T]-norm defined as ||v||2 = fOT vTodt.
Also, M > N (respectively, M > N), where M and N are
symmetric matrices, means that M — N is a positive definite
(respectively, semi-definite) matrix.
The admissible filter is assumed to be of the form

2=Guy+Gr+G.do

where G,, G, and G, are dynamic operators. The operator
Gy is causal, whereas G, can be either causal or noncausal,
depending on whether the exogenous signal r(-) is, respec-
tively, measured online or known a priori. It should be noted
that we do not a priori restrict the admissible filter to be
linear. Indeed, Gy, G, and G, are allowed to be nonlinear
and possibly time-varying operators.

The robust filtering problem for the system (%) consists of
finding an estimate z(t), Vt € [0, 7], which minimizes

sup  {J(w,v,xz9,7,2)}. 3.7

w,v,xq,F(t)

An optimal solution 2*(-) will guarantee that for all admissible

uncertainties

2015 < V[llwll3 + loll3 + llz = &oll3] + J*(r,20),
Yw,v € [:2[0, T], Vzy € R"

Iz -
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where J*(r,£¢) denotes the minimum value of (3.7). The
above filtering problem, which is indeed a worst-case filter
design, will be referred to as robust H, filtering.

We shall investigate the above filtering problem for three
different patterns of information for r(-). Define the history
up to time £ of the measurement y and the signal r by

Ye={y(r), 0<7<8  Re={r(r), 0<7<}.

The problems we shall consider are as follows:

P.1) Filtering with a Noncausal Signal v(-): The  signal
r(-) is assumed to be known a priori for the whole horizon
[0,T). The problem is to find an estimate 2(t), V¢ € [0,T),
based on zg, V;, and R, such that (3.7) is minimized.

P.2) Filtering with a Causal Signal v(-): The signal () is
measured online but cannot be predicted. The problem is to
find an estimate 2(t), V¢ € [0, 7], based on zg, ), and R,
such that (3.7) is minimized.

P.3) Filtering with a Causal Signal r(-) of Known Average:
The signal r(-) is measured online and is of the form

r(t) = 7(t) + ra(t), Vte[0,T] (3.8)
where 7(-) is known a priori over the horizon [0,7]. The
problem is to find an estimate 2(¢), V¢ € [0, 7, based on o,
Vs, and {R;, Rr}, such that (3.7) is minimized where Ry
denotes the time history {7(7), 0 < 7 < T}.

Remark 3.1: We observe that filtering problems with ex-
ogenous signals as in (P.1)—(P.3) arise in a number of practical
situations. A solution to (P.1) and (P.2) resolves the problem
of H filtering in the presence of, respectively, known and
measured deterministic disturbances, and parametric uncer-
tainty. The motivation for (P.3) stems from practical filtering
problems with an exogenous signal r that is measured online
and where one does not know the future of r but its average
component 7 in the future is known.

Remark 3.2: Note that in the filtering problem (P.2) we
have not assumed an a priori knowledge of a model that
produces the signal r. We observe that when a latter model is
known, it may be incorporated into the filter design by aug-
menting the system (X) to include this model. However, this
a priori knowledge is, in many cases, inaccurate and hardly
available. Moreover, it seems strange to assume anything on
a signal that can be actually measured.

The key idea used here in order to guarantee robust per-
formance is to convert the uncertainties to fictitious noise
source and to solve an auxiliary filtering problem that does
not involve parameter uncertainty. The performance index for
this auxiliary problem, if solvable, yields an upper bound for
the worst-case performance index of (3.7). Justification for this
technique is provided in the sequel.

Introduce the following auxiliary system:

() 0(t) = An() + [Bi THi|a()
+ Ba(t)r(t), n(0) =mo (3.9)
Ya(t) = Cyp(t) + [0 %Hz]u"/(t) +a(t) (3.10)

za(t) = [LT eET)"n(t) @.11)
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where 7(t) € R™ is the state, 79 is an unknown initial state,
w(t) € RP** and §(t) € R™ are noise signals, yo(t) € R™ is
the measurement, z,(t) € R4t is the signal to be estimated,
r, A, By, By, C, E, Hy, Hy, and L are as in (3.1}-(3.4),
and € > 0 is a scaling parameter to be chosen. Associated
with the system (Z,) we introduce an estimate for z,(t),Vt €
[0,T), of the form

5 =127 oF (3.12)

where 2(t) is an estimate of Lz(t) using the measurements
{ya(7), 0 < 7 <t} and the input signal r. Next, we define
the following performance index for the estimate Z,(t):

Ja(ﬁja i}a 05Ty 27 6)
= |20 — 2all3 = ¥*[I1B113 + 16113 + llno — ZollR] (3.13)

where 7, £, and R are as in (3.6).

Hence, we have the following result:

Lemma 3.1: Consider the systems () and (X,) together
with the performance indices (3.6) and (3.13), respectively.
Then we have that for any ¢ > 0

sup  {J(w,v, 0,7, %)} < sup {Jo(W,,m0,7,%,6)}.
w,v,x0,F(t) w,,m0
Proof: For any given zg, F, w, v, r, and 2 for the system
(¥) and any € > 0, take

o = o, W(t)= [EW_FF(gx(t)], 5(t) = v(t). (3.14)

Then, for all t € [0, T], we have

n(t) =z(), va(t) =y(t), za(t)= [egg()t)]
which implies

Ja(,9,m0,7,2,€) = ||z — 213 — ¥*{lwll3 + [lv]|3
+ |lzo — #oll%] + 2 [IIE=|13
- ||FE=|j3].

Now, considering (3.5) with 7o, @, and 9, as in (3.14), we
obtain that

']a(ﬁ)7 57 0,7, 27 E) > J(w7 v, Zo, T, 2)

and the result follows immediately. O

In view of Lemma 3.1, our approach for solving the robust
Ho filtering problem involves consideration of the worst-case
of the performance bound (3.13) in lieu of the worst-case
performance (3.7). This leads to the following problem:

Find an estimate 2,(t),Vt € [0, T}, of the form (3.12) using
the measurements {y,(7), 0 <7 <t} and the known input
signal, r, that solves the auxiliary problem

mjn{ sup [Ja(tl),'&,no,r,é,e)]} (3.15)

z w,0,m0
subject to (3.9)—(3.12). Note that the system (X,) is parame-
terized by €, which is a scaling parameter to be searched in
order that an estimate, 2, solving (3.15) be found.
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Remark 3.3: The above estimate 2, with y, replaced by
y, will provide an estimate of z for the robust H, filtering
problem. Note that the case of r(¢} = 0 has been analyzed in
[6], [15], and [16], in both the continuous and the discrete-time
contexts, and it has been shown there that the above estimate
% guarantees the following M., performance

llz = 211 < 7* [llwllf + lloll3 + lz — Zo%]

for any w and v in L5 [0, T] and 2o € R" and for all admissible
uncertainties.

Remark 3.4: Although the auxiliary problem (3.15) does
not have any parameter uncertainty, it cannot be treated via
the standard M, estimation techniques. This is because the
estimate 2,(t) is restricted by (3.12). Therefore, an alternative
solution is required.

IV. MAIN RESULTS

In this section, a solution to the auxiliary filtering problem
introduced in Section III will be developed using a game the-
oretic approach, where the estimator plays against adversaries
composed of the noise sources and the initial state.

A. Game Theoretic Solution to the Auxiliary Problem

The deterministic linear-quadratic game problem is to find
2 € L5t[0,T), worst-case noise signals, w(-), #(-) € Lt[0,T]
and worst-case initial state 7790 € R™ to achieve

min max Ju(w, v, 9,7, 2,¢€)
z w,v,no

subject to (3.9)~(3.11). As in the problems P.1)}-P.3), the
estimate 2(t), Vt € [0,T] is based on #¢, );, and either Ry,
Ry, or {R¢,Rr}, depending on the available information on
the exogenous signal 7(-) at time t.

In view of (3.10)~(3.13), the optimization problem (4.1)
can be recast into the form

4.1)

méinénﬁai){ja = ||Ln — 2[I3 + lleEnl|3 — +*[|@]|3
+ llva — Cn = Du||3 + |Ino ~ 20l|3]}
“2)
where
B, =0 L1m)
£

Inspired by [2], the above game will be solved in two stages.
We consider first the maximization of J, with respect to w and
no for given 2 and y,. Then, a min—-max optimization of the
resulting cost function will be performed with respect to 2
and y,, respectively.

We first find the necessary conditions for optimality of 7
and w, for given Z and y,. We shall later provide a sufficiency
proof. To begin, we adjoin to the performance index J, the
constraint (3.9) using a Lagrange multiplier 242, i.e., we
consider the modified performance index

Jo = |ILn — 13 + [l En|)2
= 7?13 + lIno = Zoll% + lya — Cn — Dowi||Z]

T
+ 2980T / (=7 + An + By + Bor)dt
0

where
B, = [B1 ng] .

By using standard optimization results, the maximizing
strategies 75 and @w* must satisfy the following:

ng = 0+ R™1A(0) 4.3)
w" = D[ByA+ Dy(ya — Cn*)] 4.4)

A= —ATX—y2CT Cin* ~ CT(yo — Cn*)
+ CTDyi* +472LT2, NT)=0 4.5)

where 7" is the solution of (3.9) with g = n} and w = @*,
and

CT =[LT ¢ET], D=(I+DID,)™". 46

Note that (3.9) together with (4.3)~(4.5) give rise to a linear
two-point boundary value problem whose solution can be
assumed in the following form:

7" () = 0(t) + QA1)

where 7) and @ are to be determined.
Differentiating (4.7) and considering (3.9), (4.4), and (4.5),
we obtain that 7 and @ satisfy

1= (A+772QCTC1)i + Bi(ya — C)

“.7

— B33+ Bor, 7(0) = &g (4.8)
Q=4AQ+QAT+Q(v2cTc; - ¢TDC)Q
+ B,DBT, Q0)=R"! 4.9)
where
D=I1-D,DDL,  A=A-B,DIDC, (4.10)

By = (QCT + B,DI)D,

We note that D = (I + D,,DT)~! and DDT = DI D. Also
observe that since Q(0) > 0, it follows by well-known results
on Riccati differential equations (see, e.g., [10]) that if the
solution Q(2) to (4.9) exists over [0, T, then Q(¢) is symmetric
positive definite over [0, 7).

Substituting (4.3) and (4.4) in J,, it is easy to show that
J, becomes

Jo = |L(7 + QX) - I3
+ leBG + QN3 =22 1D~ BIA3

By =~72QLT. 4.11)

+ D% [ya — €1+ QNI + IAO)I3-1]- @.12)
In the sequel, we shall perform the min-max optimization

of J, with respect to Z and y,, respectively. Adding to (4.12)
the identically zero term

T
0=72 [ LT +22A0)
0
= 7*{-172ICLQAII3 + D CQAI3 + || D¥ BIAIR
T
+ / 2/\TQ[fy*2(LTé - CTCi) — CTD(y, — Cﬁ)] dt
0

+ A3 }
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it can be easily derived that
PN . =1 .
Ja = | L) = 2|13 + leEl3 = ¥*I1D* (ya — CAII3-
Next, introducing the changes of variables

=Lh—-% (4.13)
V=Y, —Ch (4.14)

Y

the min—max optimization of J, with respect to Z and y,,
respectively, results in the following minimax problem

minmax { J, = el + |21} - +ID¥oll}}  @.15)
subject to (4.9) and
# = AR+ B19 + Bsz + Bor,

H0) =0 (4.16)

where
A=A+e2y2QETE.
Consider the following Riccati equation
“X=ATX + XA+ X('y‘zﬂlf)"le - B2BZT)X
+¢’ETE, X(T)=0 4.17)
where the existence of X (t) over [0, T is assumed. Note that

X (t) is symmetric positive semi-definite over [0,77]. From
(4.16) and (4.17), by completion to squares we get

T
0= f %(ﬁTXﬁ)dtHc[{X(o)jo
0

= ||z + B Xn|}3 - ||2l13 — +*|D¥ (5 - v 2D~ BT X#) |13
+72 1D 5|3 — lleEall3
+2 /0 ) 7T X Bardt + 37 X (0)o. (4.18)
Adding the above zero quantity to J, of (4.15), we obtain
Jo = |12+ BT Xill3 - *|| D (3 — v 2D~ BT X#)|[3
+2 A ) AT X Byrdt + ||2ol|% (o)-

Hence, by defining

C.=zZ+BIX#, (¢ =v-72D'BIXH (4.19)
the minimax problem of (4.15) can be changed to
min max {J,, = G153 = ID* G113
T
+2 /0 7T X Bordt + ||®0||§((0)} (4.20)
subject to (4.9), (4.17), and
i = Afj+ BiGy + BaGo + Bar, #(0) =g (4.21)

where

A=Aa+e7°QETE + (v*BiD7 B - B,BY ) X.
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Now, by using standard optimization techniques, we can
easily show that the maximizing strategy (; satisfies

¢ =+"2D'Bfe 4.22)

where

6 =—-AT0 — XByr, 6(T)=0.

Note that, since the worst-case @ and ¢ may not be bound
by causality constraints, the optimal strategy of ¢, should not
necessarily be causal with respect to the signal .

Adding to (4.20) the identically zero term

(4.23)

T
0=2 / 4 6Ta)dt + 207 (0)o
0 dt .
and substituting (4.22) in (4.20) and (4.21), it follows that

Jo=(L+BIX)H+ Bab — 2|3+ J(r, )  (4.24)

where
J(r,50) = v~2|\ D4 BT 6|13 - | B 6113
T
+2 / 0T Byrdt + 207 (0)30 + ||Zoll% o) - (4-25)
V]

Hence, the minimax problem reduces to minimizing (4.24)
with respect to £ subject to (4.9), (4.17), and

h= [21 +By(L+ B{X)]r} +~7*B,D7'BT6
- BTz 4 Bor, #(0) = io.

The solution of the above minimization problem will depend
on the available information on the input signal r(-). In the
next three theorems, we provide a solution to the minimax
problem of (4.1) for each of the information patterns of r(-)
discussed in Section III. First, we introduce a condition that is
fundamental to the results in this paper.

Condition 1: There exists an € > 0 such that the following
holds:

a) There exists a solution Q(t) to (4.9) over [0, T).

b) There exists a solution X (t) to (4.17) over [0, T.

The first result provides a solution to the minimax problem
of (4.1) with a noncausal exogenous signal r(-).

Theorem 4.1: Consider the system (X,), where the input
signal () is known a priori over the horizon [0,T)]. Then
the minimax problem of (4.1) has a solution if Condition 1
is satisfied. An optimal solution for 79,w, and ¢, is given
by (4.3), (4.4), and (4.22), respectively, whereas a minimizing
strategy for Z is

(4.26)

#*=(L+B]X)q" + B30 4.27)

where 8(t) is as in (4.23), and 7*(t), Vt € [0, T, satisfies
(7_251[)_13’{‘ - BzB’{)o + Bor,
(4.28)

Moreover, the optimal value of the performance index J, is
J(r,&0) of (4.25).

Proof: See the Appendix. O
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We note that in view of (4.23), the above minimizing
strategy Z* is noncausal with respect to the signal r(-). Since
r(-) is known in advance over [0, 7], the above noncausality
is not a problem for the implementation of 3*.

The next theorem deals with the case where the input
signal 7(-) is measured online but cannot be predicted. In this
situation, the minimizing strategy for 2(-) is required to be
causal with respect to 7(-). Firstly, we decompose 7 of (4.26)
as follows:

=17+ M (4.29)
where 7).(t) and 7);(¢) are, respectively, the “causal” and
“noncausal” parts of 7 at time ¢, which are given by

fie = [A+ Bo(L + BIX) .

— BTz 4 Byr, 710(0) = &o. (4.30)
i = [A+By(L+ BIX)in
+772B1D7'BTe,  4(0)=0. (431

Theorem 4.2: Consider the system (X,) where the input
signal r(-) is given online. Then the minimax problem of
(4.1) has a solution if Condition 1 is satisfied. An optimal
solution for 79,0, and ¢, is given by (4.3), (4.4), and 4.22),
respectively, whereas a minimizing strategy for (3) is

2" = (L+ B X)#: (4.32)
where 77 (t),Vt € [0, T], is the “causal” part of #*(-) of (4.28)
at time ¢, given by
0z = AL+ Bar,  i2(0) = do.
Moreover, the value of the performance index is
Ja(@", G5, 2%, ) = (L + BY X )i+ B 6]3+ J (r, o)

with 6(-), J(r,20), and 7,(-) being given by (4.23), (4.25),
and (4.31), respectively.

Proof: See the Appendix. O

We now provide a solution to the game problem of (4.1)
in the case of a “causal” input signal with a known average,
ie., r(-) is measured online and is of the form (3.8) with 7(+)
being known a priori over [0, T]. We begin by introducing
the following decomposition of # and #

6=0,+86,
7= fla + Mg

(4.33)

(4.34)

where 0,(t) and 7,(t) are the “causal” parts at time ¢ of

6(-) and 7)(-) respectively, whereas 4(t) and fa(t) are the

corresponding “noncausal” parts, which are given by
b= —AT8, — XByr,  6,(T)=0

~AT8,— XByra,  64(T) =0

o = [A+ Ba(L+ BIX) i +4~2B, D7 BT,

(4.35)
(4.36)

L,
S
Il

~BJi+Bor,  ,(0) = i (4.37)
a = [A+ By(L+ BI X))
+772BiD7' BI04+ Borg,  54(0) =0 (4.38)

where 7(-) and r4(-) satisfy (3.8).

Theorem 4.3: Consider the system (X,) where the input
signal (-) is given online and is of the form (3.8) with 7(-)
being known a priori over [0, T]. Then the minimax problem
of (4.1) has a solution if Condition 1 is satisfied. An optimal
solution for 79, w, and (, is given by (4.3), (4.4), and (4.22),
respectively, and a minimizing strategy for 2 is

2* = (L+ BfX)#w; + BT¢, (4.39)
where 6, (-) is as in (4.35) and 7 (t), Vt € [0, T] is the “causal”
part of 77*(-) of (4.28) at time ¢, given by

s = A0+ (v 2BiD7 BT - By BY Yt Bor, #2(0) = o.
Moreover, the value of the performance index is
Ja (W, (55 ng,T 2% €)= |I(L+BgX)ﬁd+ngdll%+j(T’ o)

where J(r, o), 04(-) and 74(-) satisfy (4.25), (4.36), and
(4.38), respectively.
Proof: See the Appendix. O
Remark 4.1: We observe from the results of Theorems 1-3
that a linear estimate for z happens to give an optimal solution
to the minimax auxiliary problem of (4.1) for each of the three
patterns for the input signal r(-).

B. The Robust H, Filter

Similar to the case of standard filtering, a solution to
each of the robust H., filtering problems of Section I is
obtained from z* of Theorems 4.1-4.3, with the adversaries
w, v,and mo not necessarily playing their optimal strategies
w*, v*, and 75, respectively.

In view of Lemma 3.1 and Theorems 4.1-4.3, we can easily
derive the following corollaries.

Corollary 4.1: Consider the system (%) with a noncausal
input signal (-), and let v > 0 be a given scalar. Then, if
Condition 1 is satisfied, the following filter

2= (L+BIX)i+ Bl (4.40)
§=—AT9— XByr, 6(T)=0 (4.41)
&= Aci + Bi(y — C#) — BoBYO + Bor, 3(0) = &0
(4.42)
where
A.=A-BBTXx (4.43)

will guarantee the performance

llz = 2113 < *(llwll3 + I1vlI3 + llwo — &oll%] + J(r, zo)
(4.44)
for any w and v in L[0, T and xy € R™ and for all admissible
uncertainties, where J(r,2¢) satisfies (4.25).

Remark 4.2: The estimate 2 depends causally on the mea-
surements, y(-), but is noncausal with respect to the input
signal, 7(-). Note that first the signal 6(-) needs to be computed
by backward integration of (4.41). Then, the estimate 2(-) is
obtained causally .from (4.40) and (4.42).

Observe that when (3.1) has no input, signal r(-), 8(-) will
be identically zero over [0, T']. In this case, it is easy to see
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that the filter (4.40)—(4.42) recovers the robust Ho, filter of
[6], and provides the robust performance

llz = 2115 < V{llwll3 + lvl3 + llzo — ZollZ],
Vo € R, VYw,v € L2[0,T). (4.45)

Also note that in the case where there are no parameter
uncertainties, i.e., £ = 0, it is easy to see from (4.17) that
X(t) = 0,Yt € [0,7). This implies that §(t) = 0,Vt €
[0, T}, and the filter (4.40)~(4.42) recovers the standard Ho
filter with a known deterministic input r(-). Moreover, the
performance of (4.44) reduces to (4.45).

We now present a robust filter that is causal with respect
to both the measurements, y(-), and the deterministic input
signal 7(-).

Corollary 4.2: Consider the system (X) where the input
signal 7(-) is causally measured, and let v > 0 be a given
scalar. Then, if Condition 1 is satisfied, the following filter

:=(L+ B X)i.
-%c = Aeﬁc + Bl(y - C-'i:c) + BZTv

(4.46)
#(0) = &g (4.47)

will guarantee the performance

llz = 2013 < 2 [llwli3 + vl + llzo — Zoli%]
+|[(L + B] X )y + BF 0|13 + J(r, &0) (4.48)

for any w and v in £2[0,7] and zo € R", and for all
admissible uncertainties, where 6(-), J(r,&o), and 7:(-) are
as in (4.23), (4.25), (4.31), respectively.

Remark 4.3: As in the case of a noncausal input signal
r(-), when there is no parameter uncertainty in system (X)
X (t) is identically zero on [0, 7). In this situation, the filter
(4.46)—(4.47) reduces to a standard H filter with a known
deterministic input, and (4.48) becomes (4.45).

Corollary 4.3: Consider the system (X) where the input
signal () is measured online and its average component 7(:)
is known a priori over [0,T]. Given a scalar v > 0, then, if
Condition 1 is satisfied, the following filter

2=(L+ By X)&q.+ Bj b, (4.49)
8 = —ATH, — XBoF, 6,(T)=0 (4.50)
£ = AcatB1(ya—Cha)—BaBj 6+ Bor,  £a(0)=10

(4.51)

will guarantee the performance

llz = 213 < ¥*[llwll3 + lIolI3 + llzo — Fol7]
+ (L + B3 X)fia + B3 643 + J(r,%0)
(4.52)
for any w and v in £3[0,7] and zo € R, and for all

admissible uncertainties, where J(r,Zo), 84(-), and 7(-) are
given by (4.25), (4.36), and (4.38), respectively.
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Remark 4.4: The component of Z due to the measurement y
in Corollaries 4.1-4.3 turns out to be identical to the estimate
of z in [6] which considered the case without a known input
signal.

In Theorems 4.1-4.3 and Corollaries 4.1-4.3, the Riccati
equation for X (t) depends on the one for Q(t); see (4.17).
This may be inconvenient for searching a suitable parameter
e. If desired, the Riccati equation for X (¢) can be replaced
by one that is decoupled from Q(t) but with a spectral radius
constraint. This is represented in the next lemma which can
be proved similarly as Theorem 3.7 in [10]. First, introduce
the Riccati differential equation

- P=ATP+PA+PB,BIP+¢ETE, P(T)=0.

(4.53)

Lemma 4.1: Suppose that (4.9) has a solution Q(¢) on
[0,T]. Then (4.17) has a bounded solution X(t) on [0, T
if and only if (4.53) has a bounded solution P(t) on [0,T]
and p[P(1)Q(t)] < 7%, ¥t € [0,T). Furthermore, X (t) =
[I =y 2P(®)Q(t)] " P(2).

In the above, p(-) denotes the spectral radius of a matrix.
In view of Lemma 4.1, the results of Theorems 4.1-4.3 and
Corollaries 4.1-4.3 also hold with Condition 1 replaced by
the following:

Condition 2: There exists an € > 0 such that the following
holds:

a) There exists a solution P(t) to (4.53) over [0, T].
b) There exists a solution Q(t) to (4.9) over [0, T].
o APMQW] < v, Yt € 1)

V. AN EXAMPLE

We consider the example in Section II and will show that
a filter designed by using the proposed robust H. filtering
method will yield much more satisfactory signal estimates,
i.e., improved robustness properties, compared to the Kalman
and standard M filters based on the nominal model.

The uncertainty in this example is of the form (3.4)~3.5)
with

H,=[03 07, Hy=0, E=[0 1].

Since the simulation of Section II is for the infinite horizon
case, we apply below the theory of Sections III and IV for a
very large T For simplicity, we assume that zo = O and that
7(t) is a unit step input that is known a priori, and we take R
very large, Zp = 0, g = 10, and v = 1.1.

For € = 0.1, both (4.9) and (4.17) have a bounded solution
over [0,7]. As T and R approach infinity, these solutions
converge (numerically) to

’

3.7197 0.0794]

0.0119 0.0006
@= [0.0794 00235 F X7 [ ]

0.0006 0.0113

Since 7 is a constant and we are considering T — oo,
(4.41) simplifies to

9 =—(AT)"1X Byr. (5.1)
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In view of the above, the following stationary form of the
filter (4.40)—(4.42) is used:

&= Acd + By(y — C2) + B,r (5.2)
t=(L+BfX)z+D,r (5.3)
where
B, = [I + BB (AT)"'X]B, (5.4)
and
D, = -BY¥(AT)"1XB,. (5.5)
Computation of the matrices above yields
s [-0505 —1.1177. 0.918
a(t) = {0.850 —0,535]””“)+ [—0.241}’”
7.939 .
+ [2‘354] {y(®) — [0 100]2(t)} (5.6)

2(t) = [0.077 100.018]é(t) + 0.1242r(t)  (5.7)

or equivalently

2(s) = Gy(s)y(s) + Gr(s)r(s) (5.8)

where

Gy(s) = 236.05s + 794.138
v 52 + 236.4365s + 795.091
Go(s) = 0.12452 4 5.905s + 1049.27
52 + 236.436s + 795.091

(5.9

(5.10)

Assuming that the parameter § is constant, then y(s) and
z(s) can be written as

y(8) = Gyu(s)w(s) +v(s) + Gyr(s)r(s)
z2(8) = Gouw(s)w(s) + G.r(s)r(s)

where all the transfer functions depend on 6. The estimation
error, e(s) = z(s) — 2(s), is then given by

e(8) = Gew(8)w(s) + Geu(8)(s) + Ger(s)r(s)  (5.11)
where

Gew(5) = Gow(s) — Gy(s)Gyw(s) (5.12)

Geu(8) = —Gy(s) (5.13)

Ger(8) = Gor(s) — Gy(8)Gyr(s) — Go(s).  (5.14)

The plots of 20 log(|Ger(jw)|) and 10 log(|G ey (jw)|2+
|Gew(jw)|?) are shown in Fig. 5 for ¢ = 10 and different
values of . Obviously, this filter performs far better than the
Kalman filter and the ‘‘nominal”’ H, filter in Section II. It is
observed that the improvement for G.,(s) is more significant
in the low-frequency range than in the mid frequencies. This is
because our design was done for constant r and steady-state.

It is worth noting that the function G.,,(s) for the filter
(5.6)~(5.7) is actually identical to that of the robust filter
(2.4)~2.6) in Section II where r is not considered. This
is natural because the auxiliary filtering problem (3.14) is
identical to the one in [6] when r = 0, ¢ = 0, and R — ooc.

Magnitude in db

10! 102 103
Frequency in rad/scc

Fig. 5.

New robust Hoc
108([[G v () P+ ]| G je)][2) for & = 0.3, curve 2: 10 log([| G (jo)II?
+ |G co(jw)lf?) for & = -0.3, curve 3: 20 log(||Ger(jw)||) for 6 = 0.3,
g = 10, curve 4: 20 log(||Ge,(jw)||) for & = -0.3, ¢ = 10, curve 5: 20
log(||Ger(yw)||) for 6 = 0.3, g = 10 (cancellation method), curve 6: 20
log(||Ger(jw)||) for 8 = -0.3, g = 10 (cancellation method).

filler for system (2.1)-(2.3). Curve 1: 10

For comparison purposes, we finally consider an alternative
method for designing G.,(s), which we call the cancellation
method. The idea is simply as follows: Because G,(s) only
effects G..(s), it is therefore obvious that the role of G..(s)
is to minimize G.,(s) in a certain sense. One possibility is to
choose G, (s) such that G.,(s) is completely cancelled, i.c.,
Ger(s) = 0 for the nominal model. However, we show using
the above example that such a method may not give an optimal
worst-case solution. This observation is made from the dotted
curves in Fig. 5 that correspond to the magnitude spectrum of
G, (s), resulting from the cancellation method for different
values of 4.

VL. CONCLUSION

A new robust H, filtering method has been developed via
a game theoretic approach for systems with both parametric
uncertainty and a known input signal in the finite time horizon
setting. The solution to the robust H, filtering involves two
Riccati differential equations with a scaling parameter. The
robust H, filter contains two components, one for process
and measurement noise attenuation and the other for the
attenuation of the known input signal. The former turns out to
be the same as in [6], which treated the case without known
input signal, but the latter depends on the a priori information
on the external signal.

The simulation of the results in an example has demon-
strated that the proposed robust filtering method offers far
better robustness, and hence performance, than the conven-
tional £, and H,, filtering, for both noise and bias attenuation.

We expect that this new method can also be applied to the
following problems:

i) robust L, filtering with parametric uncertainty and

known input signal

ii) robust tracking for systems with parametric uncertainty.
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APPENDIX
PROOFS OF THEOREMS 4.1-4.3

Proof of Theorem 4.1: Defining e = n—1 with 7 satisfying
(4.16), it follows from (3.9) that

¢ = (A + BwDBgQ-l)e — 4~2QCT Cyiy + Bu(th — w)
—QCTD(yo — Ci) + B2z, e(0)=m—%0 (AD
where
® = D[BTQ e + DL (ya — Cn)]. (A2)
Now, considering (A.1) and (4.9) it is easy to obtain that
4 (eQe) = I Cuel + lICell
+1BZQ te|i3 + 2y72eT (LT2 — CT C1)
— 2eTCTD(ya —CH)+2¢T Q™' B,y (0 —w).

Hence, we have
T g4
0=+2 A %(eTQ_le)dt —~2
x (el ) + limo — ol
= V(@)+29? / TeTQ‘le(ﬂ)—w)dt—72lle(T)|If;,-l(T)
’ (A.3)

where

V(@) = —|Crell} + YD Cell} + 4|1 D% BLQell3

T
+ 2/ eT[LT3 — CTC1iy — v*CT (yo — CA)\dt
0

+7limo — 2% (A4)
Using (A.2), we can rewrite J, (W, 7, n0,7, 2,€) as
T
J, = J(@) - 272/ (BgQ‘le)T(u“; —@)dr
0
—*|D~% (i — w)|3 (A5)

where

Jo(@) = || Ln — 2|3 + lleEnll3 — ¥ [l@li3
+ |I9a — Cy = Dull3 + |lno — £ollR]- (A6)

Next, considering (A.2) and (A.6), and in view of the fact
that n = 7 + e, it follows that

Ja(®) = I\ — 213 + | Lell3 + e Bl + leBelf}
—+*[ID* BIQell§ + D% (v - ORI
+ 1D*Celf3 + limo — o]

T
+ 2/ eT[LT(LA - 2) + 2 ET E]qdt
0

T
+ 2v° /0 eTCT D(ya — Ch)dt. (A.7)
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Adding to (A.5) the zero quantity of (A.3) and taking into
account (A.4) and (A.7), it is easy to obtain that

Ju = 1213 + leEall3 = +* [ID¥oll3 + D=3 (@ — w)l}
+ e cr)]

where z and 7 are given by (4.13) and (4.14), respectively.
Similarly to the analysis in Section IV, adding to (A.8) the
identically zero term of (4.18) we obtain

(A-8)

Jo = |17+ BEXl - 42 [ID3G15 + 1D~ (o — @)l
T
1Ny + ol o) +2 / 7" X Byrdt (A.9)
0

where, as in Section IV, ¢, = © — v~ 2D~ Bf X#. Next,

adding to (A.9) the zero quantity
Td
0= / — (87 7)dt + 26T (0)do
o dt

where 6(-) satisfies (4.23), it can be derived by completing
the squares that
Jo= (L +BF X)i+ B30 - 2|5 - »*
x 1D~ (@ — @)l + 1D¥ (¢, — v * D BIO)Il

(T -1y + T(r,80) (A.10)

where J(r, &) is given by (4.25) and is independent of
Mo, Cv, W, and Z.

Hence, it follows from (A.10) that a minimax strategy is
obtained by choosing

G =9"D7'BTO; Wt =@ M=o
5*=(L+BIX)h+ B30

(A.11)
(A.12)

where 7o is such that e(T) = 0. Note that in view of the
definition of A in Section IV, with the above @ and 7o, we
have that e = Q1. Then, by considering (A.2) we conclude
that the optimal strategy of (A.11) and (A.12) is identical to
4.3), (4.4), (4.22), and (4.27). a

Proof of Theorem 4.2: The proof is similar to that of The-
orem 4.1. The main difference is that the minimizing strategy
for 3 is required to be causal with respect to both y and r. Since
the worst-case choice for @ and ¢, is not bound by causality
constraints, as in the proof of Theorem 4.1, we obtain that
(A.11) constitutes a maximizing strategy for ¢,, W, and 7.

Now substituting (A.11) in (A.10) and (4.16) and consider-
ing the decomposition of 7 in (4.29), we obtain that

Jo(@*, oy, 2) = (L + B X) e — 2
+(L+BIX)m + BY0)12 + J(r,%0)

where 7. and 7); are as in (4.30) and (4.31), respectively.
Finally, since both 7); and # are noncausal with respect to
r, it follows that 3* = (L + B X)f. is a causal minimizing
strategy for Z, and the optimal value of J,, is ||(L+ B X )71+
BT 6|2 + J(r,40), which concludes the proof. O
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Proof of Theorem 4.3: As in the proof of Theorems 4.1
and 4.2, (A.11) is again the worst-case strategy for (,, w,
and 7o. Using the latter strategy and taking into account the
decomposing of # and % in (4.33) and (4.34), respectively, it
follows from (A.10) that

Ja(@*,C3,m5,2) = ||(L + B X)fia + BT 0, ~ 2 + BT 84|I3
+ (L + B3 X)Aa + J(r,20)

where 8, 84, 7., and 74 satisfy (4.35) to (4.38), respectively.
Finally, recalling that 6,(t) and 7, (¢) are based on the avail-
able information up to time ¢, namely, R; and Rr, whereas
fa(t) and 7j4(t) are noncausal with respect to the available
information on r, the desired result follows immediately,
similar to the proof of Theorem 4.2. O
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