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Abstract

This paper introduces a notion of Spatial Hs norm for
flexible structures and studies its application in select-
ing the order of a flexible structure. The Spatial H,
norm differs from the standard H; norm in that it is a
measure of global performance in the spatial domain.

1 Introduction

Modelling of flexible structures could be a complicated
procedure and often results in infinite-dimensional sys-
tems with lightly damped modes. This makes the con-
trol of such systems a very challenging problem [1, 2].

A problem that often occurs in the control of flexible
structures is that, by nature, displacements over the en-
tire structure are dynamically linked to displacements
of every other point. This means that, a controller
designed to minimize vibration at one point, could in-
crease vibration somewhere else [3]. Hence, it is of
interest to design controllers which result in vibration
reduction in an average global sense. In {3] this prob-
lem is addressed using the idea of Spatial H. norm
minimization. Also, in [4], the idea of model reduction
is extended to the case of flexible structures using Spa-
tial Heo norm. In [5], the same ideas are applied to
a piezoelectric-laminate beam to control the unwanted
beam vibration using a Spatial LQG technique.

In this paper, we introduce the notion of Spatial Hs
norm for flexible structures. We study the properties
of this norm and one possible application, i.e., model
order selection for flexible structures.

2 Spatial H; norm

Dynamics of a flexible structure, such as a beam or a
plate, can often be modelled via
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where r € R, a bounded set. For a beam of length
L, R = [0, L], for a plate of length L, and width L,
R = {(r1,72) : 71 € [0,L1], r2 € [0,Ls]}. The mode
shapes satisfy the orthogonality condition:
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where d;; is the Kronecker delta function.

(2.2)

The transfer functions of flexible structures consist of
an infinite number of modes, hence they are infinite-
dimensional systems. For controller design purposes,
however, such a model is often approximated by a
finite-order model. This is due to the fact that a linear
controller of infinite bandwidth is not implementable
in practice. Perhaps the easiest way of approximating
an infinite-dimensional transfer function such as (2.1)
with a finite-dimensional transfer function is to choose

the first N modes of (2.1), i.e.,
N
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The question here is how to choose N such that the
effect of the neglected dynamics on the response of the
system is negligible. Therefore, we need to have a mea-
sure to determine the contribution of each neglected
mode to the response of the system. Two such mea-
sures are the Hoo and the Hs norms. This paper deals
with a particular form of the H2 norm which is used
for this purpose.

Imagine for a moment that only the response of a par-
ticular point along the beam, such as r = r, is of in-
terest to us. Let us call this transfer function Gn(s),
ie., Gn(s) = Gn(s,rs). By definition, the Hy norm of
Gy is defined as the expected root-mean-square value
of the output when the input is a unit variance white
noise process, and is equivalent to:
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The above expression for the Hs norm of Gy is com-
putable, however, it does not give any insight as to how



much each mode contributes to the total Hs norm of
Gy. Having said this, the major problem with this
choice of measure is that the H, measure is totally ig-
norant of the response of other parts of the structure
and only concentrates on the response at one particular
point. Hence, if N is to be selected based on this mea-
sure, while it may be a suitable choice for a particular
point, it may be too large or too small for the entire
structure. This calls for a more suitable measure.

To overcome this difficulty, we propose the following
spatial Hy norm for G(s,r) and we will show how this
measure could be used to select a suitable order for the
system.
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The notation <« G >3 is used here to emphasize the
fact that we are dealing with a system whose output
lives in the finite dimensional subspace of an infinite-
dimensional space. At the first glance, it may seem to
be very difficult to find an analytic expression for the
above norm. However, thanks to the orthogonality of
the mode shapes, this could be considerably simplified.
In particular, we have the following Lemma.

Lemma 2.1 Consider G(s,r) as defined in (2.3) and
suppose that the mode shapes satisfy the orthogonality
condition (2.2). Then, < G >3= E:il l|G;ll3 where
G. — F;d;
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Proof: A proof will be given in a more complete ver-
sion of this paper.

Remark: It is possible to give an alternative proof of
Lemma 2.1 based on state-space ideas. Notice that a
state space realization of (2.3) is as follows:
z(t) Az(t) + Bu(t)
ytr) = CEa(®)

(2.5)

It can be shown that < G >3= IIGl|2 where I'T" =
Jr C(r)'C(r)dr and G(s) = T(sI — A)"'B. To this
end, it should be pointed out that the above interpre-
tation of the Spatial H2 norm makes it possible for the
standard control design techniques to be applied. In
other words, it is possible to reduce the problem of de-
signing a controller to minimize the closed-loop Spatial
Ha norm of the system into a standard Hs controller
design for the system G(s).

At this stage, we introduce a more general measure of
performance, i.e., the weighted Spatial H, norm. This
norm is defined as follows:
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In this case it can be shown that <« G >3;=
I|Gnllz where ThTn = [ C(r)'I(r)C(r)dr. Notice
that TI{r) > 0 acts as a weighting function to empha-
size the region of interest. In case of a flexible struc-
ture where G(s,r) = C(r)(sI - A)~1 B, it can be shown
that a choice of II(r) = §(r — r,) results in a standard
2-norm and H(r) = 1 results in the Spatial 7 norm as
discussed above. If II(r) is a more complicated func-
tion of 7, then it may not be possible to directly use
the orthogonality conditions. In that case, it may be
necessary to use numerical integration techniques to
reduce the weighted Spatial H, norm to an equivalent
Ha norm, which is solvable using standard techniques.
However, in that case, the result of Lemma 2.1 may not
apply.

3 Application in model order selection

Earlier, it was argued that the the H; norm of a trans-
fer function such as G(s,r;s) is not a good measure to
determine the order of a flexible structure. The main
reason is that [|G(s,rs)|l2 does not convey any spatial
information about G(s,r). Furthermore, it is not clear
how much each mode contributes to ||G(s,7s)||2. The
Spatial H, norm, however, seems to be a more suitable
measure for this purpose since it determines the global
‘Ho norm of the system in an average sense. Moreover,
it is clear from Lemma 2.1, how much each mode con-
tributes to the Spatial Ho norm of the system. Hence,
to choose a suitable order for a flexible structure, we
could start with the first mode, then increase the num-
ber of modes and at each stage determine the Spatial
H, norm of the next mode and decide whether its con-
tribution is significant or not.
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