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Abstract

This paper is concerned with a matrix inequality problem which arises in fixed order output feedback control design. This
problem involves finding two symmetric and positive definitive matrices X and Y such that each satisfies a linear matrix
inequality and that XY =/. It is well-known that many control problems such as fixed order output feedback stabilization,
H control, guaranteed H> control, and mixed H,/Hs control can all be converted into the matrix inequality problem
above, including static output feedback problems as a special case. We show, however, that this matrix inequality problem
is NP-hard. © 1997 Elsevier Science B.V.
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1. Main result

Denote by R} the set of n x n symmetric and real matrices. The problem studied in this paper is stated as
follows: Given two affine mappings Li(-),L,(-) : R? — R, find positive definite X,Y € R? such that

Li(X)<0, Ly(Y)<0, XY =1 (1

The two inequalities above are called linear matrix inequalities, and the notation “ < ” means the matrix
is negative definite.

The motivation of the problem above stems from the fact that several important fixed order output feed-
back control problems, which include static output feedback control problems as a special case, can be
converted into the above. Examples of these problem are such as fixed order output feedback stabilization,
Hy, control, guaranteed H> control, and mixed H,/H,, control. See [3—10, 12] for references and Section 2
for discussions. It is generally believed that the problem in (1) is difficult to solve. Nevertheless, several
recent approaches for solving the fixed order output feedback control problems rely on this conversion
and certain iterative algorithms for solving (1). For example, the following iterative algorithm is proposed
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in [4, 6]

X = argmin{o: Li(X) <0, I<Y*x1}*<al},
Yo = argmax{f: L(¥) <0, pI<X}?¥x}*<I}, k=0,1,...

with some initial positive definite Y, satisfying L,(¥p) < 0. In [5], a different but equivalent formulation of the
problem in (1) is analyzed and a cutting plane-like algorithm is provided. It is suggested in these references
that these algorithms perform well in simulated examples.

On the other hand, the computational complexity issue for the static output stabilization problem is a
unsolved theoretical problem which attracts many researchers. A recent survey paper [1] lists this problem as
one of major open problems in systems and control. The most pertinent result is due to Blondel and Tsitsiklis
[2] which shows that the problem of finding a static output feedback stabilizer from a given bounded set (a
hypercube) is NP-complete. This result, however, does not show that the problem of static output feedback
stabilization is NP-complete or NP-hard. Neither does it address the computational complexity issue for the
problem in (1).

The result of this paper is simply stated as follows (see Section 3 for proof).

Theorem 1. The matrix inequality problem in (1) is NP-hard.
The implication of Theorem 1 is that any polynomial time algorithm used to solve (1) is expected to

perform poorly in the worst case when the size of the problem, n, grows. Another consequence is that the
algorithms proposed in [4-6] either have exponential running time or fail to solve (1) for some instances.

2. Output feedback control vs. the matrix inequality problem

The relationship between the fixed order output feedback control problems and the problem in (1) has been
studied in a number of papers [5, 7, 10]. A brief summary is given below.
Consider the following linear time-invariant system:

X(t) = Ax(t) + Biw(t) + Bau(t),
z(8) = C1x(1) + Duw(t) + Diau(t), )
()= Cyx (1) + Duw (),

where x(¢) € R" is the state, w(f) € R™ the exgoneous input, u(¢) € R” the control input, y(¢)€ R? the mea-
sured output, z(¢) € R" the controlled output, and 4, B;, C; and D;; are constant matrices of appropriate di-
mensions. A feedback controller of order n; is of the following form:

Xc(t) = Aexe(t) + Bey(2), u(t) = Coxe(t) + D y(t), (3)

where x.(t) € R™ is the state of the controller, and

D. C.
K- [Bc Ac] )

is the matrix to be designed. Given the system (2) and the controller order n., the control problem is to find
a K such that certain design objective is met.
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Let us define

x= [xT ch]T,
- A Onxn = B 3 BZ Onxn
A= |, B/ = , By= <,
[ow 0] [oncx,,,] 2 [oncx,,, I,
- i ()
C,= [Cl rxnc C;= |: rxnc } s
ncxn

_ - D _
Di=[D1 Orxn)s Dn= [O 2 }, Dy = Dy;.

rxXm

The closed-loop system can be written as

(1) = (A+ B,KCy) %(t) + (B1 + BoK Dy )w(t), ©
z(t) = (C1 + Dy KC2) X(t) + (Dyy + D12K D) w(2).

For the stabilization problem, the design objective is to have an asymptotically stable closed-loop matrix
A+ By,KC;. For the Hy, control problem, it is additionally required that the closed-loop transfer function of
(6) has H norm less than 1.

The notation U, for a given matrix U means a(ny) matrix whose columns are the basis of the null space
of U. In particular, UU; = 0. The following results are known; see, e.g., [7, 10].

Lemma 2. Given the system (2), there exists an output feedback stabilizer of order n. if and only if there
exist positive definite matrices X, Y € R"*" such that

Li(X) = (C2)T (4 "X + XA)(C2)L <0,
Ly(Y) = (B]) (AY + YA "\B})1 <0, ™)
XY =1

Lemma 3. Given the system (2), there exists an output feedback H, controller of order n. which renders
the Hy, norm of the closed-loop transfer function to be less than 1 if and only if there exist positive definite
matrices X,Y € Rt such that

G, 1" [Ad'X+x4 XxB (]
Li(X):= | Dy Bix ~=I 0 |[C; Dy 0]L <0,
0], ¢, 0 I
o yat+4y B, YCi]
Ly(Y):=[B] 0 DylL B] -1 0 |[B] 0 Dj]. <0, (8)

C\Y 0o -7
XY =1

Lemmas 2 and 3 show that the matrix inequality problem in (1) arises in both cases. The guaranteed
H, control problem and mixed H,/H,, problems have the same feature; see [4, 5]. Although we have only
discussed continuous-time systems, fixed order output feedback control problems for discrete-time systems are
analogous.
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3. Proof of Theorem 1

As in almost all NP-hardness analysis cases, our basic idea is to polynomially transform a known NP-
complete problem to the problem in (1). Polynomial transformation means that the resulting problem is
obtained in polynomial time and the size of the resulting problem is polynomial of the size of the original
problem. We will use the following 3-SAT problem which is known to be NP-complete [11]:

3.1. 3-SAT problem

The instance of the problem involves an integer n, which is the number of Boolean variables z =
(z1,22,...,24), and a CNF formula F(z)=C; ACy A --- AC,,, where each clause C; is the disjunction of
three literals which are either a z; or its negation Z;. For example, C; = z3 V Zg V zg. The problem is to deter-
mine whether or not there exists a Boolean truth assignment for z such that F(z) is satisfied, i.e., F(z) is true.
Since each clause contains three variables (or their negations), this problem is called 3-SATISFIABILITY
problem, or 3-SAT, for short. Note that the number of clauses m is at most C23n (i.e., 2n-choose-3), thus a
polynomial in n.

Now we show how the 3-SAT problem can be polynomially transformed into the problem in (1).

Proof of Theorem 1. Consider any instance of the 3-SAT problem with m clauses Ci,...,C,, defined over
n Boolean variables. We construct an equivalent instance of the problem (1) as follows. Let z = (z1,...,2,)
denote the Boolean variables of the 3-SAT problem. Then the corresponding matrix problem (1) will have
dimension equal to 2n. Let X and Y be two matrices of size 2n x 2n. We associate the entries Xp;—1,2i—1,
Xoi2i, Yai—1,2i-1 and Yy; 2; to the variable z;. To enforce the Boolean condition z; = 0 or z; = 1, we introduce
the following conditions:

XY =1,
X,;=Y,;=0, Yi£j, i,j=1,...,2n,

. 9)
Xoiwr2i-1 + Xojpi =3, Vi=1,...,n,
Yaictzie1+ Yo =3, Vi=1l...n

In view of the second condition above, the first condition above is equivalent to
Xoic12i-1Y2i-12i-1 = 1,
(10)

X2i2iYai2i = 1.
Substituting (10) into the fourth condition in (9) yields

1,1 s
Xoic12i-1 Xaigi 2

This together with the third condition of (9) shows that X3;_| 2;—; and X»;; can only take one of the following
two sets of values:

XZi—l.Zl’—ll =2, ?i_l’ﬁ}] =4 ()
Xaipi = 3, 22 = &

We interpret the first solution as z; = 1 and the second solution as z; = 0. In other words, z; = 1 if and only
if Xpi—1,2-1 =2, and z; = 0 if and only if X;»; = 2. In this way, we have enforced the Boolean constraint
z; = 0 or 1. Also, the conditions X > 0 and Y > 0 are satisfied automatically by virtue of (11).

We next construct a linear inequality for each clause in the 3-SAT problem instance. Suppose, for example,
the jth clause is given by C; = z; V Z}, V z;,, where 1< ji, j2,/3 <n. We introduce a linear inequality of the
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following form:
Koji—1,25 -1 + X225, + Xajy—1,25,—1 > 2.25. (12)

In general, if C; involves 3 literals u;,, u;, and u;,, where u; is equal to either z; or its negation z;, and
uj,, u;, are defined similarly, then we introduce a linear inequality of the form similar to (12) where the left
hand side consist of three terms and the right hand side is equal to 2.25. The first term on the left is equal
to Xoj,—1,2j,—1 if uj, =z;, or is equal to Xy;, »;, if u;, =Z;,. The other two terms are defined similarly. In this
way, we have introduced a total of m linear inequalities of X, each for a clause in the 3-SAT problem.

We claim that the 3-SAT problem is satisfied if and only if there exist diagonal matrices X and Y satisfying
X >0,Y >0, XY =1 and the conditions (9) and (12). Indeed, as we have argued above, the conditions
X >0,Y >0and XY =1 can always be satisfied, provided that the diagonal entries of X and Y are given by
(11). The remaining linear inequalities are of the form (12). Consider any truth assignment for the Boolean
variables zi,...,z,. Let us choose

Xoic12i1 =2, Xoizi = 3,
Xai1pic1 =3, Xiu =2, ifz;=0.

ifz; =1,

(13)

Consider a clause C; in the 3-SAT problem. By definition, C; is not satisfied if and only if all of its three

literals have a value of zero. By (13), this happens exactly when each of the three terms in the left hand

side of the linear inequality for C; is equal to % This means the inequality for C; is not satisfied since its

left hand side has a value of % which is smaller than 2. In the other case when C; is satisfied, at least one
of the three literals has a value of 1. As a result, the corresponding term in the linear inequality has a value
of 2. Since the other two terms in the left hand side of the linear inequality for C; has a value of at least ,
the left hand side is greater than or equal to 3. In other words, the linear inequality is satisfied when C; is
satisfied. This shows that the 3-SAT problem is satisfiable if and only if there exist matrices X, Y satisfying
the equations of the form (9) and the linear inequalities of the form (12).

It can be seen that the constraints (9) and (12) are of the form

X>0,Y>0, XY =1 Li(X)>0, L,(¥Y)>0, X,Y diagonal (14)
for some appropriate choice of L; and L,. More specifically, L;(X) consists of

Xij=0, Vi#j, i,j=1,...,2n,

Xoicr2i1+ Xaipi =3, Vi=1,...,n
and (12) for each clause C;. Similarly, L,(Y) consists of

Y,; =0, Vi#j, ij=1,..2n,

Yaicroic1+ Yo =3, Vi=1,...,n

To cast the problem (14) into the form of (1), we need to replace the equality constraints in L;(X)>0
and Ly(Y)>0 with some strict inequality constraints. This is accomplished as follows. First, the diagonal
conditions on X and Y can be replaced by

—e<X;<e —e<Y;<e Vi#j 1<i,j<2n, (15)
where ¢ is some small constant. Next we need to replace

Xoi-1,2i1 + Xai2i = %
with the following two strict inequalities:

Xoicrict +Xoii >3 —&, Xoi12im1 +Xaini < 3 +é. (16)
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Similarly, the equality
Yai1i-1 + Yai2i = 3
is replaced with
Yoic10i—1 + Yo > % —& Yy 12+ T < % + & 17)

With ¢ sufficiently small, we see that the condition XY = [ together with (15)—(17) imply that the
equalities (11) hold approximately. Consequently, it remains true that a clause C; is satisfied if and only if the
corresponding linear inequality of the form (12) holds. Indeed, with the correspondence (13) the left hand
side of this inequality will be approximately equal to % when C; is not satisfied, and to 3 when C; is satisfied.

To formalize the argument above, we claim that the choice of ¢ = 0.01/n will suffice. Indeed, for this e,
(15) and XY =1 imply that

09999 < X;,Y;; < 1.0001, Vi=1,...,2n
Let us denote
XiYi =149, i=1,...,2n,
Xoic12i-1 +Xoi2i = % +m, i=1,...,n, (18)
Yacipici+ Yo =3+¢i, i=1..n
By the relations (16) and (17), we have
Inil<e<001, i=1,...n,
|p:|<e<001, i=1,....n, (19)
|6:] < 0.0001, i=1,...,2n
Manipulating the equations in (18) yields

1+ 0y 14 6y 5
2i—1 23 g
Xoi1,2i-1 X2i 2 2

Eliminating the variable Xj;_; »;_; and rearranging the terms gives
G+ 6) X35 — (3 + i) 3 +m) + 621 — 02) Xagoi + (1 +62) (3 + 1) = 0.

Notice that when n; = ¢; = d2; = d2i—1 = 0 the above equation implies X5; = 2 or % When #;, ¢y, d2i—1 and
d,; are nonzero but small, as are specified by (19), the above equation implies

cither Xy €(0.25,0.75) or Xy €(1.75,2.25).

Similarly, we can show that
either Xp; 121 €(0.25,0.75) or Xpi—1,2-1€(1.75,2.25).

Moreover, relation (16) implies that each of the two intervals (0.25,0.75) and (1.75,2.25) must contain exactly
one of the two variables X; 5;, X2;—1.2i—1. Consequently, by choosing ¢ = 0.01/n and enforcing (15)—(17) in
our construction of L (X ) and L,(Y), we can ensure that a clause of a 3-SAT problem is satisfied exactly when
the corresponding linear inequality in L;(X) holds. For example, for the linear inequality (12) corresponding
to the clause C; =z; Vz;, Vz;,, we have

> 225 if C; is satisfiable,

Xai 125 — Xoi2i + X250 125 — )
=12 =1 T A22p X212 <225  otherwise.

That is, the chosen ¢ is sufficient for determining the satisfiability of the 3-SAT problem.
Since the conversion from the 3-SAT problem into the problem (1) is clearly polynomial time, we complete
the proof of Theorem 1. ]
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4. Conclusion

We have shown that the matrix inequality problem (1), which arises in the fixed order feedback control
problems, is NP-hard. This result suggests that algorithms for fixed order feedback control which aim at
solving (1) may perform poorly in the worst case when the system order becomes large. However, we note
that the result above does not imply that the fixed order output feedback control problems are NP-hard because
not every instance of the problem in (1) corresponds to a control problem. Further research is needed in this
direction.
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