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ABSTRACT

The switching control approach has attracted a lot of
attention recently for solving adaptive control prob-
lems. This approach relies on the condition that there
exist a finite (or countable) number of non-switching
controllers such that at least one of them will be able to
control a given family of unknown (uncertain) plants.
Once these non-switching controllers are found, a switch-
ing law is applied to adaptively select a correct con-
troller. A serious problem of the switching control
method is that the number of non-switching controllers
can potentially be very large, especially for multi-input
multi-output systems. In this paper, we consider a
class of minimum-phase plants (MIMO) with some mild
closedness assumptions. Given any polynomial refer-
ence input, we provide a switching control law which
guarantees the exponentially stability of the closed-
loop system with exponential tracking performance.
The main contribution of the paper is that we give the
minimum number of non-switching controllers required
for switching. In particular, the number is equal to 2
for a single-input single-output plant (one for each sign
of the high-frequency gain), and is equal to 2™ for an
m-input m output plant. In particular, the number is
independent of the degree and the relative degree of
the plant.

1. INTRODUCTION

Most of the classical model reference adaptive control
methods (works priori to 1980) are based on the fol-
lowing set, of basic assumptions:

o The plant is of minimum phase;

¢ An upper bound of the plant degree is known;

o Its relative degree is known;

e Its sign of the high frequency gain is known;

¢ The reference model has the same relative degree
as the plant.
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See, for example, Goodwin and Sin [4] and Sastry and
Bodson [15] for overviews. It is well recognized that
this set of assumptions are often unrealistic in practical
applications where the plant may be difficult to model.
Adaptive controllers designed based on these assump-
tions may be very non-robust, as shown by well-known
examples of Rohrs et. al. [14].

One of the important lines of adaptive control re-
search over the last 15 years or so is to investigate
the minimal set of assumptions needed for the plant
so that it can be adaptively stabilized. This line of re-
search can be traced back to a paper by Morse [8] which
raised a number of open questions regarding the clas-
sical assumptions. The first breakthrough was given
in a paper by Nussbaum [13] which provides a new
adaptation method (called Nussbaum gain later) for
treating the case where the sign of the high frequency
gain of the plant is unknown. Nussbaum’s result was
generalized by Martensson [6] which shows surprisingly
that asymptotic stabilization of a minimal plant can be
achieved with a rather weak assumption, i.e., one only
needs to know the degree of a stabilizing controller.
In fact, even this condition can be relaxed. Because
Martensson’s approach involves an exhaustive on-line
search over the space of candidate gain matrices be-
fore “latching on” to an appropriate stabilizer, two se-
rious problems arise: 1) Lyapunov stability cannot be
guaranteed and, consequently, an excessive overshoot
may occur; 2) the output must be free of (even arbi-
trarily small) persistent measurement noises to avoid
possible destabilization. These problems have been re-
ported and carefully analyzed in a paper by Fu and
Barmish [2].

An alternative approach called switching control to
adaptive stabilization was proposed by Fu and Barmish
[2} to assure Lyapunov stability (exponential stabil-
ity in fact) and to permit small measurement noises.
More explicitly, Fu and Barmish show that adaptive
stabilization of a family of unknown multi-input multi-
output (MIMO) plants ¥ can be achieved if the follow-
ing mild assumptions are satisfied:
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o The upper bound npyay of the degree of the plant
family is known;

¢ Every member of ¥ is stabilizable and detectable;

o For each n < nyax, the set of state-space realiza-
tion matrices of the subfamily X,, of plants with
degree n is compact (i.e. bounded and closed),
and the compact set is known;

Indeed, it is shown in [2] that there exists a finite num-
ber of fixed linear time-invariant controllers (which will
be called non-switching controllers in the sequel) such
that every member of ¥ will be stabilized by at least
one of them. Consequently, a switching mechanism is
applied on-line to search for a correct controller for an
arbitrary unknown member of £. The resulting con-
troller is piecewise linear time-invariant with at most
a finite number of switchings. The closed-loop system
is guaranteed to be exponentially stable, and robust
with respect to small measurement noises. Further, an
extension of this result is given in [3] to treat the case
where singular perturbations to the plant exist, i.e., the
compactness assumption above is violated.

A somewhat different switching control approach,
called hysteresis switching, is also reported in a series
of papers by Middleton et. al. [7}, Morse et. al. [11],
and Weller and Goodwin [17] to solve the problem of
model reference adaptive control. No compactness as-
sumption is required for this approach. However, the
family of plants ¥ to be dealt with need to satisfy the
following assumptions:

¢ Every member of ¥ is of minimum phase;
¢ Every member of ¥ is stabilizable and detectable;

¢ An upper bound npyayx of the plant degree is known.

The basic idea in Morse et. al. [11] and Weller and
Goodwin [17] involves two steps. The first step is to
construct an estimator for each subfamily of plants with
the same McMillian degree, the same relative degree,
the same high-frequency gain sign, and the same “per-
mutation” of outputs. Subsequently, a classical model
reference adaptive controller is designed for each such
subfamily. The second step is to use a so-called hys-
teresis switching algorithm based on Middleton et. al.
to adaptively select a correct controller. The detailed
switching mechanism is somewhat different from the
switching control method in Fu and Barmish [2]. The
main difficulty with this approach is that the number
of non-switching controllers is excessively large. This
number is in fact equal to 2™ x m! x mng,, for m-
input m-output plants. For example, when m = 5 and
Timax = 10, this number is equal to 192,000. The exces-
sively large number of non-switching controllers mean
that it may potentially take an extremely long dwell
time before a correct controller can be found.

The interest in switching control has resurged very
recently owing to new contributions made by Morse [9,
10], Narendra and Balakrishnan [12] and Hocherman
et. al. [5]. The so-called supervisory control for adap-
tive set-point tracking is proposed by Morse [9, 10] to
speed up the switching and to improve the transient re-
sponse. Hocherman et. al. [5] studies the convergence
of Morse’ switching scheme. A different superviosry
control scheme for model reference adaptive control is
proposed by Narendra and Balakrishnan[12].

The purpose of this paper is to identify the mini-
mum number of non-switching controllers required by
the switching control method for a rather general class
of minimum phase systems. More specifically, given a
family of uncertain plants and a polynomial reference
signal, we need to design an output feedback controller
such that the closed-loop system corresponding to any
plant in the family is exponentially stable and its out-
put exponentially approaches the reference signal. The
family of plants we consider in this paper are assumed
to satisfy the same set of assumptions as required by
the hysteresis switching control approach, plus an ad-
ditional mild boundedness assumption. The reference
signal is assumed to be a polynomial function. We show
that the number of non-switching controllers can be re-
duced down to 2™ only for m-input m-output plants.
For the same example above, this number is reduced
from 192,000 to 32 only!

Our approach involves two key ideas: 1) We di-
vide the family of plants into 2™ subfamilies, each can
be robustly stabilized by a single linear time-invariant
controller. This step is based on an important paper
on robust stabilization by Wel and Barmish [16]. By
slightly modifying their controller and relaxing the as-
sumptions they use for the controller design, we show
that each subfamily can be controlled by a single linear
time-invariant controller such that the closed-loop sys-
tem associated with any member of the subfamily is ex-
ponentially stable and its output exponentially tracks
the reference signal. 2) Once these 2™ non-switching
controllers have been determined, a simple switching
algorithm similar to the one in Fu and Barmish [2] is
employed on-line to search for a correct controller. Af-
ter at most 2™ — 1 switchings, a correct controller will
be found for an arbitrary member of the plant family.

The rest of this paper is organized as follows: Sec-
tion 2 formalizes the adaptive tracking problem and
assumptions; Section 3 considers the design of non-
switching controllers; Section 4 provides the switching
algorithm and the main result on exponential stabil-
ity and tracking; and Section 5 concludes with some
remarks.
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Figure 1: Adaptive Tracking Problem

2. PROBLEM FORMULATION AND
ASSUMPTIONS

Let R™*™[s] denote the set of all m x m rational ma-
trices. Given a set of rational matrices £ C R™*™[s],
representing a family of uncertain plants, and a poly-
nomial time function r(-) : R — R™, the adaptive
tracking problem considered in this paper is as follows:
Find an adaptive controller C' as depicted in Figure I
such that for any Gp(s) € I, the closed-loop system
is exponentially stable and its output y(t) will exponen-
tially approach r(t), i.e.

ly(®) = r)ll < Me™,  if z(0) =0, (1)

for some M >0 and X > 0.
Before we introduce the assumptions on the plant
family, we need to introduce some notation.

Definition 1 [16] Giwen G(s) € R™*™[s] and two
m X m polynomial matrices N(s) and D(s), the pair
(N(s),D(s)) is called a row Hermite factorization if
the following conditions hold:

1. D(s) is invertible and G(s) = N(s)D ~1(s);

2. N(s) and D(s) are coprime in the closed right-
half plane;

3. Dyi(s) is a monic polynomial for i =1,...,m;

4. Dij(s) =0 for all i < j;

5. deg Dy;j(s) < deg Dyi(s) for alli > j,

where D;;(s) is the ij-th element of D(s).

Remark 1 It is known that there always exists a row
Hermite factorization for any rational matriz; see [16].
This factorization is even unique if the coprimeness
condition above is strengthened to include the open left-
half plane. The reason we use a weaker coprimeness
condition is to allow a simpler factorization for param-
eterized rational matrices. For example, a row Hermite
factorization of

s+1
G(s,q) = , q€(1/2,2
(s,9) il [1/2,2]
18 given by
N(s,q) =s+1; D(s,q)=s+q

when the weaker version of coprimeness condition is
used. For the stronger version of coprimeness condi-
tion, the row Hermite factorization of G(s,q) at g =1
must be given by N(s) = 1 and D(s) = 1, which causes
discontinuity. .

Based on the remark above, we can express ¥ in an
equivalent form:

(Np,Dp) = {(Np(s),Dp(s)) : a row Hermite

factorization for Gp(s) € £} (2)

However, for notational simplicity, we will also denote
(Np,Dp) by T unless confusion arises.

Remark 2 Using duality, we can define the column
Hermite factorization (D(s), N(s)) for every G(s), i.e

G(s) = D~ Y(s)N(s). All the properties above about
the row Hermite factorization also apply using duality
to the column Hermite factorization. In this paper, the
row Hermite factorization will be used for the plant and
the column Hermite factorization, for the controller.

Definition 2 A given family of polynomials P is called
of degree d if every polynomial p(s) € P is of degree
d. P (possibly with different degrees) is called bounded
if the set of zeros of P is a bounded set. The closure
of P is defined to be the set of all limiting polynomials
convergent from a sequence of polynomials of the same
degree in P. A family of polynomial matrices is called
bounded if every matriz element family is bounded.

Remark 3 A few comments on the boundedness con-
dition are in order. If a family of polynomials P con-
tains a zero polynomial (which is identically equal to
zero), then our definition of boundedness implies that
P is not bounded because the zero polynomial has ze-
ros everywhere. In fact, P with mazimum degree d is
bounded if and only if the following conditions hold:

o It does not contain_a zero polynomial;
o For every 1 < d < d, the subfamily of polynomials
in P with degree d has the following property:
— The set of polynomial coefficients is bounded

ROTS.
- %here ezists some 6 > 0 such that the abso-
lute value of the leading coefficient of every
polynomial in the subfamily is 6 or more.

Denote by z;(s) the i-th lower principal minor of
Np(s), i.e. z;(s) is the determinant of the part of Np(s)
with the first (i — 1) rows and columns deleted. Further
denote the families of polynomials

Z; ={z(s) : Np(s) € Np};

We will adopt the following set of assumptions in
the rest of the paper:

i:]-a”"m (3)
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Al. (Minimum Phase Invariance) det Np(s) is Hurwitz
for every member Np(s) in the closure of Mp.

A2. (Upper bound of Degree) The upper bound of the
degree dmax of D;;(s) over Dp is known.

A3. (Boundedness of Numerator) Z; is bounded for
everyi=1,--- m.

Ad4. (Boundedness of Denominator) Dp is bounded.

Remark 4 The Assumptions A1-A2 are similar to the
ones used in [11, 17]. The boundedness assumptions
will enable us to significantly reduce the number of non-
switching controllers and to guarantee other nice prop-
erties such as exponential stability and linear piecewise-
invariant control. Note that the boundedness assump-
tions are rather weak.

Finally, we define the mazimum degree of the refer-
ence signal r(t) to be

Ny = max{ni, -, Ny} (4)

where n; the polynomial degree of the i-th component
of r{t),i=1,---,m.

3. DESIGN OF NON-SWITCHING
CONTROLLERS

Our method for designing non-switching controllers is
motivated by a robust stabilization approach of Wei
and Barmish [16]. These authors consider a family of
uncertain plants satisfying assumptions similar to Al-
A4 (slightly stronger though) and the following addi-
tional one:

A5. The leading coeflicient of every principal minor
zi(s) of Np(s) is either positive invariant or neg-
ative invariant over Ap.

With this additional assumption, it is shown in [16]
that there exists a single linear time-invariant controller
to robustly stabilize the whole family of plants.

Our first result, Lemma 1 shows that a given family
of plants satisfying Assumptions A1-A4 can be decom-
posed into 2™ subfamilies such that each subfamily will
satisfy not only A1-A4 but also A5. Using the design
approach of Wei and Barmish [16], we can find a linear
time-invariant stabilizer for each of the 2™ subfamilies
of plants. Consequently, 2™ non-switching controllers
can be designed to cover the whole family .

To also achieve the tracking requirement, we apply
a standard “trick” which converts the tracking prob-
lem into a stabilization problem. More precisely, the
plant is cascaded with an integrator matrix of suffi-
ciently high order before the stabilization design. This
cascaded part is a part of the controller but treated as
a part of the plant in the design.

Lemma 1 Given a family of transfer matrices ¥ in
(2) satisfying Assumptions A1-A4, let Z;,1 =1,---,m
be given by (3) and define

ZFr = {z(s): zi(s) € Z; with the leading
coefficient being positive} (5)

27 = A{z(s): zi(s) € Z; with the leading
coefficient being negative} (6)

Given any sign vector
a:(ala""am)aai€{~7+}7i:1a"'7m7 (7)
define

Lo = {(Np(s),Dp(s)) € X,z(s) € Z2¥} (8)

Then, we have the following properties:

i).
T = UaZa 9)

ii). Each subfamily ¥, satisfies Assumptions AI-A5.

Theorem 1 Consider a family of uncertain plants X,
C R™*™ satisfying Assumptions A1-A5. Then, for
any reference signal polynomial reference signal r(-) :
R — R™ of degree n = (ny,...,ny) such that the
closed-loop system associated with any uncertain plant
Gp(s) € T, is Hurwitz (exponentially) stable and its
output y(t) exponentially tracks r(t).

Remark 5 The number of non-switching controllers is
2™ which is the number of possible sign vectors in (7).
We point out that this number is minimal. To see this,
consider the following family of plants:

. 1 1
{dlag{alé"_—l, v am——}

S

o; €{-1,1},i=1,---,m} (10)

Y =

Obviously, it requires 2™ linear time-invariant stabiliz-
ers to cover the whole family, one for each combina-
tions of the signs of the high-frequency gains.

The proof of Theorem 1 is given in a rather informal
way. We simply need to show how to construct a single
controller for each subfamily of plants X, C R™*™[g]
satisfying Assumptions A1-A5. OQur design procedure
involves two simple steps: The first step is to cascade
the plant by an integrator matrix so that the tracking
problem becomes a robust stabilization problem. The
second step is to apply the design procedure of Wei and
Barmish [16] to achieve robust stabilization. We only
explain how the first step is carried out because the
details of the second step can be found in [16].
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Recall that the maximum degree of the reference
signal is given by n,. Define the integrator matrix:

I(s) = diag {s™",...,s ™} € R™*™[s], (11)
the family of cascaded plants

{Gp(s) = I(5)Gp(s) : Gp(s) € T}
{(N(s),D(s)I(s)) : (N(s),D(s)) € £},(12)

and their subfamilies f]a.

Then, it is easy to verify that %, still satisfies As-
sumptions A1-A5. Further, the following fact is well-
known: If there exists a controller Co(s) € R™*™[s]
which robustly exponentially stabilizes $,, then the
following controller

Cals) = Culs)I(s) (13)

will robustly exponentially stabilize ¥, and guarantee
the exponential tracking requirement for any reference
signal r(¢) with maximum degree n,.

z

4. SWITCHING ALGORITHM

Once the 2™ non-switching controllers {Cy(s)} are de-
signed, the next step is to specify a switching algo-
rithm which, when applied on-line, is able to adaptively
find a correct controller for any given plant Gp(s) €
Y. The switching algorithm is the same as in Fu and
Barmish [2].

We index all the subfamilies of plants ¥, and the
controllers C,(s) by X; and C;(s), respectively, i =
1,---,2™,

First, we use the output of the plant to generate
the following signal:

() = |le(®)||” (14)
where
e(s) = I(s)(y(s) —r(s)) (15)

Define a test function

t
Vin =o) ot -1 = [ llwite 0
for t <0 and 7 € [0,1].

Given any plant Gp(s) € X, suppose the controller
C;(s) is applied at some time ¢;_;. If Gp(s) € %,
then a nice property of e(t) is that it converges to zero
exponentially. It follows that there exists a dwell time
7; > 0 such that V(¢,7;) has the following monotonic
decreasing property:

V(t, Ti) < pV(t - Ti,Ti), Vi >t 1+ 21 (17)

for any prescribed p € (0,1).
On the other hand, if Gp(s) & X, one of the three
cases will happen:

1) The property (17) fails at ¢ = ¢;_1 + 27; immedi-
ately;

2) (17) holds for a little while after £ = ¢;_1 + 27; and
then fails at, say, t;;

3) (17) holds forever.

In the first case, we will know immediately (at ;1 +
27;) that Gp(s) € I, so another controller should be
selected. In the second case, we will not know that the
controller is wrong until ¢;. Again, switching is needed
at t;. However, the controller C;(s) has managed to
decrease the test function for the period of time from
t;—1 + 27; to t;. In the third case, we will never find
out that Gp(s) € ¥, so C;(s) will be applied to Gp(s)
forever. It follows from (17) that the test function will
decay to zero exponentially, and so will the error signal
e(t) (see (16)). That is, the tracking requirement is
satisfled. Also implied is the exponential stability of
the closed-loop system due to the coprimeness of Np(s)
and Dp(s).

Based on the analysis above, we are ready to build
a switching function. Initially, we apply Ci(s) and set
the switching time tg = 0. Now, fori =1,2,...,2™ -1,
define the new switching instant

ti=sup{t:t >ty + 2 V(t, 1) < pV(E—7,75)}
(18)
and the switching index function

h(t) =4, forte [ti—l,ti) (19)

Then, choose the switching control law is given by
C = Ch) (20)

In case t; = oo for some 7 < 2™ — 1, the generation of
t; is terminated and the controller remains to be C;(t)
indefinitely.

We make a few observations about the switching
algorithm above. First, there are only a finite number
of switchings and the switching index h(t) converges to
a constant. In fact, suppose Gp(s) € £;, 1 < j < 2™,
then switching stops when or before the switching index
reaches j. Secondly, for each switching index h(t) =1,
the testing function diverges for at most 27; time long.
So the overall behaviour of the testing function is that it
decays exponentially everywhere (except for a bounded
finite period of time which is negligible). Consequently,
the error function e(t) exponentially converges to zero.
This, in turn, guarantees the exponential stability of
the closed-loop system. The detailed analysis can be
found in Fu and Barmish [2].

In summary, we have the following result:
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Theorem 2 Given a family of uncertain plants ¥ C
RMm*™s] satisfying Assumptions AI-A4 and a refer-
ence signal r(-) : R — R™ with maxzimum degree n,.
Let the non-switching controllers Ci(s),1 = 1,---,2™
be designed according to the procedure in Section 3 and
the switching control law be given by (14)-(20). Then,
for any (unknown) member plant Gp(s) € X, the closed-
loop system is exponentially stable and the tracking er-
ror converges to zero exrponentially.

5. CONCLUSIONS

In this paper, we have considered an adaptive tracking
problem for a family of uncertain m-input m-output
plants which satisfy Assumptions Al-A4. We have
shown that at most 2™ non-switching controllers are
required such that any plant in the given plant family
can be exponentially stabilized with exponential track-
ing performance by one of these controllers. This 2™
number is also shown to be the minimum number, with-
out further restrictions on the plant family. This num-
ber is also significantly less than obtained in [11, 17
where a MRAC problem is considered. Once these 2™
controllers are found, a simple switching algorithm is
established using the idea in [2]. This switching algo-
rithm guarantees that a correct controller will be found
adaptively. More importantly, both exponential sta-
bility and exponential tracking are guaranteed for the
closed-loop system. The resulting switching controller
is a piecewise linear time-invariant one with at most
2™ — 1 switchings.
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