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Localization Based Switching Adaptive Control for Time-Varying
Discrete Time Systems

Peter V. Zhivoglyadov*

Abstract

In this paper a new systematic switching con-
trol approach to adaptive stabilization of linear time-
varying (LTV) discrete-time systems is presented.
This approach is based on a localization method, and
is conceptually different from existing switching adap-
tive control schemes. A feature of the localization
based method is that the control switching converges
rapidly. By utilizing this fast speed of localization and
the rate of admissible parameter variation, we provide
conditions under which the closed-loop system can be
exponentially stabilized.

1 Introduction

Control design for linear dynamic systems with un-
known parameters has been extensively studied over
the last three decades. Despite significant advances
in adaptive control and robust control in recent years,
control of systems with large-size time-varying uncer-
tainty remains a very difficult task. Not only in the
time varying case are the control problems hard, so is
the analysis of stability and performance.

It is well-known [5] that classical adaptive algo-
rithms prior to 1980 were all based on the following
set of standard assumptions or variations of them:

(i) An upper bound on the plant order is known;

(i)
(i)
(iv)

The plant is minimum phase;
The sign of high frequency gain is known;
The uncertain parameters are constant, and the

closed-loop system is free from measurement
noise and input/output disturbance.
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Minuye Fut

The classical adaptive algorithms are known to suf-
fer from various robustness problems [17]. A number
of attempts have been made since 1980 to relax the
assumptions above. A major breakthrough occurred
in the mid 1980’s [8, 10] for adaptive control of LTV
plants with sufficiently small in the mean parameter
variations. Later attempts were made for a broader
class of systems (see, for example, [3, 16, 18]).

In a separate research line, a number of switch-
ing control algorithms have been proposed recently
by several authors [2, 4, 9, 12, 13], thus significantly
weakening the assumptions in (i)-(iv). Both contin-
uous and discrete linear time-invariant systems were
considered. Research in this direction was originated
from the pioneering works by Nussbaum [15] and
Martensson [9]. In particular, it was shown in [9]
that the only a priori information which is needed
for adaptive stabilization of a minimal linear time-
invariant plant is the order of any stabilizing con-
troller. Martensson’s method is based on a “dense”
search over the control parameter space, allows no
measurement noise, and guarantees only asymptotic
stability rather than exponential stability. These
weaknesses were overcome by the work [4] where a
finite switching control method was proposed for LTI
systems with uncertain parameters satisfying some
mild compactness assumptions.

A different switching control approach, called hys-
teresis switching, was reported in a number of papers
[11, 19] in the context of adaptive control. The switch-
ing, in these cases, is used to avoid the “stabilizabil-
ity” problem in adaptive controllers.

Conventional switching control techniques are
based on some mechanism of an exhaustive search
over the entire set of potential controllers (either a
continuum set [9] or a finite set {4]). A major draw-
back is that the search may converge very slowly, re-
sulting in excessive transients which render the system
“unstable” in a practical sense. This phenomenon can
take place even if the closed-loop system is exponen-
tially stabilized. To alleviate this problem, several
new switching control schemes have been proposed re-
cently. The so-called supervisory control for adaptive
set-point tracking is proposed by Morse [13] to im-
prove the transient response. Very similar, in spirit,
supervisory control schemes were analyzed in [6, 14].



The main idea of the supervisory control schemes is
to reduce the set of potentially stabilizing feedbacks
based on certain on-line estimation. However, they
do not guarantee a finite convergence of a switching
controller.

In this paper, we present a new approach for
switching adaptive control for LTV systems. This
approach is based on a localization method, and is
conceptually different from the supervisory control
schemes and other switching schemes. The localiza-
tion method was initially proposed by the authors for
LTI systems [20]. This method has the unique fea-
ture of fast convergence for switching. That is, it can
localize a suitable stabilizing controller very quickly,
hence the name of localization. The main contribu-
tion of this paper is the generalization of the method
to LTV systems. We show that this method is also
easy to implement, has no bursting phenomenon, and
works with or without a known bound on the exoge-
nous disturbance.

2 Problem Statement

We consider a general class of LTV discrete-time
plants in the following form:

D(t, 2" )y(t) = N(t, 2 Du(t) + £(t) +n(t)  (2.1)

where u(¢) is the input, y(¢) is the output, £(¢) is an
exogenous disturbance, 7(t) represents some unmod-
elled dynamics (to be specified later), z~! is the unit
delay operator,

N,z =n @)z +-- +n,(t)2z™"
Dt,z7Y) =1+di(t)z7  + -+ du(t)z™™

(2.2)
(2.3)

We will denote by 8(t) the vector of unknown time-
varying parameters, i.e.,

0(t) = (na(t),- -+, (8), dn(t), -+, i (1))

Throughout this paper, we will use the following non-
minimal description of the plant (2.1):

z(t+1) = A(6(1)z(t) + BO®)u(t) + E (£(¢) +n(t))

(2.4)

(2.5)
where
z(t) =
[ut—n+1)ult-Dyt—n+1)--y&)T ]
(2.6)

and A(6(t)), B(6(t)) and E are matrices of appropri-
ate dimensions. We also define

z(t) J

o) = | =9

(2.7)
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Then, (2.1) can be rewritten as

y(t) = ¢7 (t — 1)8(2) + £(t) + ()

The following assumptions are used throughout the

paper: ,

(A1) The order n of plant (excluding the unmodelled
dynamics) is known.

(2.8)

(A2) There exists a known compact set } € R?%max
such that 8(t) € Q for all t € N.

(A3) The plant (2.1) with frozen parameters and
zero unmodelled dynamics (i.e., n(t) = 0) is
uniformly stabilizable over ). That is, for any
0(t) = 6 € Q, there exists a linear time-invariant
controller C'(z7!) such that the closed-loop sys-
tem is exponentially stable.

(A4) The exogenous disturbance £ is uniformly
bounded, i.e.,

sup|£(t)] < € (2.9)
>0

for some known constant £.

(A5) The unmodelled dynamics is arbitrary subject
to

IIn(®)I] < 7(t) = e sup o**||z(k)||
0<k<t

(2.10)

for some constants € > 0 and 0 < ¢ < 1 which
represent the “size” and “decay rate” of the un-
modelled dynamics, respectively.

(A6) The uncertain parameters are allowed to have
two types of time variations: (i) slow parameter
drifting described by

16(t) =8t -1 <a, V>t  (2.11)

for some constant a > 0, and (ii) infrequent large
jumps constrained by

t+TN

ZS{ST

g=t

(2.12)

for all ¢t > 0, where 7 > 0 and N > 0 are con-
stants with 1/N representing the “frequency” of
large jumps, and

0 if |6(5) —6(i — V|| < o,
8; =
1 otherwise
(2.13)

Remark 2.1 Assumption (A1) can be relazed to that
only an upper bound Numax 15 known. Assumption (A4)
will be used only in Sections 3-4 and will be relaxed to
allow & to be unknown in Section 5 where an estima-
tion scheme is given for £.



Remark 2.2 By using simple algebraic manipula-
tions, measurement noises and input disturbances are
easily incorporated into the model (2.1). In this case,
y(t), u(t) and £(t) represent the measured output,
computed input and (generalized) exogenous distur-
bance, respectively. For example, if a linear time-
invariant discrete-time plant is described by

N(z™1
y(z) = m(u(z) +d(2)) +q(2)
where d(z) and q(z) are the input disturbance and
plant notse, respectively, the plant can be rewritten
as

D(z""y(2) = N(z"Hu(2)+(N(z"")d(2)+D(z " *)g(z"

Therefore, the exogenous input £(z) is N(z~1)d(z) +
D(z71)g(z71).

Remark 2.3 Note that assumptions similar to (A4)
have been used in adaptive control for systems with
unmodelled dynamics; see, e.g., [10, 7, 8].

The switching controller to be designed will be of
the following form:
where Kj(;) is the control gain applied at time ¢, and
i(t) is the switching index at time ¢, taking value in a
finite index set I. The objective of the control design
is to determine the set of control gains

Kr={K;i€el} (2.15)

and an on-line switching algorithm for i(t) so that the
closed-loop system will be “stable” in some sense.

The specific notion of stability to used in this paper
is described below:

Definition 2.1 The system (2.1) satisfying (A4)-
(A5) is said to be globally ¢-exponentially stabilized by
the controller (2.14) if there exist constants My > 0,
0 < p <1, and a function Ma(-) : Ry — Ry with
M5(0) =0 such that

lle()l] < M1~z (to)|] + Ma(é) (2.16)

holds for all to > 0, z(to), € > 0, and £(-) and #(-)
satisfying (A4)-(A5), respectively.

3 Localization Technique for LTI
Plant

The switching algorithms to be used in this paper are
based on a localization technique. This technique is

")
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used in [20] for LTI plants, which potentially allows
us to discard incorrect controllers very quickly while
guaranteeing exponential stability of the closed-loop
system. In this section, we provide a localization tech-
nique for LTI plants which is slightly different from
[20] but will be readily extended to LTV plants.
First, we decompose the parameter set () to obtain
a finite cover {Q;}£_; which satisfies the following con-
ditions:
C1. Qi C Q, erﬁ { },Z= 1,-",L;
C2. UL, =9
C3. Foreachi=1,---,L, let 6; and r; > 0 denote
the “center” and “radius” of ;, ie., 6; € ; and
116 — 8;]| < r; for all 8 € ;. Then, there exist K,
i=1,--+,L, such that

|)\max(/l(9) + B(G)K1)| < 1,

VIe—0l <rii=1,---,L (3.1)

It is well-known that such a finite-cover can be found
under assumptions (A1)-(A3); see, e.g., [4]. More
specifically, there exist (sufficiently large) L, (suffi-
ciently small) r;, and suitable K, ¢ = 1,---, L, such
that (C1)-(C3) hold.

The key observation used in the localization tech-
nique is the following fact: Given any parameter
vector # € (Q; and a control gain Kjg) for some
i(t),j=1,---,L, i i(t) = j, then

y(t) = 67t — 1) + £(t) +n(t)
It follows that

167 ¢(t — 1) — y(®)| S rjllot — VI +E+a(t) (3.3)

This observation leads to a simple localization scheme
by elimination: If the above inequality is violated at
any time instant, we know that the switching index
i(t) is wrong (i.e., i(t) # j), so it can be eliminated.
The unique feature of the localization technique comes
from the fact that violation of (3.3) allows us not only
to eliminate i(f), but many others. As a result, a
correct controller can be found very quickly.

We now describe the localization algorithm. Let
I(t) denote the set of “admissible” control gain indices
at time t and initialize it to be

I(tO) = {1:21"',[’}

(3.2)

(3.4)

Choose any initial switching index i(to) € I(to). For

t > to, define
I(t) ={j:(3.3) holds ,j =1,---,L} (3.5)

Then, the localization algorithm is simply given by

Ity = It - 1)[1(t), Vt>1o (3.6)
The switching index is updated by taking
o [ it —=1)ift > tg and i(t — 1) € I(¢)
i = { any member of I{t) otherwise (3.7)



The following result holds:
Lemma 3.1 Given the uncertain system (2.1) satis-
fying Assumptions (A1)-(A5), suppose a finite cover
{%}E, be a finite cover of Q satisfying Conditions
(C1)-(C3). Then, the localization algorithm given in
(8.4)-(8.7) applied to a LTI plant (2.1) possesses the
following properties:

(D) I&) #{}, Vt=to;

(ii) There ezists a switching index j € I(t) for allt >
to such that the closed-loop system with u(t) =
K;z(t) is globally exponentially stable.

To guarantee exponential stability of the closed-loop

system, we need a further property of the finite cover
of Q.

Definition 3.1 A given set of matrices {A(f): 6 €
Q} is called quadratically stable [1] if there exist sym-
metric and positive-definite matrices H,Q such that
ATOHAWB) -H<-Q, YOeQ (3.8)

It is obvious that the finite cover {Q}%; of  can
always be made such that each ; is “small” enough
so that the corresponding family of “closed-loop” ma-
trices {A(#)+B(0)K; : 8 € ,;} is quadratically stable
for some K.

In view of the observation above, we replace the
Condition (C3) with the following:

C3’. Foreachi=1,---,L, let 8; and r; > 0 denote
the “center” and “radius” of €);, i.e., 8; € ; and
[|6 — 6i|] < r; for all @ € Q;. Then, there exist
a positive scalar g, control gain matrices K;, and

symmetric and positive-definite matrices H; and .

Qi,i=1,-..,L, such that

1 L

(A(0) + B(O)K)TH(A(6) + BO)K:) — Hi < —Qs,

VI —-6il|<rit+gq, i
(3.9)

Remark 3.1 We also note that a finite cover which
satisfies (C1)-(C2) and (C3’) is guaranteed to exist.

The following theorem contains the main result for
the LTI case:

Theorem 3.1 Given a LTI plant (2.1) satisfying
Assumptions (A1)-(A5), let the {Q}L | be a finite
cover of ¥ satisfying Conditions (C1)-(C2) and (C3’),
Then, any localization algorithm given in (3.4)-(3.7)
will guarantee the following properties when € (i.e., the
“size” of unmodelled dynamics) 1s sufficiently small:

(i) The closed-loop system is globally exponentially
stable, i.e., there exists constants M, > 0, 0 <
p < 1, and a function My(-) : Ry — Ry with
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M5(0) = 0 independent of the initial conditions
such that

llz@®)l] < M1pE " |2(to)]] + M2(8)
holds for all t > tq and z(to);

(3.10)

(ii) The switching sequence {i(to),i(to + 1), -} is
finitely convergent, i.e., i(t) =const, V t > t* for
some t*.

4 Localization Technique for LTV
Plants

We note that the localization algorithm (3.4)-
(3.7) does not generally guarantee condition (i) in
Lemma 3.1 if the plant parameters vary in time. Con-
sequently, this localization algorithm cannot be di-
rectly applied to LTV plants. In this section, we de-
scribe a modified localization technique which is ap-
plicable to both LTT and LTV plants. This modified
technique guarantees global exponential stability of
the closed-loop system, provided that the parameters
do not drift. faster than a certain maximum rate and
that the number of parameter jumps is sufficiently in-
frequent.

Before we present a switching control algorithm for
LTV systems, we note that discrete-time systems gen-
erally do not allow for arbitrarily fast parameter vari-
ations. This property is sharply different from the
continuous-time case, where in certain cases, it may
be possible to stabilize systems with arbitrarily rapid
variations.

4.1 Switching Controller Design

The general structure of the switching control is
similar to the time-invariant case except that the lo-
calization algorithm needs some modification. More
specifically, the switching index set I(t) is initialized
with (3.4). At each t > to, a set I(¢) is computed
using (3.3) and (3.5) where r; is replaced by (r; + g),
Vi and I(t) is updated by

() = { It-HNie  HIE-DNI® #{}

1(t) otherwise
(4.1)
The control law is taken to be
u(t) = Ky)z(t) (4.2)

where the switching index i(t) is given by (3.7).

The following result shows that the modified lo-
calization scheme above also guarantees global expo-
nential stability of the closed-loop system when the
parameters drift slowly enough and/or the occurence
of parameter jumps is not too rapid.



Theorem 4.1 Consider the uncertain LTV system
(2.1) satisfying Assumptions (A1)-(A6). Let {Q}E,
be a finite cover of Q1 satisfying Conditions (C1)-(C2)
and (C8’). Then, the localization scheme described
above guarantees the following properties:
(i) The closed-loop system is globally exponentially
stable if
Nele N

M; p <1 (4.3)
where My and p are constants in (8.10), o, N, q are
constants used in Assumption (A6) to describe the
“rate” of parameter variations and the “frequency” of
large parameters jumps, q is given in Condition (C8’),
and £ denotes the mazimum number of switchings for
the case when the parameters are time-invariant.
(ii) The switching sequence {i(to),i(to + 1),---} is
finitely convergent if the parameters are constant.

4.2 Optimal Localization Algorithm

The localization scheme described above allows an
arbitrary new switching index to be used when a
switching occurs. The problem of optimal localiza-
tion addresses the issue of optimal selection of the new
switching index at each switching instance so that the
set of admissible switching indices I(¢) can be pruned
down as quickly as possible. A complete solution to
this problem is provided in the full version of this pa-
per.

5 Localization in the Presence of
Unknown Disturbance Bound

In this section we further relax Assumption (A4) to
allow the disturbance bound £ to be unknown. That
is, we replace (A4) with
(A4’) The exogenous disturbance ¢
bounded,

is uniformly

sup |€(8)] < €

t>to

(5.1)

for some unknown constant &.

As a tradeoff, we need to restrict the parameter vari-
ations to slow drifting only, i.e., we replace (A6) with

(A6") The uncertain parameters are allowed to have
slow drift described by (2.11).

Following the results presented in previous sec-
tions, we introduce a generalized localization algo-
rithm to tackle the new difficulty. The key feature
of the algorithm is the use of an on-line estimate of
€. This estimate starts with a small (or zero) initial
value, and is gradually increased when it is invalidated
by the observations of the output. With the tradeoff
between a larger number of switchings and a higher
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complexity, the new localization algorithm guarantees
similar properties for the closed-loop system as for the
case of known disturbance bound.

Let £(t) be the estimate for £ at time ¢. Define

1(2,€(t)) = {5 : 16T ot = 1) —y(¥)] <
rillg(t - DIl +¢() +0(), j =1,---,L}

That is, [(t, £(t)) is the index set of parameter subsets
which can not be invalidated by the estimate £(t) of
the disturbance bound, at time ¢.

Denote the most recent switching instance by s(t).
We define s(t) and £(t) as follows:

(5.2)

s(to) = to, £(to) =0 (5.3)
1 mt=s t— j(k7€_(k)) = {}
st)=1 " i { and t( -ls)(t) > tg (5.4)
s(t — 1) otherwise
&t 1)+ 0t if
Flr) — I (CRICESVESS) '
&0 = { ond t — s(f) < ta (5.5)

&(t — 1) otherwise

where t4 is some positive integer representing a dwell
time 4 is any small positive constant representing a
steady state residual (to be clarified later), and 4(t)
is an integer function defined as follows:

5() = min {6 : N [k, ECk — 1)+ 61) # {}, 6 € N}

(5.6)
where N represents the set of non-negative integers.
The switching index function i(t) is defined the same
way as before. The algorithm of localization is modi-
fied as follows:

I(t) = Nty Lk, ECR))

But the switching index ¢(¢) is still defined as in (3.7).
The key properties of the algorithm above are given
as follows:

(5.7)

Theorem 5.1 For any constant u > 0, there exist a
parameter drift bound, o > 0, a size of unmodelled
dynamics, ¢ > 0 (both sufficiently small), and dwell
time ty (sufficiently large), such that the localization
algorithm described above, when applied to the plant
(2.1) with Assumptions (A1)-(A8), (A4’) and (A5),
possesses the following properties:
(1) I(t) # {} for all t > to;
(2) SUpP;>¢, §(t) <€+ p

Consequently, the following properties hold:
(3) The closed-loop system is globally (§ + p)-
exponentially stable, i.e., there exists constants M; >
0,0 < p <1, and a function Ma(-) : Ry — Ry with
M>(0) = 0 such that

Nzl < Mypl= ||z (to)l| + Ma(E+p)  (5.8)



holds for all t > to and x(to);

(4) The switching sequence {i(to),i(to + 1),---} is
finitely convergent, i.e., i(t) =const, ¥Vt > t* for some
t* of the uncertain parameters are constant.

We note that even though the value 1 can be arbi-
trarily chosen, the estimate of the disturbance bound,
&(t), can theoretically be larger than ¢ by the margin
o

6 Conclusions

In this paper we have presented a new systematic
switching control based approach for adaptive stabi-
lization of linear time-varying discrete-time systems.
Our approach is based on a localization method which
is conceptually different from supervisory adaptive
control schemes and other existing switching adap-
tive schemes. Under some mild conditions exponen-
tial stability of the system is proved. Detailed tech-
nical information and simulation results are given in
the full version of the paper [21] which is available on
request.
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