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Abstract

The stability of the inverse of the optimum forward
prediction error filter obtained when the input data
is nonstationary is investigated. Due to this nonsta-
tionary character, the resulting system (which is ob-
tained assuming optimality on a sample-by-sample ba-
sis) is time-varying. It turns out that an extension of
the Levinson recursion still provides a means to order-
update the prediction error filters, leading to asymmet-
ric lattice realizations of the filters. Sufficient condi-
tions on the input process are given in order to ensure
exponential asymptotic stability of the corresponding
inverse system. Thus this work extends the well-known
result from linear prediction theory which states that
the transfer function of the optimum forward predic-
tion error filter for a stationary process is minimum
phase.

1 Introduction

This paper considers certain aspects of optimum pre-
diction of nonstationary sequences. To place the prob-
lem in context consider the linear prediction of wide
sense stationary (WSS) signals. In particular suppose
u(k) is a zero mean WSS signal. The optimal m-th or-
der linear prediction problem for such a process seeks
to find {a*};2, to minimize the variance E[f2 (k)] of
the forward prediction error fr, (k) given by

fm(k) = u(k)+za;.ﬂu(k—i). (1)

1Supported by Fundacién Pedro Barrié de la Maza under
grant no. 340056.
2Supported in part by NSF grant ECS-9350346.

0-7803-4394-8/98 $10.00 © 1998 IEEE

The classical solution to this problem is through the
celebrated Levinson-Durbin recursions, which simulta-
neously find both the optimal forward predictor above
and the optimum backward predictor:

m
b (k) = u(k — m) +Zc,’-”u(k —m+1i)

i=1
that minimizes E[b2,(k)], bm(k) being the backward
prediction error. The optimizing coefficients of the
backward predictor are the same as those of the for-
ward predictor in reversed order. Associated with the
Levinson-Durbin recursions is the forward lattice of fig-
ure 1, where each f;(k) and b;(k) represents the corre-
sponding optimum signal and the a; are the so called
reflection coefficients. As long as there is no perfect
m-th order predictor, i.e. the m-dimensional autocor-
relation matrix of u(k) is positive defiuite, these obey
|ai| < 1 subject to the boundedness of the autocorre-
lations.
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Figure 1: Lattice implementation of the prediction-error
filter for WSS input.

Quite often in speech communication one transmits
only fm (k) and the reflection coefficients, as the origi-
nal signal can be asymptotically recovered by the Gray-
Markel lattice of figure 2. Furthermore, as long as the
reflection coefficients are less than one in magnitude,
the structure in fig. 2 is exponentially stable. Alterna-
tively one transmits f,,(k) and the coefficients of the



forward predictor (1), and resynthesizes the signal by
implementing the inverse system of (1). Under the con-
ditions stated above this inverse system is stable as
well. This whole approach finds application in such
areas as speech modelling [6], differential pulse code
modulation (DPCM) [4] or spectral analysis [5].

Figure 2: Recursive lattice structure.

However, most often in real-life problems the data u(-)
are not stationary. In such a case one usually adap-
tively estimates the lattice coefficients and/or the pre-
dictor coefficients, on the basis of the WSS solution.
However in this case neither the resulting inverse pre-
dictor nor the time varying structure in fig. 1 is guar-
anteed to be stable. For example even if the adaptively
estimated lattice coefficients are magnitude bounded
by 1, stability of figure 2 cannot in general be guar-
anteed if the «;’s vary with time [3], and in fact the
basic structures of figures 1 and 2 are simply not op-
timal for non-WSS processes. Accordingly this paper
considers optimal m-th order linear prediction problem
for a nonstationary signal. Specifically, the goal is the
minimization of E[fZ (k)] where

m

Fm (k) = u(k) + ) af*(k)u(k — 1),

i=1

(2)

by deriving both the Levinson-Durbin recursions, and
the corresponding lattice implementations (i.e. the
analogues of fig. 1 and 2). Particular attention is paid
to the stability of both the inverse predictor and its lat-
tice implementation. Observe in this case the predictor
coefficients are obviously time varying.

Section 2 describes the recursions and the forward and
reverse lattice. Section 3 gives certain key properties
that are useful in the stability analysis. Section 4 gives
this analysis of both inverse predictor and its lattice
implementation, and shows stability under mild condi-
tions.

A key technical difficulty in the stability analysis re-
solved here is the following. It is known that in the
WSS case should an m-th order predictor be perfect,
i.e. the optimum forward prediction error have zero
variance, then the inverse predictor is no longer asymp-
totically stable. This arises if the (m + 1)-th dimen-
sional autocorrelation matrix is singular. The difficulty

1841

in the nonstationary case is that the (rn + 1)-th dimen-
sional autocorrelation matrix is no longer constant and
can occasionally become singular even though it may
be positive definite at other times. Some of the ma-
chinery developed in Sections 3 and 4 is geared toward
coping with this occasional singularity problem.

2 Finding the optimum predictor

We shall assume that u(-) is a zero-mean real stochastic
process. The autocorrelation coeflicients are denoted
by rn(k) 2 Elu(k)u(k — n)]. It is convenient to intro-
duce the backward linear prediction problem: minimize
E[bZ, (k)] where

b (k) = u(k —m) + > e (k)u(k — m + i)

=1

is the m-order backward prediction error. If we define
the vectors

am(k) = [ al"(k) am(k) ',
cm(k) = [ cq(k) (k) 1,
un(k) = [ ulk) wk-1) ulk—m+1) 7,
then we can express the prediction errors more com-
pactly as
fm(k) = u(k) +um(k —1)'am(k), (3)
b(k) = ulk —m)+un(k)cmk). (4)

Let us introduce the notation

Rin(k) 2 Efu (k)un (k)]
ro(k) r1(k) Pm—1(k)
_ Tl(k) To(k' — 1) T'm_z(k' - 1)
rmct(K)  rmea(k = 1) ro(k —m+ 1)
(autocorrelation matrix) and
rm(k) = Elu,(k~ 1)u(k)]
= [ 71(k) rao(k) ra(k) rm(k) 1,
sm(k) = Elum (k)u(k — m)]
= [ rmlk) rmoi(k—1) rk—m+1) ],

(autocorrelation vectors). This allows to write the vari-
ances of the prediction errors as

Blfm®) = [1 am(k) ]Rm+1(k){ aml(k) } (5)
Ebn(®)] = [em(k) 1 ]Rmyr(k) [ le(k) ] (6)



It proves useful to introduce the following partitions:

ro(k) rm-1(k)
mait) = [0 iy 0
[ Raci(k—1) spoy(k—1)
Ru(k=1) = [sm_ll(k—l)’ o(k — m) }(8)
and
rn(k) = [ Tmoik) (k) ] )
sm(k) = [ rm(k) smo1(k—1)]. (10

Now the values of the coefficient vectors am (k), ¢p (k)
that minimize (5) and (6) respectively at every time

winstant are
R, (k- 1)an (k)
Ron(k)em (k)

—l‘m(k'),
—sm (k).

(1)
(12)

These are the time-varying counterpart of the normal
equations [7, 8]. Observe that although R,, (k) is sym-
metric, it need not be Toeplitz as in the WSS case; as
a consequence, am (k) # cm(k) in general. The mini-
mized values of the error variances are

Fmlk) & ro(k)+ 37 al (K)ri(h)
= ro(k) + rm (k) am(k), (13)
Bu(k) = rolk—m)+ Y el (k)ri(k — m+ 1)
i=1

= ro(k —m)+ sm(k) cnm(k). (14)

This result could also have been obtained by applying
the orthogonality principle [1]: the optimum vectors
am(k), cm(k) are such that the resulting prediction er-
rors satisfy, for every k,

In the sequel the following assumption will always ap-
ply.

Assumption 1 There exists a constant M such that
for all k and m,

0 < R, (k) < M1

This assumption guarantees that both F,,(k) and
B (k) are nonnegative. Further they can be zero only
if Ryp41(k) is singular. Now the equivalent of the
Levinson recursion [1, 7, 8] can be obtained. To begin,
let Ap,(k) denote the cross-correlation between f,(k)
and by, (k — 1):

Am(E) & Elbm(k — 1) fm ()],
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and define the reflection coefficients o (k), Bm (k) as

o (k) — —B,Any_nl_lkfl ’ if Bm—l(k - 1) > 05
" 0, if B (k= 1) =0,
(17)
B (k) = ~ gzl i Faoi (k) >0, (18)
" 0, if Fro1(k) = 0,

Now we can state:

Theorem 1 Under assumption 1 the optimum coef-
ficient vectors am(k), cm(k) can be order-updated as

per
)
|
)=

[ Cm-1(k —1) ] +ﬂm(k)[

with the initialization

am(k) =
na(6) } +am(k)[ em-i(k = 1) } , (19)
em(k

0
(k

o) ] - (20)

A

- —TDL(—IE‘)_—v Zf’f'o(k'_l)>0,

a (k’) = { 0. (k-1) ifro(k _ 1) =0, (21)
_ ] -EE ik >0,

(k) = { e > o (22)

Corollary 1 With the initialization fo(k) = bo(k) =
u(k), the prediction errors obey the following recur-
stons, fori > 0:

fi(k)
bi (k)

fi=1(k) + ai(k)bi—y (k — 1),
bi_1(k — 1) + Bi(k) fi-1(k),

(23)
(24)

What corollary 1 says is that, as in the WSS case, all
the forward and backward prediction error filters up to
a certain order can be wound up in a lattice structure
(see figure 3) which is now time-varying. More impor-
tant, note that this structure is also asymmetric, 1.e. in
general a;(k) # Bi(k), in contrast with the WSS case.

ﬁfl(k) - __fm—l(k) fm(k)

\/

fo(k)

u(k) ay (k) as(k) am (k)
(k) (k) B (k)
LA
bo (k) b (k) b1 (k) m(k)
Figure 3: Lattice implementation of the prediction-error
filter.
Eqgs. (23), (24) can be rewritten as
ficak) = fi(k) —ci(k)bioa(k = 1), (25)
bi(k) = bi_a(k—1)+Bi(k)fiza(k), (26)



for ¢ > 0. This provides a means to implement the
inverse of the forward prediction error filter, by starting
the recursions (25), (26) with f,, (k) and closing the
loop with bo(k) = fo(k). This recursive, asymmetric,
time-varying lattice structure is depicted in figure 4.

Figure 4: Recursive lattice structure for the inverse for-
ward prediction error filter.

The natural question at this point is whether the time-
varying system of figure 4 is stable. First we present
some properties of the prediction error filters, which
will help us take on the question of stability in section
4.

3 Properties of the linear predictor

Throughout assumption 1 is assumed to hold. Here we
address the main properties of the time-varying linear
predictor. In most cases they are extensions of well-
known properties of the LTI filters obtained in the WSS
case.

Property 1 The forward and backward prediction
error variances satisfy

Fom (k)
Bom (k)

Fe1(k) — a2, (k)Bm-1(k = 1), (27)
Booi(k—1) — B2 () Frm—1(k). (28)

Note that in general am, (k) # Bm(k) and Fp, (k) #
B, (k). An inmediate consequence of property 1 is:

Property 2 For any fized time instant k, the se-
quences {Fm(k)}m>0 and {Bm(k + m)}m>o are non-
increasing:

0< Fm(k) < Fmoa(k),
0< Bn(k+m) <Bp_oi(k+m-—1),

for all k and for all m > 1.

Note that it is not true in general that 0 < B (k) <
Bm-1(k) for all k and all m > 0.

Property 3 For all k and for allm > 1,
0 < am(k)Bm(k) < 1.
Further, there exist My, My such that for all k,
am (k) < My,

and
ﬁm (k) S MZ:

Property 3 is the extension to the well-known result for
the WSS case that states that the reflection coefficients
have magnitude no greater than one. Note, however,
that in general |an, (k)| < 1 and/or |8, (k)] < 1 need
not hold.

We turn our attention now to predictable processes,
whose definition is given next:

Definition 1 The process u(-) is forward (resp., back-
ward) perfectly predictable of order m at time ko if
Fm(ko) =0 (resp., if By (ko) =0).

In the WSS case, if the process u(-) is forward or back-
ward perfectly predictable of order m at time kg, then
Fm(k) = Bpn(k) = 0 for all k. In the nonstationary
case, however, the process u(-) may become predictable
at some time instants and not at others. Also note
that perfect predictability of order m at k¢ can happen
only if Ryn41 (ko) becomes singular (the reciprocal is
not true in general though):

Lemma 1 Assume that the autocorrelation matriz se-
quence Rup41(-) is uniformly positive definite (u.p.d.),
i.e.

Cll S Rm+1 (k) S CgI Vk,

for some c1,c3 > 0. Then there exists a finite constant
e3> 0 such that ¢; € Fp,(k), B (k) < c3 for all k.

Thus if Rym41() is u.p.d., the input process cannot be
perfectly predictable (at least of order m) at any time
instant. On the other hand, for the reflection coeffi-
cients of the first stage that achieves perfect prediction,
the following holds:

Lemma 2 Assume that R,,(-) is u.p.d. Then, if
Fmlko) = 0 (resp. if Brn(ko) = 0) at a given ko, the
following holds true:

1. a2 (ko) is bounded away from zero,

2. B2 (ko) is bounded away from zero,

3. am(kﬂ)ﬁm(ko) = 1:
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4. Bm(kO) =0 (T‘esp. fm(ko) = 0)
Also if am(ko)Bm (ko) = 1 then Fm(ko) = Bm(ko) = 0.

Thus if one predictioa error becomes identically zero
for some &, so must the other (showing that backward
and forward perfect predictability are equivalent con-
cepts), and then the product of the reflection coeffi-
cients equals one. Finally we give the converse result:

Lemma 3 Assume that Rp,(-) s u.p.d. Then, if
am(ko) = 0, (resp. if Bm(ko) = 0) at a given ko, the
following holds true:

L Bm(ko) =0 (resp. am(ko) =0),
2. Fm(ko) is bounded away from zero,

3. B (ko) is bounded away from zero.

Therefore we conclude that under the u.p.d. assump-
tion, the prediction error variances and the reflection
coeflicients of the same lattice stage cannot vanish si-
multaneously.

4 Stability of the inverse system

We pick now the question from the end of section 2
of whether the inverse forward prediction error filter,
whose lattice implementation was shown in figure 4, is
stable. We shall show first that the direct form im-
plementation of this system is stable; this in turn will
imply stability of the lattice structure. First the defi-
nition of exponential stability is given:

Definition 2 The linear time-varying system x(k +
1) = A(k)x(k) is exponentially asymptotically stable
(e.a.s.) if for any bounded initial condition ||x(ko)|| <
oo, with arbitrary kg, the resulting state vector sequence
x(-) obeys the exponential bound

(k)] < cd*~*eljx(ko)ll  for all k> ko,

where ¢ is some fized constant and 0 < d < 1.

We shall use also the concept of uniform detectability
[2], which we shall define next. First let us introduce
the state transition matrix for the system x(k + 1) =
A(k)x(k) as

. it k=1,
q)(k’l):{A(k—l)A(k-Q)"'A(l) ;f k>l
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Definition 3 [2] The pair [A(k), c(k)] is uniformly de-
tectable if there exist integers s, t > 0 and constants
d,buith0<d<1,0<b< oo such that whenever

[1@(k + ¢, k)wl| > d||wl|
for some w and k, then
wM(k + s, k)w > dbw'w,

where M(k + s, k) (the observability Gramian) is given
by

k+s
Mk +s,k) 2 3 @i, k)e(i)e(i) @ (i, k).
i=k

We are now in position to study the stability of the sys-
tem of interest. Assume that the coefficients {a]”(k)}
have been obtained as the solution to the forward lin-
ear prediction problem for some random process u(-).
The inverse forward prediction error filter can be im-
plemented then in direct form as

y(k) = v(k) = Y aP(R(k =), (29)

where v(-) is the input and y(-) is the output. In the
WSS case, (29) reduces to an LTI all-pole filter which
is e.a.s. if and only if the WSS process u(-) was not
fully predictable (7, 8].

Eq. (29) has the companion form state-space represen-
tation: {F(k), G, H(k), I}:

F(k) =
—ap* (k) —a3'(k) —am_1 (k) —an(k)
1 0 0 0
0 1 0 0 :
0 0 1 0
G =[100 --- 07,
H(k) = [ —~a'(k) —af'(k) --- —a(k) ]

This realization has the following property:

Lemma 4 The matriz sequence F(-) satisfies the fol-
lowing time-varying equation:

R (k) — F(k)Rm(k — DF (k) = v(k)v(k) vk,
(30)
with ,
., 0 ] .

v(k) =[ VFn(k), o,

Eq. (30) is the key for establishing exponential stability
of of the above realization. We can now give sufficient
conditions for the direct form above to be e.as..



Theorem 2 Suppose that the matriz sequence Ry, (+)
is bounded above and that there exist an integer S and
a constant ¢ > 0 such that for all k, there exists ny
satisfying:

1. TLka,
2. ng+m—-1<k+3S5,
3 Fm(mp+1) > e fori=0,1,...m-1.

Then the system x(k + 1) = F(k)x(k) is ezponentially
asymptotically stable.

The conditions of the theorem are met if on any time
window of size S it is possible to find m consecutive
time instants in which the forward prediction error vari-
ance is bounded away from zero. This is the case if for
example F, (k) > ¢ for some constant ¢ > 0 and for all

k.

To see that the same condition implies the exponen-
tial stability of the recursive lattice implementation of
figure 4, first observe that the state vector x(k) of the
direct form realization consists simply of delayed out-
puts:

x(k) =[ y(k-1) y(k —m) 1.

Under the conditions of theorem 2, the matrix sequence
R, (*) is bounded; we showed above that this implies
R+1("), am(+),em(-) bounded. Then in view of (5) and
(6), Fi(:), Bi(-) are also bounded, i = 1,...,m. Thus
in view of (27) and (28), the reflection coefficients a;(-),
Bi(+) remain bounded, i = 1,...,m. Also, because the
direct form is e.a.s., v(-) bounded yields y(-) bounded.

Now look at the recursive lattice structure in figure 5.
Since we know that this system implements the same
input-output relation as (29), if the is v(k) then the
output is y(k). The state vector of this system is

Figure 5: The recursive time-varying lattice structure.

From figure 5, it turns out that

zi(k) = ylk =)+ LC{y(k—i+1),...,y(k=1)}, (31)
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for 7z = 1,...,m, where LC stands for ‘linear combi-
nation’. The weights of these linear combinations are
polynomic functions of the reflection coefficients and
thus they are bounded. This shows that the state vec-
tor of the lattice structure remains bounded. Moreover,
if v(k) = 0 for all k, x(k) goes to zero exponentially fast
and in view of (31) so does z(k). Therefore the lattice
structure is e.a.s.

5 Conclusions

An analysis of the properties of the prediction error
filters obtained for nonstationary input processes has
been developed. Many similarities with the stationary
case were found, although the properties of the LTI
filters obtained for WSS processes do not carry out
directly to the nonstationary case. Nevertheless, an
(asymmetric, time-varying) lattice structure for the fil-
ters still exists. Most important, under mild conditions
on the input process, the time-varying system given by
the inverse of the forward prediction error filter remains
exponentially asymptotically stable.
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