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Abstract. Despite recent advances in robust control, robust track-
ing in linear and nonlinear uncertain systems remains an important
and challenging task. Existing results for robust tracking usually
rely on state feedback due to the difficulty of constructing robust
observers for uncertain systems. Furthermore, state tracking has
been emphasized much more than output tracking. In this paper,
we tackle the problem of robust output tracking via dynamic out-
put feedback for nonlinear systems which are subject to both uncer-
tainty in system functions and input noise. The notion of f-tracking
is adopted which refers to the property of the system output to fol-
low a reference trajectory within a 8 neighborhood in finite time.
With some matching conditions, minimum phase condition, Lipschitz
bounds and some other mild assumptions, we show that if f-tracking
of a nominal system can be achieved via a linear-cone bounded state
feedback controller, then similar tracking can be achieved for the non-
linear uncertain system via dynamic output feedback. The resulting
controller is linear-cone bounded, or can be purely linear with the
tradeoff of high gain if desired. Our approach utilizes and generalizes
existing results on robust tracking and stabilization via state feed-
back and robust observer design via loop transfer recovery theory.

1 Introduction

Recent developments in robust control have brought about sig-
nificant results covering the issue of stablization of uncertain
systems. However, research on robust tracking in linear and
nonlinear uncertain systems remains an important and chal-
lenging area. The problem of robust tracking involves designing
either a state or dynamic output feedback control law so that
the output of an uncertain system follows a given reference tra-
jectory in certain sense.

There have been many attempts at state feedback control for
state tracking. A stream of results pertinent to this paper are
given by Corless, Leitmann, Ryan and Coodall, see [2, 3, 4] and
references thereof. These results deal with a class of nonlinear
systems satisfying the so-called “matching conditions” concern-
ing the nonlinearity and uncertainty in the system. They show
that under a certain feasibility condition on the reference model,
the so-called B8-tracking can be achieved for the state of the sys-
tem for any neighborhood B of the origin, i.e., the state of the
system will follow the state of the reference model within 8 after
a finite period of time. Their method is based on earlier results
on robust stabilization of uncertain systems with matching con-
ditions initiated by Leitmann [13]. The matching conditions are
also used by Schmitendorf and Barmish [16] to achieve robust
asymptotic tracking of step functions via state feedback control.

The aim of tracking for uncertain systems via output feed-
back has previously been hindered by the difficulties in observer
design, which forbade the recovery of full state feedback prop-
erties and robustness. However, recent progress has begun’ to
approach this solution. Hollot and Galimidi {12] consider an
uncertain system which is quadratically stabilizable by using a
state feedback law and show that an observer-based stablizer
can be constructed for a nearby uncertain system provided that
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the transfer function from the uncertainty to the output is of
minimum phase. The design of a robust observer for stabiliza-
tion has been achieved by Petersen and Hollot [14], Esfandiari
and Khalil [7], and Saberi and Sannuti [15]. In [14], it is shown
by using the interconnection between H,, disturbance attenu-
ation and quadratic stabilization that an observer-based stabi-
lizer can be constructed when a state feedback controller exists
and certain minimum phase condition holds. Similar results are
also reported in [7] and {15], the former uses a two-time scale
structure and the latter utilizes the so-called “asymptotic time-
scale and eigenstructure assignment” method for loop transfer
recovery. The result of [15] is slightly more general than those
in [7, 14] in the sense that nonlinear state feedback with a linear
bound is allowed in [15].

The motivation of our paper stems from the following weak-
nesses of the exisiting results. First, a state reference is often
used rather than an output reference. Because reconstruction
of state dynamics for a given output trajectory may be a diffi-
cult task and that state dynamics may not be unique, especially
when the output is contaminated by noises, the usage of state
reference is limited. Secondly, many results on robust tracking
rely on nonlinear state feedback. Although nonlinear control
is sometimes unavoidable, especially for nonlinear systems, and
may also have the advantage of requiring lower gains if carefully
constructed, linear control is often preferred in the practice due
to its simplicity and the richness of the linear control theory.
Thirdly and perhaps most seriously, the state feedback control
is usually required in spite of the fact that this is often inap-
plicable due to the lack of full state measurement. Although
results such as in {7, 14, 15] are available for constructing ob-
servers for robust stabilization, no counterpart of these results
exists for robust tracking.

In order to overcome these weaknesses, we propose to solve
in this paper, the problem of f-oulput tracking for nonlinear
uncertain sysiems via dynamic oulpul feedback conirol. That
is, given a nonlinear uncertain system, an output reference tra-
jectory and a neighborhood of the origin B, we need to design
a dynamic output feedback so that the output of the uncer-
tain system tracks the reference trajectory within 8 in a finite
period of time (see Section 2 for precise definition of 8-output
tracking). More specifically, we consider nonlinear systems with
bounded input noise and uncertainty in system functions which
satisfy some matching conditions, a minimum phase condition,
some Lipschitz bounds for the uncertainty and nonlinearity and
some other mild assumptions. We show that if B-outpul tracking
for a nominal system can be achieved by using a stale feedback
controller for a given bounded oulput reference trajectory end
a neighborhood 8 of the origin, then f “-oulput iracking for the
unceriain system can be guaranieed by using an dynamic out-
pul feedback controller for any B¢ “larger” than f. Moreover,
the resulting controller is linear-cone bounded, or can be purely
linear with the tradeoff of high gain if desired. Our approach is
based on the existing results on robust tracking and stabiliza-
tion via state feedback [2, 3, 4] and robust observer design via
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loop transfer recovery theory [7, 14, 15]. We take the liberty of
using the matching conditions, minimum phase and Lipschitz
conditions in view of the fact that these properties are common
to a large class of physical systems.

The design of our controller is carried out in three steps.
The first step involves the design of the state feedback law for
the nominal model to achieve B-output tracking of the given
reference trajectory. This can be done by any method of the
designer’s choice (e.g., see [1, 6, 18]), except for the constraint
that the controller needs to be linear-cone bounded. The second
step is to apply the matching conditions to design a state feed-
back law for the uncertain system to track the nominal model.
The state feedback controller is modified from the nominal con-
troller by including an additional linear feedback term to at-
tenuate the nonlinearity, uncertainty and input noise. The final
step is to construct an observer for the uncertain system by uti-
lizing the minimum phase condition so that the observer-based
design will “recover” the state feedback law. As a result, the
observer-based closed-loop system will 8 “-track the given refer-
ence for some B  slightly “larger” but arbitrarily close to 8. The
rest of the paper is organized as follows. Section 2 formulates
the B-output tracking problem. Section 3 provides the main
results of the paper. This section consists of state feedback de-
sign, observer design and construction of the output feedback
controller. The results on state feedback design and observer
design are independent so that they can be applied separately.
Some conclusions are reached in Section 4.

2 Problem Formulation

We consider nonlinear systems with structured uncertainty of
the following general form, S :

#t) = f(t,z)+Af(t,z)+[B+AB(t,z,u)(u+w) (1)
¥t) = Cz (2)
Um(t) = Cmz (3)

where z(t) € R" is the state, u(t) € R™ is the control in-
put, y(t) € R" is the controlled output, ym(t) is the mea-
sured output, w(t) € R™ is the input noise, B,C and Cn
are constant matrices of appropriate dimensions, the mapping
f() : R* x R® — R" is a known function, the mappings
Af(-): Rt x R" — R" and AB(:) : R* x R” x R™ — R**™
are unknown functions representing the system uncertainties.

Suppose we want system (2) to track a given reference tra-
jectory yrer : Rt — R in certain sense. Then we choose a
dynamic feedback control law of the form

€ = O£ UmUeet) (4)
u ¢(t) = E(t»fs ym-yrel‘) (5)

where © : R*xR!xR" xR’ — R! and Z: R* xR'xR"xR" —
R™. The resulting closed loop system can be written as, T :

()
y(t) =

We define the tracking error as the difference between the
closed-loop system output (7) and the reference trajectory: _

Ye(t) = y(t) — yree(t) (8)

In the sequel, we denote by a closed “ball” B, as being the
closed neighbourhood of radius ¢ > 0 centred at the origin.

f(t,z2)+ Af(t,z) + [B+ AB(t,z, 2)}(® + w) (6)
Cz (7

The pointwise sum of two sets A and B will be abbreviated by
A+4+B,ie,

A+B={c:c=a+ba€AbeB} . 9)

We use the standard 2-norm for vectors in R™ and the asso-
ciated induced norm for matrices. The set of nongenative real
numbers is denoted by R*.

We adopt the term B-tracking from [2, 3] to describe the be-
haviour of the system output (7) as being convergent to a given
neighborhood 8 of yrer- The following definition is slightly dif-
ferent from [2, 3] to cope with the output tracking, but the basic
principle remains.

Definition 2.1 (B-tracking)

Given an oulpul reference trajectory yrer() : R* — R” and a
neighborhood B8 of the origin, the outpul of the system T is said
1o B-track the reference trajectory yeer if the following conditions
are salisfied:

1. Existence and Continuation of Solutions: For all initial
conditions (to,z9) € Rt x R", there ezists a solution
z : [to,t1) — R™ of system T (a function satisfying (6)
which is absolutely continuous almost everywhere) and ev-
ery solution can be extended {0 a solution defined on [0, 00).

2. Uniform Bounded-Input-Bounded-Output Stability: For
any bounded yrer(+) and initial condition z(tg) = zo, there
ezists d > 0 such that if z : [to,00) — R” is any solution
to (6) with y : [to,00) — R™ being the associated output
trajectory, then ||y(t)|| < d for all t € [to, 00).

9. Uniform Ultimate Boundedness of the Tracking Error
within B: For any initial condition z(to) = zo, there ez-
ists ¢ T(B,z0) > 0 such that if y : [to,00) — R" is any
solution 1o (6), then (y(t) — yeer(t)) EBV L 240+ T.

To achieve robust tracking for the uncertain system, we make
the following assumptions throughout the paper.

Assumptions:

A1l Malching Conditions: There exists a known matrix A €
R"*", a known scalar 0 < 8 < 1, a known Carathéodory
function! g : Rt x R® — R™ and unknown Carathéodory
functions  : Rt x R® = R™ and E: R* x R* xR™ —
R™*™ guch that the following hold for all (¢, z,u) € Rt x
R™® x R™:

f(t,z) = Az+ Bg(t,z) (10)
Af(t,z) = Bh(t,z) (11)
AB(t,z,u) = BE(t,z,u) (12)
EG,zull < B. - (13)

A2 Left Invertibility and Minimum Phase Condition: The sys-
tem defined by (Cm, A, B) is left invertible and of minimum

phase. .

A3 Boundedness of System Functions: There exist known pos-
itive scalars § and A such that

llgtt, )l < gll=if (14)
st 2)ll < Rllzll V(t,z) eR* xR".  (15)

1A function v : R x R? —+ R is called Carathéodory ifi i) v(- 2)
is Lebesgue measurable for each z € RP; ii) v(¢,-) is continuous for each
t € R, iii) for each compact set U C R x R», there exists a Lebesgue
integrable function my(-) such that [|u(t,2)|| < my(t) for all (¢,3) € U.
This type of functions are needed primarily for assuring the existence and
continuation of the solution to a differential equation; see (2] and references
thereof.
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A4 Boundedness of Input Noise: There exists a known scalar
@ € Rt such that

le@ll<w VteR* (16)

A5 Boundedness of Reference Signal: There exists a known
scalar grer € R such that

llorer(l < Gret V2 € RF. amn

We define the nominal system corresponding to (1) and (2)
as that which is devoid of all uncertainty and input noise:

o(t) f(t,20(t)) + Buo(t)
Yo (t) CZQ(t) .

The controller construction involves three steps:

(18)
(19)

(i) Design of state feedback to make the output of the nominal
system B-track the reference trajectory,

(ii) Design of state feedback to make the uncertain system fol-
low the nominal system,

(iii) Design of an observer to make available a reconstructed
state for feedback in (ii).

The tracking of the nominal system has been well studied;
see [1, 6, 18]. It is not our intention to study this problem.
We therefore assume that a controller satisfying (i) is already
available. More precisely, we assume the following:

A6 Suppose there exists a Carathéodor): function ¥y : IE"‘ X
R" — R™ satisfying ||®o(t, z)]| < Po||z]|| for some &g €
R* such that the state feedback control law

uo(t) = ®o(t, z0) (20)

guarantees that the output of the nominal system will 8-
track the reference trajectory yrer for some given 8.

3 Control Design

Under Assumption 6, the design problem in Step ii) now be-
comes one of finding a state feedback law ® to make the the
uncertain system (1)-(2) track the nominal system arbitrarily
closely. Furthermore, the design problem in Step iii) is to find a
robust observer to reconstruct the state feedback law @. In this
context, we consider separately the issues of the state feedback
and the observer design before discussing the feedback of the
resconstructed state.

A. State Feedback

We determine here a nonlinear control law which is linear-
cone bounded. More specifically, the control law ® will contain
two parts: linear and nonlinear. The nonlinear part is used to
emulate the nominal control and to cancel the known part of
the system nonlinearity and the linear part is for attenuating
the uncertainty and input noise and for stabilizing the system.
If desired, a purely linear control can be developed with the
tradeoff of higher feedback gain.

Observe that the nominal system (18)-(19) must be stabiliz-
able due to the fact that the nominal system with the feedback
law (20) can 8-track yrer. This implies that the pair (A, B) must
be stabilizable. Therefore, a feedback matrix K can be selected
so0 as to ensure that A + B is asymptotically stable. More-
over, for any positive definite symetric matrix Q; = QT > 0,

there exists another such matrix P, = PT > 0 (unique) such

that
(A + B.K())TP1 + Pl(A -+ BKO) + Ql =0 . (21)

Based on the selection of K¢ and P;, the feedback control law
® is chosen to be of the following form:

z2q = f(t,zq) + BPo(t, z4) (22)
u(t) = &(t,z(1))
= ®(t,z4) + ¥(t, 2(t)) — 7. BT Pi[z(t) — za(t)] (23)
where
¥(t,z) = Ko(z — z,) — g(t,z) + 9(t, za) , (24)

and the scalar v, in (23) is a design constant to be determined.
The auxilary dynamics (22) is used to emulate the nominal
system. The functions in (23) are similar as in [2] for 8-tracking
of state reference except that the third term in (23) is linear
rather than nonlinear as in [2]. This term, which is adopted
from Thorp and Barmish [17), is used to faciliate the design of
observer.
Theorem 3.1 Cousider the uncertain system (1) and an out-
put reference trajectory yrer : RY — RT satisfying Assumptions
A1,A3-A5. Given a neighborhood f of the origin, suppose there
exists a state control law ®g such that Assumption A6 holds.
Then, For each ¢ > 0 and the corresponding neighborhood of
the origin

ﬂ €= £+B, , (25)
there ezists a v > 0 (sufficiently large) such that the state
feedback conirol law (22)-(24) guaraniees the oulput of the un-
certain system (1)-(2) to B¢ - track yrer with the Lyapunov
function Vi(z — ;) = (2 — z4)T Pi(z — z,4) satisfying

€2

~TcE Ve Rt (29)

d
Vae()=2a(1)) < Mllz(®)-za O
for some A > 0. Moreover, there exists M > 0 such that
ll®(t, 2)l| < Mellzll, Vz€eR", teR*.

Proof: See [22].

Remark 3.1: The state feedback control law used above, al-
though linear-cone bounded, is nonlinear. If desired, a purely
linear control law can be developed to achieve the same robust
tracking result. This can simply be done by extracting the lin-
ear portions of the nominal controller ® and g(-) and grouping
them together with the “deterministic” part of the system and
leaving the rest in the uncertain part. The boundedness on the
nominal controller and g(-) means that the regrouping will not
affect the boundedness of the uncertain part. The resulting con-
troller, as derived from Theorem 3.1, will obviously be linear.
Although a linear controller is often advantageous, one must be
cautious about the tradeoff of high gain.

B. Observer Design

We now turn to the problem of observer design for robust
tracking of nonlinear uncertain systems. We aim at developing
a general result (Theorem 3.2) rather than restricting ourselves
to the class of systems in (1)-(2). In other words, this result is
applicable to systems which do not satisfy matching conditions
and some other restrictions. For this purpose, we consider the
following uncertain system:

(27

{t) = Az(t)+ Bo(t)
+ DU, 2(), v(t),w(t)) + N(t, 2(2), v(t)]
o) = Cz(t) (28)
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where z(t) € R™ is the state, v(¢) € R™ is the control, n(t) € R"
is the output, w(t) € R* is an unknown input noise, U : R+t x
RP"xR™xR* — R* and N : R* xR" xR™ — R* are unknown
and known Carathéodory functions, respectively, A, B,C and D
are known constant matrices of appropriate dimensions. The
following assumptions are imposed on the system:

A3.1 Left Invertibility and Minimum Phase: The system de-
fined by (A, B,C) is left invertible and of minimum phase;

A3.2 Boundedness of System Functions: There exists positive
constants k;,i = 1,...,6 such that

UG, z,0,w)li < Ballz]| 4 kallvll +  ks|lwl] (29)
WU,z vy, w) - U(t,z,vg,w)H < kallvr —velf (30)
IN@, 21,0) - N(t, z2,9)]| < ksllzs = zal| (31)
IN(t, z,0) = N(t,z,0)l] < kellvi —vall (32)

for allt € RY, 2, 21,20 € R®,v,v1,v, € R™,w € R*.

A3.3 Boundedness of Input noise: There exists a positive con-
stant @ such that

@il <@ (33)

forallt € RY.
Let a given continuous state trajectory zr : R* — R” satisfy

A3.4 Boundedness of Reference: There exists a positive con-
stant Zper such that

Nzrer(®)I| < Zrer (34)
forallt e Rt.

Suppose for a given € > 0, there exists a continuous control law

v(t) = F($) (35)
where
(=2 — 2z (36)
such that the state of the closed-loop system
i = Az 4 BF(()+ DU, 2, F(C),w) + N(t, 2, F(())]  (37)

B-tracks zyr with a Lyapunov function W(() satisfying the
following assumption.

A3.5 Boundedness of Lyapunov Function: There exists posi-
tive constants k;,i = 7,---,10 such that

kCIP < W) <ksllCI® V¢ e R

aw,
||';1'C"|| < kil ¥¢C eR"

(38)
(39)
Wi = d;"cw(c){AHBr(c)+v[v(t,z,f(<),w)

+N(i, z, f(())] - iref}

< —ko(lKI*—¢*) YteR* zeR" (40)
and for all admissible w.

A3.6 Boundedness of Conirol Law: There exists a positive con-
stant k;; such that

1F() ~ F(G)Il € kaafler = Cell
for all (1,{z € R".

(41)

Under Assumptions A3.1-A3.6, we take the observer-based
feedback control of the following form:

2

Il

A+ Bi + DN(, 3,v) + L(n - C2)
F(2 = zret) -

(42)
(43)

v

Theorem 3.2 Suppose Assumptions A3.1-A8.6 hold for the
system (28), some given reference zrer and a scalar € > 0. Then,
for any € > ¢, there ezists an observer gain matriz L such that
with the observer-based control (42)-(43) the closed-loop system
B, -tracks zrer, which is equivalent 1o selecting the matriz L
such that ||(sI — A+ LC)~1D||co is sufficiently small.

Proof: See [22].

Remark: The result above shows that we simply need to ensure
that ||(sI — A+ LC)~'D||c is sufficiently small. This is actually
a standard loop transfer recovery problem when D = B. See,
for example, [14, 7, 15, 8] for various design techniques.

C. Dynamic Output Feedback Control

With the results on state feedback design and observer de-
sign, we are to develop a dynamic output feedback controller
for robust output tracking of the system (1)-(2). The observer-
based control design for robust tracking will of the following
form:

g = [f(t,%a) + B®o(t) Za) (44)
& = f(t,&)+ Bu+ L(ym — Cm#) (45)
u(t) = () (46)
= ®o(t, za) + U(t, E(t)) — 7. BT Pi(2(t) — z4(t))
where
U(t, &) = Ko(& — za) — 9(t, &) + 9(t, 2a) . 47

Theorem 3.3 (Main Result) Consider the unceriain sys-
tem (1)-(2) and an oulpul reference irajectory yer : RY —
R satisfying Assumptions AI-AS5. Given a neighborhood g of
the origin, suppose there ezists a state control law Py : R* x
R™® — R™ such that Assumption A6 holds. Then, for each
€ > 0 (arbitrarily small) and the corresponding neighborhood of
the origin

B =p+B. ,

there ezists a ye > 0 (sufficiently large) and an observer gain
matriz L (lo guarantee that ||(sI — A+ LCm)~!Blleo is suf-
ficiently small) such that the control law (44)-(47) guarantees
the uncertain system (1)-(2) to B *-track yeer. Moreover, there
ezists M, € Rt such that

1@t 21N < Mel|2:1(0)],

Proof: See [22].

Remark: An obvious implication of Theorem 3.3 is that if
there exists a control law (20) such that the nominal system
asymptotically tracks y,.s, then there also exists an observer-
based design such that the output of the uncertain system (1)
will B¢-track yrer for any € > 0.

Remark: It is clear from Theorem 3.3 that the design of the
dynamic output feedback controller simply involves tuning the
scalar parameter 7, and the observer gain matrix. The former
can be calculated by using the given data, or by computer sim-
ulation of the closed-loop system. The design of the observer,
as mentioned earlier, can be done by using the loop transfer
recovery methods.

(48)

v & (t)eR", teRY. (49)

2512



4 Tllustrative Example

We illustrate the above results with a practical example. The
system treated here is a second order input-output representa-
tion of the longitudinal subsystem of the nonlinear dynamics of
a fixed wing aircraft.

We wish to make the aircraft perform a coordinated turn,
and assume that the lateral dynamics are suitably controlled
such that the desired bank angle trajectory ¢. is achieved. Our
objective then is to control the longitudinal dynamics of the
aircraft described by the angle of attack a = g + ay, where
ap is the trim angle of attack (initial condition). Consider a3
as the controlled variable. To illustrate the robustness of the
proposed control design to the nonlinearities of the system, the
simulation is of an aircraft performing an 80° coordinated turn.
The desired angle of attack trajectory is described by

a. = ag/ cos . — ap. (50)
where the reference bank angle is generated as follows:
d*¢ d’¢ d¢
dt; = —3wn dtZc - 3wn dtc — wade + wibmar (51)

and where w,, = 3 radians per second, @mq, = 80 degrees, and
¢. and its derivatives are initially zero. The resulting reference
trajectory a. is shown in Figure 1.

The longitudinal dynamics can be reduced to the following
input-output form

&1 + a3(p, @1, ¢)c1 + ax(p)ar + ai(p, a1, ¢) = bi(p)ée,  (52)

where 6, = 6., + 6., is the elevator deflection, é., is the initial
condition and &, the input, p = [p1,p2,pa,pa,ps,p6] C P C
RS is the vector of uncertain parameters which is comprised
of aerodynamic derivatives, pg € P is the vector of nominal
parameters and the coefficients of the equation are adapted from
the equations of motion in wind axes developed in [21]:

a; = —.05pi(cos(a; + ag) — cos ag) cos f. (53)
a; = —1135p;+ .75ps (54)
az = —{q&c + .04 cos ¢} sin(ay + ag) — .63ps — 1.19p; (55)
b, = 113.5ps— .75ps (56)

The parameter set P is defined as

p1 €| —3.063,-2552 |, pre[ —0435-0321], (57)
pa € [ 6.021,8.665 |, pa € [ —2.848,-2.378 |, (58)
ps € [ —0.488,-0.360 |, pe€ [ 1.775,2.895].  (59)

1t can be seen that in addition to the relatively weak nonlinear
effects due to the trigonometric terms in o) (usually —10° <
a; < 15°), a large bank angle (60° < ¢ < 90°) induces strong
nonlinearity in the system equation.. The system (52) can be
represented in state space in the following manner:

& = f(p,z,¢c) + B(p)se, (60)
o B R bR o L
Wt) = Cz=on(t). (61)

In this instance, we assume that the measured output and the
controlled output are identical. We choose ym(t) = y(t).
Control Design: Defining the following auxiliary system:

f(p(h Za, ¢C) + B(p0)621n (62)

[ R ) B PO

Ta

it has been found that the following control law guarantees good

transient performance and zero steady state tracking error when
applied to the nominal system.

E‘ -

bery = kiZa, + kaZa, + kat £ Bo(t, za)

T — Q¢

(63)
(64)

where [k1,k2) = Ko = [3.0,0.3),k3 = 15.0. This controller
places the closed loop poles well into the left half plane giv-
ing zero steady state tracking error with good transient perfor-
mance. Figure 1 shows the response of the closed loop system
under state feedback.

State feedback: According to the development of the control
laws (21)-(24), we can formulate the following state feedback
based on the nominal control law.

b = O(t,z) = Bo(t, z4) + ¥(t,2) — yBT Pi(z — z,)  (65)
where
¥(t,z) = Ko(z — za) — g(t,z) + g(t, za) (66)
and P; has been chosen to satisfy
(A+ BKo)TP1 + Pi(A+ BKo) = —Q (67)

where A and B are constant matrices as defined in (1),(10) and
derived from the linearisation of (62). Q is chosen such that
the closed loop poles of the linearised system are sufficiently .
left of the origin to guarantee good transient performance and
to avoid numerical problems. We have

e[8] |

The choice ¥ = 1 is sufficient to guarantee that the feedback
law induces stability and zero steady-state error for all p € P.
Output Feedback: The observer-based control design imple-
ments the state feedback control law (65) - (67), based on the
observer state rather than the true system state vector.

5.6857 .0255 ]

0255 0265 (68)

2a = f(t,zq)+ Bo(t,z4) (69)
& = f(t,2)+ Bbe + L(ym — Cm) (70)
b, = Bolt,za) +¥(t,8)— 1B P —za) (T1)
U(t,2) = Ko(& —za)— g(t, %) +9(t, 2a) (72)
where L = [l,13]T is chosen to minimise the norm
[|(sI — A+ LCm) ™' Bllo- (73)

We find that L = [1,2000]7 maintains || - [l < 2.843, with
which the output response is very close to that achieved by
state feedback, see Figure 1. In this case, nonzerosteady state
error is observed. However, the error will decrease as the Heo-
norm of (sI — A+ LCy,)~! B is reduced.

5 Conclusions

A new method has been developed for robust output tracking of
nonlinear uncertain systems. For the nonlinear uncertain sys-
tem (1) satisfying Assumptions A1-A5, we have shown that if a
nominal system can achieve B-tracking of a given output refer-
ence trajectory via linear-cone bounded state feedback control,
then the output of the system (1) can B ‘-track the reference
trajectory via dynamic output feedback for any B ¢ “larger”
than B in the sense of (48). The controller is of a simple form

2513



and its construction consists of state feedback design and ob-
server design, the former involves tuning of a single parameter
(v¢) and the latter, of the He-norm of an observer function
(sI = A+ LCm)~'B which can be done, for example, by using
loop transfer recovery techniques. Furthermore, the controller
is linear-cone bounded while a purely linear controller can also
be developed with a higher feedback gain. In view of the fact
that a large class of nonlinear uncertain systems admit match-
ing conditions, minimum phase and Lipschitz conditions, our
results should promise good application in situations such as
control of aircraft manoeuvres.
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Figure 1. Time history of Angle of Attack during a coordinatled

turn manoewvre with an 80° Bank Angle.

Dotled line: Reference irajectory.

Dot-Dash line: Nominal system response with siate feedback.

Dashed line: Trxe system response with state feedback.

Solid line: True sysiem response with output feedback.
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