IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8. AUGUST 1991 975

able case,”” IEEE Trans.
319-338, June 1976.

G. Zames and B. A. Francis, ‘‘Feedback, minimax sensitivity, and
optimal robustness,”” IEEE Trans. Automat. Contr., vol. AC-28,
pp. 585-601, May 1983.

K. J. Astrom, Introduction to Stochastic Control Theory. New
York: Academic, 1970, p. 139.

C. Barratt and S. Boyd, “*Example of exact trade-offs in linear control
design,”’” JEEE Contr. Syst. Mag., vol. 9, pp. 46-52, Jan. 1989.
T. Ting and K. Poolla, ‘*Upper bounds and approximate solutions for
muitidisk problems,”” IEEE Trans. Automat. Contr., vol. AC-33,
pp. 783-786, Aug. 1988.

S. A. Norman and S. Boyd, ‘‘Numerical Solutions of a two-disk
problem,”’ presented at the 1989 Amer. Contr. Conf., Pittsburgh, PA,
June 21-23, 1989, pp. 1745-1747.

P. Dorato, H-B. Parks, and Y. Li,*An algorithm for interpolation
with units in A%, with application to feedback stabilization,”” Auto-
matica, vol. 25, pp. 427-430, 1989.

Automat. Contr., vol. AC-21, pp.

(17

(18]
(19}
[20]

[21)

{22}

A Class of Weak Kharitonov Regions for Robust
Stability of Linear Uncertain Systems

Minyue Fu

Abstract—In this note, the Kharitonov’s theorems are generalized to
the problem of so-called weak Kharitonov regions for robust stability of
linear uncertain systems. Given a polytope of (characteristic) polynomi-
als P and a stability region D in the complex plane, P is called
D-stable if the zeros of every polynomial in P is contained in D. It is of
interest to know whether the D-stability of the vertexes of P implies the
D-stability of P. A simple approach is developed which unifies and
generalizes many known results on this problem.

I. INTRODUCTION

Consider a family of characteristic polynomials P associated with
a linear dynamic system containing parameter perturbations

P=ip(s.q)= éai(q)si: qu}, a,(q) #0,vqeQ
(1)

where
. T

a=[a1.q0. . q,] )
is the vector of perturbation parameters with each g; varying in

the bounding rectangle
O ={t+jwat,st; <, w=w=w}CC, (3)
Q=0 XQ,x " xQ, (4)
is the bounding set of g, and a,(q) is the ith coefficient of p(s, q).
It is assumed that a,(g) are affine functions of g and that each Q;

contains zero. Under these assumptions, we can rewrite p(s, g) in
(1) as

p(s.a) = po(s) + 3= a,i(s)

i=1

(5)

Manuscript received September 26, 1988; revised October 26, 1989.
Paper recommended by Past Associate Editor, J. D. Cobb.

The author is with the Department of Electrical and Computer Engineer-
ing, University of Newcastle, N.S.W. 2308 Australia.

IEEE Log Number 9144621.

where p,(s) is the nominal polynomial which is obtained from
p(s, g) by setting g = 0, and p,(s) are the perturbation polyno-
mials, obtained from p(s, q) — py(s) by setting g; = 1 and g, =
0, Vk # i. Accordingly, the family of polynomials P in (1) be-
comes the so-called polytope of polynomials and can be rewritten
as

P = {po(s) + ZQipi(S)3 q,€Q,,

i=1

i=1,2,--',m}‘
(6)

Many systems with parameter variations can be captured by the
aforementioned description. A simple example is the so-called in-
terval polynomial for which

™)

i.e., each coefficient of the polynomial lies in a given interval which
refiects the inaccuracy of the coefficient due to modeling or estima-
tion error. Another trival example is

n
p(s,q) = po(s) + 2 as',
i=0

p(s.q)=p(s.[k.7]) ="+ 2+ 7+k)s+7+k

which is the characteristic polynomial of the unity feedback system
with open-loop transfer function equal to k(s + 1)/(s + 2)(s + 7),
where k and 7 are uncertain gain and time constant, respectively.
For further engineering motivation of this type of polynomials, the
reader is referred to, among numerous papers and books, [1]-[3]
and the references therein.

For convenience, we denote

P = (po(s), pi(5). . Pu(s)).
The set of vertex polynomials of P is given by

(8

Ve={p(s,a): ;€ {qu, 902> 913> dia} » i=1,2,--, m}

©)

where g1, g;», q;3, and g, are the vertexes of Q. Note that if the
perturbation parameter g, is purely real, the Q; becomes an interval
and the number of its vertexes is dropped to two.

Given the family of (characteristic) polynomials as in (1) and a
stability region D in C (the complex plane), it is of interest to
determine whether the zeros of every polynomial in P are contained
in D. The stability regions are usually subsets of C_ (the open
left-half plane) for continuous-time systems, or subsets of the open
unit disk for discrete-time systems.

We now give the definitions of D-stability, anti-D-stability, and
weak Kharitonov regions. In the following, D¢ and 8D denote the
complement and the boundary of D, respectively.

Definition 1.1 [1], [4]: Given an open set D C C, a polynomial
p(s) is called D-stable (respectively, anti-D-stable) if every zero of
p(s) is contained in D (respectively, D€, including 4D). A family
of polynomials P is called D-stable (respectively anti-D-stable) if
every polynomial in P is D-stable (respectively anti-D-stable).

Definition 1.2: Let p be given in (8). A set D C C is called a
weak Kharitonov region with respect to p if the following condition
holds: For an arbitrary bounding set Q of the form (4) and (3), P in
(6) is D-stable if and only if V, in (9) is D-stable.

The notion of weak Kharitonov region comes from the seminal
work by Kharitonov [5], [6] where he considered the special case
for which D = C_ and P is an interval polynomial as in (7). He
showed that P is C_-stable if and only if V, is C_-stable, and
furthermore, if and only if eight special vertex polynomials in ¥V,

0018-9286/91/0800-0975%01.00 ©1991 IEEE



976 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 199!

are C_-stable or four special ones when the coefficients of the
interval polynomials are purely real. Since the later result requires
checking much less number of polynomials than the former one and
this number is independent of the polynomial degree, it is often
referred to as the strong version while the former result the weak
version.

The objective of this paper is as follows: given a family of
polynomials P as in (6) and a stability region D C C, determine
whether D is a weak Kharitonov region. The most pertinent results
to this note are those by Petersen [7], [4], Soh and Berger [8], Soh
[9], Hollot and Bartlett [10], Kraus et a/. [11], and Bialas and
Garloff [12]. In [7], the regions in C_ which can be mapped onto
C_ by the so-called strongly admissible rational functions [13] are
considered and a number of interesting regions are found to be weak
Kharitonov regions. In [4], it is shown that C _ is a weak Kharitonov
region if p,(s) are all anti-D-stable. In [8], [9], some sectors in the
left-half plane are proven to be weak Kharitonov regions provided
that the polynomial coefficients are real. In [10], [11], some special
conditions on p;(s) are found for the open unit disk to be a weak
Kharitonov region. In [12], Polynomials with even or odd perturba-
tions, i.e., each p,(s) is either an even or odd polynomial, are
shown to be Hurwitz if the vertex polynomials are Hurwitz.

In this note, a new approach to the problem of weak Kharitonov
regions is developed using the concept of decreasing phase prop-
erty for stability region D defined as follows.

Definition 1.3: Given a stability region D C C and the polyno-
mial vector p in (8), p is said to hold the decreasing phase
property if, for an arbitrary nth order D-stable polynomial f(s)
and 1 < /=< m, arg p,(s)/f(s) is monotonously descreasing except
at p,(s) =0 when s traverses on 4D in the counterclockwise
direction (or, for short, monotonously descreasing on 8 D).

We now end our introduction with a key theorem which links the
problem of weak Kharitonov regions to the decreasing phase prop-
erty discussed previously.

Theorem 1.1 (see the Appendix for Proof): Let an open set
D C Cand p = (pys), p,(s),"*, P,(s)) be given. Then D is a
weak Kharitonov region with respect to p if p holds the descreas-
ing phase property.

II. WEAK KHARITONOV REGIONS

In this section, Theorem 1.1 is used to derive a number of useful
weak Kharitonov regions for both continuous-time and discrete-time
systems. These results unify and generalize many known results in
[41-112].

Theorem 2.1: Any (rotated) open-half plane

D={x+jy:a+bx+cy<0}, a,b,ceR (10)

is a weak Kharitonov region with respect to p in (8) for any py(s)
if pi(s), i =1,2,---, m are anti-D-stable.

Proof: Suppose p,(s),i= 1,2, -, m are anti-D-stable. Let
f(s) be an arbitrary nth order D-stable polynomial. It is straightfor-
ward to see that arg pi(s)/f(s) is monotonously decreasing on D
because arg p,(s) (respectively, arg f(s)) are monotonously nonin-
creasing (respectively, increasing). Therefore, it follows from Theo-
rem 1.1 that D is a weak Kharitonov region with respectto p. [J

Remark: The aforementioned theorem is an extension to the
main result in [4] where D = C_ is considered.
Corollary 2.1 [7]: Any open-half plane

D={x+jy: x< —a+ by}, az0,beR (11)
is a weak Kharitonov region with respect to p = (py(s), 1, s,
«++, 8" for any py(s) of nth-order. In particular, C_ is a weak

Kharitonov region with respect to the aforementioned p [5].
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Fig. 1.

Theorem 2.2 [7], [8]: Any open region
D={x+jyia -b|x|<y<-—a +b|x|, x< —as,
(12)
is a weak Kharitonov region with respect to p = (py(s), 1,5,
-+, 5™ for any py(s) of nth-order.
Proof: The proof is essentially identical to that of Theorem

2.1. U
Theorem 2.3: Any open circular region

a,z20,b,>0

D= {s:s=c+pexp(j0):05p<r,050s21r},
ceC,r>0 (13)

is a weak Kharitonov region with respect to p in (8) for any py(s)
if pi(s), i =1,2,--+, m are anti-D-stable.

Proof: Let f(s) be any nth-order D-stable polynomial. From
Theorem 1.1, it is sufficient to show that arg pi(s)/f(s), 1 =i <
m, is monotonously descreasing when s traverses on dD. Let z,
and z, be any zeros of f(s) and p;(s), respectively, see Fig. 1. We
claim that arg (s — 2,)/(s — z,) is monotonously descreasing. To
see this, we divide dD into L, and L, according to the tangent
points A and B in Fig. 1. When s traverses on L, arg(s —
2,)/(s — z,) is obviously decreasing because arg(s — z;) is in-
creasing and arg (s — z,) is decreasing. Now suppose § traverses
on L, and @ is increased by df. Note that both arg (s — z,) and
arg (s — z,) are increased. Therefore, we need to prove that the
increment d¢, of arg (s — z,) is greater than the increment dé, of
arg (s — z). This is not difficult to see from Fig. 1 because
do, > deé,, do, < d¢,, and do, = do, = df /2. Consequently,
arg (s — 2,)/(s — z,) is monotonously decreasing on L,. Hence,
our claim holds. We then conclude that arg p/(s)/f(s) is
monotonously descreasing on dD because the number of zeros of
pi(5) is no more than that of f(s). ]

Corollary 2.2 [7]: Any open circular regions
D={x+jy:(x+a)+y*<r’}, Osr=a (14)

and
D={x+jy:(x-a’+y*<r?}, Osr=a<l1)2

(15)
are weak Kharitonov regions with respect to p = (py(s), 1, s,
<+, s™ for any py(s) of nth-order.
Theorem 2.4: Any open parabolic region

D={x+jy: (ax)’ = (by)'>1,x<0}, a,b>0 (16)

is a weak Kharitonov region with respect to p(s) = (py(s), 1, s,
-, s") for any pg(s) of nth-order.
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Proof: The proof is essentially identical to that of Theorem

2.1. O
Theorem 2.5 [9]: Any region

D={x+jy:x<0,a|x| <|y| <b|x|}, bza>0

(17)

is a weak Kharitonov region with respect to p(s) = (py(s), 1, s,
-, ™) for any py(s) of nth-order provided that the parameters
q;, i =1,2,-++, n and the coefficients of p(s) are real.

Proof: Let f(s) be any nth-order D-stable polynomial with
zeros given by z,, z, z,. 23, *, where z} denotes the complex
conjugate of z,, Im(z;) > 0. By Theorem 1.1, it is sufficient to
show that arg s’/ f(s) is monotonously descreasing when s tra-
verses on 4D for any 0 <i=<n. Note that 3D is given by
|| =b|x]| or |y| =al|x|. We first observe that arg s’ is
fixed on dD. Therefore, we only need to show that arg (s — z,)(s
— z}) is monotonously increasing on each dD. This holds trivially
on | y| =b|x|.On y=alx|, this holds because arg (z — z,)
increases faster than arg(z — z}) decreases. A similar argument
applies to y = —a| x|. Therefore, arg s'/f(s) is monotonously
descreasing on 3 D. m

Theorem 2.6: Every open convex region D C C is a weak
Kharitonov region with respect to ( py(s), 1) for any p,(s).

Proof: Let f(s) be any D-stable polynomial. It is obvious that
arg 1/f(s) is monotonously descreasing on dD. Therefore, it fol-
lows from Theorem 1.1 that D is a weak Kharitonov region with

respect to ( py(s), 1). ]
Theorem 2.7 [12]: Let p be given in (8) satisfying the following
condition: for each i=1,2,---, m, either Re p,(jw)=0 or

Im p;(jw) = 0. Then C_ is a weak Kharitonov region with respect
to p.

Proof: Let f(s) be an arbitrary nth-order C_-stable polyno-
mial. From Theorem 1.1, it is sufficient to show that
arg p;(jw)/f(jw) is monotonously descreasing when « increases
except at p;(jw) =0, i =1,2,---, m. This is obvious because
arg f(jw) is monotonously increasing and p,(jw) is either purely
real or purely imaginary without phase change. O

Theorem 2.8 [11]: The open unit disk is a weak Kharitonov
region with respect to

p={po(s),1+s"1-s"s+s" 1, s—5""1 0o,
sln/2l 4 gn=tn/2) dn2) _ Sn-[n/'Z])
for any p,(s) of nth-order, where [-] denote the integer part.
Proof: Let D be the open unit disk and f(s) be any nth-order
D-stable polynomial. Note that 9D = {exp(j6): 0 < 6 < 27}. By
applying Theorem 1.1, it is sufficient to show that arg(s’ +

st"=My/ f(s) is monotonously descreasing for any i < [n /2] when
s traverses on dD. Note that

exp (J8) + exp (J(n — i)6)

on{ ) oo 2] w5 -]
s (1= 2w )
(1~ 2o o 12

and its phase is either n8/2 or (—x + n6)/2. Let z,, k =
1,2,--+, n be the zeros of f(s), s = exp(/j6) and suppose 8 is
increased by df, as shown in Fig. 2. Then, arg s’ + sl"~7 i
increased by nd6 /2. On the other hand, arg f(s) is increased by

Fig. 2.

more than ndf /2 because df, > dé, = db /2 (see Fig. 2). Conse-
quently, arg (s’ £ 5"~/ f() is monotonously descreasing on 3D.
|

Theorem 2.9 [10]: The unit disk is a weak Kharitonov region
with respect to p = (py(s), 1, s, -+, s1"/?)) for any p(s) of nth-
order.

Proof: The proof of this Theorem is exactly the same as that
of Theorem 2.8 except that s’ + 51"~ ‘1 is replaced by s' and that
arg s' is increased by only idé rather than ndf when 6 is
increased by d#. O

To summarize, the weak Kharitonov regions are tabulated in
Tables I and II for continuous-time and discrete-time systems,
respectively. It should be noted, however, more weak Kharitonov
regions can be constructed by 1) applying Theorem 1.1 on other
special uncertain polynomial (e.g., low-order polynomials); 2) using
the fact that the intersection of weak Kharitonov regions is a weak
Kharitonov region [7]; 3) relaxing the requirement of the descreas-
ing phase property in Theorem 1.1.

APPENDIX
PrOOF OF THEOREM 1.1

The following lemma is essential in the proof of Theorem 1.1.

Lemma 1: Given an open stability region D C C and nth-order
D-stable polynomials f,(s) and f(s) + f,(s) with positive leading
coefficients. Suppose arg f,(s)/f,(s) is monotonously descreasing
on dD. Then, the polynomial

S(s.0) = fo(s) + afi(s)
is D-stable forall 0 < a < 1.

Proof: Let T' C C denote the trajectory of f,(s)/fy(s) as s
traverses on dD, i.e.,

T = {fi(5)/fo(s): sedD}.

Since fy(s) is D-stable and deg f,(s) < deg fy(s), T' is a bounded
and closed curve. Therefore, arg f,(s)/fy(s) being monotonously
descreasing implies that T' encloses the origin. On the other hand,
the point —1 + j6 is not encircled by T because fo(s) + f,(s) is
D-stable (principle of argument). Consequently, using the facts that
arg f1(s)/ f,(s) is monotonously descreasing again and that T' en-
closes the origin, the interval (— o, — 1] is not enclosed by T. In
particular, the point — 1/« + j# is not enclosed by T'. Therefore,
Jo(8) + afi(s) is D-stable (principle of argument). O

Proof of Theorem 1.1: Suppose V, is D-stable. Define, for
i=1,2,-.m

&ia(8) = (7, - t)pi(s)
gz,(s) =j(a; - Qi)Pi(S)



TABLE 1
WEAK KHARITONOV REGIONS FOR CONTINUOUS-TIME SYSTEMS
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P D

condition

(Po(8), PA(S)." " *s Pp(S)) (10), (13)

C.

(Po($). 1, 5,52+, 5™)
an

(Po(8), 1)

(11), (12), (14), (16)

any open convex set

pi(s) is anti-D-stable

Re p(jw) =0or
Im p(jo)y=0,1=i=m

none
real parameters and coefficients

none

TABLE Il
Weak KHARITONOV REGIONS FOR DISCRETE-TIME SYSTEMS

14

D condition

the open unit disk

(Po(8), PA(S)y" " s Pm(S))

or any open circular

p,(s) is anti-D-stable

region inside of it

™
- sin/2

(Po($), o
§7 e, gl g gneinry

1, s,
(po(s), L, s,
(po(s), 1 =

(15)
the open unit disk
the open unit disk

none
none
none

Qi =

2
s
i
e &
I
g £
b
e le

7o(5) = pols) + i (& + i) pi(s)

and, for any o = (o, ¢y, ", 0p,)  and 1 </ <2m

fi(s, @) = fo(s) + Elakgk(S)

Note that
Sils.a) =1 i(s.@) + og(s)

and that any polynomial in P can be expressed by f,,,(s, a) for
some o withall0 < oy, < 1, kK = 1,2,---,2m. From the decreas-
ing phase property of p, we know that, for any nth-order D-stable
polynomial f(s), arg g,(s)/f(s) is monotonously descreasing on
oD, k=1,2,---, m.

Given an arbitrary polynomial f,,(s, a) € P, we need to prove
that f,,,(s, &) is D-stable by reductio ad absurdum. That is, we
assume f, (s, «) is not D-stable and show that there exists some
vertex polynomial of P which is also not D-stable. Indeed, accord-
ing to Lemma 1, f,,,(s, a) being not D-stable implies that either
Sam-1(s, @) or fp,,_1(s, @) + g,,(s) is not D-stable. Without loss
of generality, we may assume that f,, (s, @) is not D-stable.
Using Lemma 1 again, we further obtain that either f,,,_,(s, @) of
Som-2(S, @) + Q1 82m- () is not D-stable. Continuing with
this process repeatedly, we will eventually have either fy(s) or
another vertex polynomial of P to be not D-stable. This conclusion
contradicts the assumption that Vp is D-stable. Therefore,
Jfam(S, o) must be D-stable. Since f,,,(s, @) is an arbitrary polyno-

mial

to p.
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(31
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in P, D must be a weak Kharitonov region with respect
O
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